Биогазға арналған шикізаттар



Жұмыс түрі:  Дипломдық жұмыс
Тегін:  Антиплагиат
Көлемі: 45 бет
Таңдаулыға:   
Білім және Ғылым Министрлігі Қазақстан Республикасы
Оңтүстік Қазақстан Мемлекеттік Педагогикалық Университеті

Бексапаров Нұрғали Абайұлы

Түркістан облысының биометаногенді микрофлорасының штаммалық алуантүрлігін зерттеу.

ДИПЛОМДЫҚ ЖҰМЫС
Мамандығы 5В011300 - Биология

Шымкент 2021
Қазақстан республикасының білім және ғылым минстрлігі
Оңтүстік қазақстан мемлекеттік педагогикалық университеті

Қорғауға жіберілген
___________ Кафедра меңгерушісі
___________ Н.М. Байсейтова
_________2021 жыл

Түркістан облысының биометаногенді микрофлорасының штаммалық алуантүрлігін зерттеу.

ДИПЛОМДЫҚ ЖҰМЫС
Мамандығы 5В011300 - Биология

Орындаған Бексапаров Н.А
Тобы 113-17А
Ғылыми жетекші б.ғ.к.,
доцент Жаппарбергенова Э.Б.
Норма бақылаушы Ф.А.Ә.

Шымкент 2021
МАЗМҰНЫ

КІРІСПЕ
2
1
БИОМЕТАНОГЕНДІ ӨНДІРІС НЕГІЗДЕРІ
5
1.1
Биометаногенезді жүргізетін заманауи технологиялар
5
1.2
Биометаногенез процесінің технологиялық кезеңдері
7
1.3
Биометаногенездің негізгі кезеңдері
20
2
БИОМЕТАНОГЕНДІ МИКРООРГАНИЗМДЕР АССОЦИАЦИЯСЫНЫҢ ЖЕРГІЛІКТІ ШТАМДАРЫ
26
2.1
Биогазға арналған шикізаттар
26
2.2
Биометаногенез процессін жергілікті шикізат негізінде алу технологиясының нәтижелері
29
2.3
Бактериологиялық бақылау әдістері. Қоректік орта даярлау
32
2.4
Биометаногенді микрофлораның культуральды белгілерін анықтау
37
2.5
Метаногенді микрофлораның жергілікті штамдарын бактериологиялық тәсілдер арқылы зерттеу
40

Қорытынды
41

Пайдаланған әдебиеттер тізімі
43

КІРІСПЕ

Тақырыптың өзектілігі. Қазақстан Республикасы өткізген ЭКСПО -2017 тақырыбы қазіргі бүкіл әлем алдындағы тұрған жаңа альтернативті энергия іздестіру мәслесіне арналып, адамзат алдында арзан әрі, тиіміді, қоршаған ортаға залал әкелмейтің әрі қайта қалпына келіп, толықтырылып отыратын қуат көзін іздестіруіөзекті мәселе болып келетінің айқындады.
Осыған орай, альтернативті энергия, оның ішінде қалдықтарды биоконверсиялайтын мәселелер біздің елемізде нарық жағдайында қолға алынып кележатыр.
Қазақ халқы дәстүрлі мал шаруашылығында негізділген тұрмыс-тіршілігі бар ел болып саналады.
Сол себептенде, ауылшаруашылық қалдықтарды метаногенез барысында биоконверсиялау тиіміді және елдің менталитетіне жақын болып келетің процесс.
Соңғы жылдары Республиканың фермерлік қожалықтарында биогаз өндірісіне бет бұрылып, шаруалықтар арасында қызығушылық байқалып келеді.
Нәтижесінде отандық және шетелдік корпорациялар түрлі биогазды қондырғыларды ұсынып, жекемеңшік қожылықтармен қатар бұл салаға көптеген коммуналды қожалықтар, су тазартқыш жүйелермен үлкен көлемді зауыттар дамытып келеді.
Энергетикалық шаруашылықтың алдынғы орталықтары да бұл саламен айналасуды бастап, биогазды құрылыстардың сапалы әрі тиімді құрылыстарын жасауда.
Мәселен, көптеген азық-түлік өндірістер мен үлкен көлемді тамақтандыру орталықтары, ресторандар үшін тағамдық қалдықтарды өңдеп, утилизация барысында арзан қуат көзін алу, қоршаған ортаны зиян қоқыстардан қорғау, тыңайтқыштыр алу аса маңызды және қосымша табыс әкелетің бағыт болып келеді.
Дипломдық жұмыстың практикалық мыңызы.
Қуат көзін тиімді пайдаланумен бағасын қол жетімді деңгейде сақтау, қоршаған ортаның тазалығын ескеру мен қорғау мәселесін шешуде биогаз технологиясы салмақты үлес қосып, қарқынды дамып келеді.
Сол себептенде, биогаз өңдірістің ережелерін орындаумен ескеру - маңызды іс шарап деп ескеріледі.
Энергия көзі болып табылатын биометаногенез технологиясы тәсілдердің Жасыл Әлем бағытындағы инновациялық технологиялардың бір түрі болып келіп, қауіпсіз өңдіріске жатады.
Осыған орай, біздің зертеуіміз Түркістан облысының топырағында биометаногенез процесін жүргізетің микроорганизмдерді микробиологиялық зерттеуге арналып, тәжірибелер өткізіліді.
Биометаногенді технологиялар соңғы жылдықта аса қарқынды дамып, көптеген елдерде кең қолданыста келеді. Әсіресе, фермерлік қожалықтар биогазды қондырғыларды құрып, табыстың жаңа көзін, әрі арзан электрэнергия табу жолына көшуде [1].
Дипломдық жұмыстың мақсаты: Дипломдық жұмысты орындау барысында келесі мақсат қойылды: жергілікті, Түркістан облыстық органикалық биомасса негізінде биометаногенді микробты ассоциациялардан жергілікті штамдарды бөліп алу, бактериологиялық зертхана жағдайында дақылдау және дақылдық белгілерін анықтау.
Сонымен бірге, тәжірибе барысында биометаногенездің технологиялық процесін тәжірибелік метанотенк бойында жүргізу мен процесс барысындағы микрофлораның ауысу динамикасын салыстырмалы зерттеу мақсат етілді.
Дипломдық жұмыстың міндеттері.
Тәжірибелік жұмыстарды орындау барысында келесі міндеттер қойылды:
1) Тәжірибелік метанотенк үлгісінде жергілікті жылқы мен сиыр тезегінің биомассасын ферменттеу;
2) Биометаногенді ассоциациялардың сынамасын төрт тәулік сайын зерттеп, популяциялық өзгерістердің динамикасын анықтау;
3) Сынамалық үлгілерді зертхана жағдайында, агар-агар қоректік ортада дақылдандыру;
4) Микробты ассоциацияларды бактериологиялық термостат жағдайында өсіріп, элективті жағдайлар жасау: температура 30-320С, ылғалдылық 55-57%, екі тәуліктік экспозиция;
5) Сынамалық дақылдар популяциялардың дақылдық белгілерін анықтау;
6) Тәжірибелік үлгілерді микробиологиялық зерттеу: микропрепараттар әзірлеу, микроскопиялау, микрофототүсіру;
7) Тәжірибелік зерттеу нәтижелерін талқылау, тұжырымдау.
Дипломