НГО әдісі


Slide 1

НГО әдісі

Сұлтанова Асемгүл

МИК91 тобы

Slide 2

Салу есептерін шешудің бірнеше әдістері бар. Оларға НГО (нүктелердің геометриялық орны) әдісі, түрлендірулер әдісі (параллель көшіру, осьтік симметрия, центрлік симметрия, бұру, ұқсас түрлендіру, гомотетия), алгебралық әдіс және инверсия әдісі жатады.

Slide 3

НГО ұғымы

Геометриялық фигура әр түрлі тәсілмен беріледі: фигуралардың қиылысуы немесе бірігуі түрінде; фигураны анықтайтын қасиеттердің көрсетілуі арқылы; т. б. . Мысалы, АВ кесіндісі (11-сурет)

АМ, ВN сәулелерінің қиылысуы

р түзуіне перпендикуляр болатын  шеңберінің диаметрі

р түзуіне параллель болатын  шеңберінің хордаларының орталарының жиыны түрінде берілуі мүмкін.

Slide 4

Егер фигура әрбір нүктесінің қасиетін көрсету арқылы берілсе, онда оны көрсетілген қасиетті қанағаттандыратын НГО деп, ал берілген қасиетті НГО-ң характеристикалық қасиеті деп атайды. Жоғардағы мысалда АВ кесіндісі р түзуіне параллель  шеңберінің хордаларының орталарының геометриялық орны болып табылады.

Slide 5

Салу есептерін шешуде пайдаланылатын геометриялық орындар әдісінің мәнісі мынада: айталық, салу есебін шешкенде екі шартты бірдей қанағаттандыратын Х нүктесін табу керек болсын. Бірінші шартты қанағат-тандыратын нүктелердің геометриялық орны қайсыбір Ғ1 фигурасы болады, ал екінші шартты қанағаттандыратын нүктелердің геометриялық орны қайсыбір Ғ2 фигурасы болады. Ізделінді Х нүктесі Ғ1 фигурасына да, Ғ2 фигурасына да тиісті, яғни олардың қиылысу нүктесі болып табылады. Егер бұл гео-метриялық орындар қарапайым болса (мысалы, түзулер мен шеңберлерден құралса), біз оларды сала аламыз және қажетті Х нүктесін тауып алуға болады.

НГО сызық немесе бірнеше сызықтардың бірігуі ғана емес, сонымен қатар нүктелердің жиыны, жазықтықтың бөлігі, т. б. болу мүмкін. Кейде көрсетілген қасиетті қанағаттандыратын НГО болмайды.

Slide 6

Ф фигурасы көрсетілген қасиетті қанағаттандыратын НГО екенін дәлелдеу үшін төмендегі өзара қарама - қарсы екі сөйлемді дәлелдеу керек:

1. Ф фигурасының әр нүктесі көрсетілген қасиетке ие болады

2. Көрсетілген қасиетті қанағаттандыратын әрбір нүкте Ф фигурасына тиісті.

Мысал: Параллель а, в түзулері және оларға перпендикуляр с түзуі берілген. Осы үш түзуден бірдей қашықтықта жататын жазықтық нүктелерінің гео-метриялық орнын анықта.

Slide 7

Шешуі: Айталық а  с  А, в  с  В (12-сурет) . АВ кесіндісінің ортасы арқылы р  а(р  в) болатындай р түзуін жүргізіп, осы түзуден с түзуінің екі жағыннан қашықтықтағы нүктелерді Р1, Р2 деп белгілейміз.

С онда Р1, Р2 нүктелерінің әрқайсысы берілген түзулерден бірдей қашықтықта жатады.

Жазықтықта осы қасиетті қанағаттандыратын басқа нүктелер жоқ. Шынында да М нүктесі р түзуінде жатпайды, сондықтан ол а, в түзулерінен бірдей қашықтықта болмайды; N нүктесі р түзуіне тиісті, бірақ Р1, Р2 нүктелерімен беттеспейді, онда ол а, с түзулерінен бірдей қашықтықта емес. Олай болса, Р1, Р2 нүктелерінің қосы а, в, с түзулерінен бірдей қашықтықтағы НГО болып табылады.

Slide 8

Қарапайым НГО

Slide 9

Геометриялық салуларда кездесетін қарапайым НГО-ның мысалдары:

1. Берілген екі нүктеден бірдей қашықтықтағы НГО берілген нүктелерді қосатын кесіндінің орта перпендикуляры болады. Бұл НГО кейде берілген нүктелердің симметриясы немесе медиатриссасы деп аталады.

2. Берілген түзуден берілген қашықтықтағы НГО берілген түзуге параллель және әрқайсысы одан берілген қашықтықта жататын түзулердің қосы болады. Оны салу үшін берілген түзуге кез-келген перпендикуляр тұрғызып, оның бойынан берілген түзуден берілген қашықтықта екі нүкте белгілейміз. Сол нүктелер арқылы өтіп берілген түзулерге параллель болатын түзулер ізделінді НГО болады.

Slide 10

3. Берілген екі параллель түзуден бірдей қашықтықтағы НГО берілген түзулердің симметрия осі болады, оны орта сызық, деп те атайды. Бұл НГО-ны салу үшін берілген а, в түзулерін қиятын кез-келген с түзуін жүргізіп, оның берілген түзулер арасындағы кесіндісінің ортасы арқылы а-ға (немесе в-ға) параллель түзу жүргіземіз.

4. Жазықтықтың қиылысушы екі түзуінен бірдей қашықтықтағы НГО берілген түзулер құрайтын бұрыштардың өзара перпендикуляр екі биссектрисасы болады. Оны салу қарапайым бұрышты тең екіге бөлу есебіне келеді.

5. АВ кесіндісінен тік бұрыш арқылы көрінетін НГО АВ диаметрі болатын шеңберді құрайды. Оны салу үшін АВ кесіндісінің ортасы центрі, АВ/2 радиусы болатын шеңбер жүргіземіз.

Slide 11

6. АВ кесіндісі берілген φ бұрышымен (φ ≠ 900 және φ ≠ 1800) көрінетіндей НГО ұштары А, В нүктелері (А, В нүктелерінсіз) болатын, АВ түзуіне қарағанда симметриялы екі доға болады.

7. Берілген шеңбер φ бұрышымен (φ ≠ 1800) көрінетін НГО радиусы берілген шеңбер радиусынан үлкен және берілген шеңберге концентрлі шеңберлер болады.

8. Берілген нүктеден берілген қашықтықтағы НГО - берілген нүкте центрі, берілген қашықтық радиусы болатын шеңбер.

9. Берілген А, В нүктелерінің әрқайсысына дейінгі қашықтықтарының қатынасы тұрақты және 1-ден өзге болатын НГО центрлері АВ түзуінің бойында жататын шеңберлер болады.

Slide 12

10. Берілген А, В нүктелеріне дейінгі қашықтықтарының қосындысы а2 болатын НГО

- егер 2а2 > АВ2 болса, шеңбер болады және оның центрі АВ кесіндісінің бойында жатады;

- егер 2а2 = АВ2 болса, центрі АВ кесіндісінің ортасында жататын шеңбер болады;

- егер 2а2 < АВ2 болса, құр жиын болады.

11. (О, ОА) шеңберінің А нүктесі арқылы жүргізілген барлық хордаларды берілген λ (λ > 0) қатынасында бөлетін нүктелердің жиыны центрі ОА тү-зуінде жататын және А нүктесі арқылы өтетін (А нүктесінің өзі алынбайды) шеңбер болады.

Slide 13

НГО іздеу

Slide 14

Геометриялық салулардың ішінде НГО-нын табу есептері жиі кездеседі. Мұндай есептерде кейбір «қарапайым» немесе «элементар» фигуралардың бірігуі белгілі деп алынып, осы бірігудің қай элементі ізделінді ГО-ды қанағаттандыратанын тауып, көрсету керек. НГО табу есептерін шешу методикасы талдау, салу, дәлелдеу және зерттеуден тұрады.

Талдаудың мақсаты - ізделінді НГО-ның қандай болатыны жөнінде болжам жасау. Әдетте, талдауды берілген фигуралардың сызбасын салып, сол сызбадан ізделінді НГО-а тиісті бір нүктені қарастырудан бастайды. Сонан соң осы нүкте мен берілген элементтер арасында ГО-ның формасы мен орналасуын анықтауға мүмкіндік беретіндей қатынас орнатылады. Нәтижесінде тек дәлелдеуді қажет ететін болжам шығады

Slide 15

Дәлелдеуде өзара қарама - қарсы екі сөйлемнің ақиқаттығы анықталады:

1. талдауда табылған фигураның кез-келген нүктесі ізделінді НГО-ның характеристикалық қасиетін қанағаттандырады;

2. көрсетілген характиристикалық қасиетті қанағаттандыратын әрбір нүкте талдауда табылған фигураға тиісті.

Немесе екінші сөйлемді былайша тұжырымдауға болады:

2') егер қандай да бір нүкте табылған фигураға тиісті болмаса, онда ол көрсетілген характиристикалық қасиетті қанағаттандырмайды.

Зерттеуде берілген фигуралардың әртүрлі орналасу жағдайларындағы шешімдердің мүмкін болатын мәндері анықталады.

Slide 16

Мысал: Берілген екі нүкте арқылы өтетін шеңберлердің центрлерінің ГО тап.

Талдау. Есеп шешілді делік, яғни А, В - берілген нүктелер, , , , . . . -А, В нүктелері арқылы өтетін шеңберлер, ал О1, О2, О3, О4. . . сәйкесінше осы шеңберлердің центрлері (13-сурет) . Бұл нүктелер ізделінді НГО - ның нүктелері. Олар бір түзудің бойында жатады және ол түзу АВ кесіндісінің орта перпендикуляры болады.

Slide 17

Дәлелдеу. О1А және О1В -  шеңберінің радиустары болғандықтан, олар өзара тең болады. Онда АО1В үшбұрышы теңбүйірлі.

Теңбүйірлі үшбұрыштардың қасиеті бойынша О1 төбесі табанының орта перпендикулярында жатады. Дәл осылайша қалған центрлердің АВ кесіндісінің орта перпендикулярына тиістілігі дәлелденеді. Сонда берілген екі нүкте арқылы өтетін шеңберлердің центрлерінің ГО - берілген нүктелерді қосатын кесіндінің орта перпендикуляры болады.

Зерттеу. Егер А, В нүктелері беттеспесе, ізделінді ГО - осы нүктелерді қосатын кесіндінің орта перпендикуляры. Егер А, В нүктелері беттесетін болса, онда ізделінді ГО - бүкіл кеңістік болады, яғни кеңістіктің барлық нүктелері (А, В нүктелерінен басқа) осы ГО - ға тиісті.

Slide 18

НГО әдісімен шешілетін геометриялық салуларға мысалдар

Slide 19

Есеп 1: Бір қабырғасы, сол қабырғаға қарсы жатқан сүйір бұрышы және іштей сызылған шеңбердің радиусы бойынша үшбұрыш салыңыз.

Шешуі:

Талдау: Есеп шешілді делік, АВС - ізделінді үшбұрыш, ВС, ВАС және r берілген элементтер (14 - сурет) .

Айталық О - іштей сызылған шеңбердің центрі. ВС түзуін кез - келген етіп алып, одан кез - келген ВС кесіндісін белгілеу оңай. Содан соң О нүктесін тұрғызсақ, ізделінді үшбұрыштың А төбесі оңай табылады. Олай болса, О нүктесі негізгі элемент болып табылады.

ВОС үшбұрышынан

ВОС + АВС + АСВ = 1800 

ВОС = 1800 - (1800 - A) = 900 - A 

ВОС = 900 - ,

мұндағы  = ВАС және  900.

Slide 20

Сонымен О нүктесі мына екі шартты қанағаттандырады:

1) ол ВС түзуінен берілген r қашықтықта жатады;

2) ВС кесіндісі О нүктесінен 900 -  бұрышымен көрінеді.

1 шартын қанағаттандыратын нүктелердің жиыны (F1 деп белгілейік) ВС түзуіне параллель екі түзуден құралады (1. 2., 20), ал 2 шартын қанағаттан-дыратын нүктелердің жиыны (F2 деп белгілейік) ұштары ортақ А, В нүктелері болатын екі доғадан тұрады (1. 2., 60) .

Slide 21

Салу:

1) ВС кесіндісі

2) 1) шартын қанағаттандыратын түзулер: m1, m2

3) 2) шартын қанағаттандыратын доғалар: 1, 2

4) m1  1 = О нүктесі

5)  = (О, r) шеңбері

6) В нүктесінен  - ға р1 жанамасы

7) С нүктесінен  - ға р2 жанамасы

8) р1  р2 = А нүктесі

9) АВ, АС кесінділері

АВС - ізделінді.

Slide 22

Дәлелдеу:

Салу бойынша   АВС үшбұрышына іштей сызылған. Енді ВАС = екенін дәлелдеу керек. ВОС = 900 -  (салу бойынша), сондықтан ВОС үшбұрышынан

ВОС + АВС + АСВ = 1800 

900 -  + (АВС + АСВ) = 1800 

 + АВС +АСВ = 1800  ВАС = 

Slide 23

Зерттеу:

F1, F2 жиындарының ортақ нүктесі болу үшін сtg (450 + )  r (1)

шарты орындалуы керек. Бұл АВС үшбұрышының салынуының қажетті шар-ты болады. Енді оның жеткілікті шарт болатынын дәлелдейік. Шынымен де, (1) шарты орындалса, салу жоспарының 1) - 5) қадамдары әрдайым салынады.

(р1, ^ ВС) + (р2, ^ ВС) = АВС +АСВ = 1800 - ,

ал   900, онда р1, р2 түзулері қиылысады да, А нүктесі бар болады және біреу.

Slide 24

Демек есептің жалғыз шешімі бар.

Қарсы жориық, АВС және А1В1С1 - есеп шартын қанағаттандыратын үшбұрыштар, ал О1, О2 - сәйкесінше оларға іштей сызылған шеңберлердің центрлері. ВС = В1С1, ВОС = В1О1С1 және BH = В1Н1 болғандықтан, мұнда ВН, В1Н1 - биіктіктер. Онда ОВС = О1В1С1 немесеАВС = А1В1С1. Дәл осылайша АСВ = А1С1В1. Онда үшбұрыштар теңдігінің екінші белгісі бойынша . Яғни қарсы жору қате, есептің жалғыз шешімі болады.

Slide 25

Есеп 2: Шеңбер және оның кез - келген жанамасы берілген. Жанаманы берілген М нүктесінде жанайтын және берілген шеңберді де жанайтын шеңбер салыңыз.

Шешуі: Бұл есепті шешудің екі әдісін қарастырайық.

І әдіс. Талдау:Айталық О-берілген шеңбердің центрі, О1 - ізделінді шеңбердің центрі, N - берілген жанама мен берілген шеңбердің жанасу нүктесі (15 - сурет) . ω, ω' шеңберлерінің ортақ жанамасына ҒМ перпендикулярын тұрғызып, оның бойына МК = ON кесіндісін белгілейміз, К - МN түзуінің ω шеңбері жатпайтын жарты жазықтығында болады. Олай болса ОО1К үшбұрышы - теңбүйірлі.

Slide 26

Сонымен О1 нүктесі мына геометриялық орындарға тиісті:

1) ОК кесіндісінің орта перпендикулярына

2) ҒМ түзуіне.

Салу: 1) ҒМ  MN түзуі

2) ҒМ түзуінде МК = ОN кесіндісі (К, О нүктелері МN түзуінің әр түрлі жағында жатады)

3) ОК кесіндісі

4) ОК кесіндісінің орта перпендикуляры: DL (DОК)

5) DL ∩ МҒ = О1 нүктесі

6) ω' (О1, О1М) шеңбері

ω' - ізделінді шеңбер.

Slide 27

Дәлелдеу: Салу бойынша DL орта перпендткуляр болғандықтан, О1 нүктесі О, К нүктелерінен бірдей қашықтықта жатады (1. 2., 10) . Олай болса О1К = ОО1. Ал салу бойынша МК = ОN немесе МК = ОР болғандықтан, О1Р = О1М.

ІІ әдіс. Талдау: Ізделінді ω' (О1, О1М) шеңбері салынған болсын (16 - сурет) .

Онда МРО1 - теңбүйірлі үшбұрыш (Р - шеңберлердің жанасу нүктесі) . МО1перпендикулярының бойына МК = ОN кесіндісін өлшеп салсақ (К, О - МN түзуінің әр түрлі жағындағы нүктелер), ОО1К үшбұрышы теңбүйірлі болады. ОО1К және МРО1 үшбұрыштарында О1 бұрышы ортақ, ал табанындағы бұрыштары өзара тең. Онда ОК МР.

Slide 28

Салу: 1) ҒМ  MN түзуі

2) ҒМ түзуінде МК = ОN кесіндісі

(К, О нүктелері МN түзуінің әр түрлі

жағында жатады)

3) ОК кесіндісі

4) МТОК түзуі

5) МТ∩ω = Р нүктесі

(Р - М нүктесіне жақын нүкте)

6) ОР түзуі

7) ОР ∩ МҒ = О1 нүктесі

8) ω' (О1, О1М) шеңбері

ω' - ізделінді шеңбер.

Slide 29

Дәлелдеу: МРОК және Р  ω екенін ескерсек, ОР = МК. Олай болса КОРМ - теңбүйірлі трапеция, яғни РОК = МКО. МРОК  О1РМ = РОК жәнеО1МР = МКО  О1МР = О1РМ. Соңғы теңдіктен О1Р = О1М.

Зерттеу: Екі түзудің қиылысуы бір ғана нүкте болатындықтан, О1 нүктесі жалғыз. Демек салынған шеңбер - есеп шартын қанағаттандыратын жалғыз шешім.

Slide 30

Есеп 3: ω шеңбері, оның бойынан А, В және жылжымалы С нүктелері берілген. АВС үшбұрышының медианаларының қиылысу нүктелерінің геометриялық орнын табыңыз.

Айталық М - АВ кесіндісінің ортасы,

К - медианалардың қиылысу нүктесі

(17-сурет) . Онда центрі М, коэффиценті

болатын гомотетияда С нүктесі К нүктесіне көшеді. Сондықтан үшбұрыштың медианаларының қиылысу нүктелері берілген шеңберге гомотетиялы ω' шеңберінің бойында жатады және гомотетия центрі О нүктесі,

коэффиценті болады. Сонда ω' шеңбері

- ізделінді НГО.

Slide 31

Есеп 4: А, В, С нүктелері берілген. А және В нүктелерінен бірдей қашықтықта, ал С нүктесінен берілген қашықтықта жататын Х нүктесін табыңыз.

Шешуі: Ізделінді Х нүктесі екі шартты қанағаттандырады:


Ұқсас жұмыстар
Электрондық ақша арқылы төлемдер
Вьетнам соғысы
Оттектің физикалық қасиеттерін білу
Ауаның құрамында оттек
d - элементтердің сонымен қатар Cr, Mo, W қосылыстарының медицина мен фармация қолданысындағы химиялық негіздер туралы түсінік
ЖҰМЫРТҚА КЛЕТКАСЫНЫҢ ҰРЫҚТАНУЫ
Халық ауыз
Этнопедагогикалық зерттеу әдістері
Оқушылардың көңіл - күйін ширатып, белсенділігін арттыру
Даму психологиясын зерттеу әдіс - тәсілдері
Пәндер



Реферат Курстық жұмыс Диплом Материал Диссертация Практика Презентация Сабақ жоспары Мақал-мәтелдер 1‑10 бет 11‑20 бет 21‑30 бет 31‑60 бет 61+ бет Негізгі Бет саны Қосымша Іздеу Ештеңе табылмады :( Соңғы қаралған жұмыстар Қаралған жұмыстар табылмады Тапсырыс Антиплагиат Қаралған жұмыстар kz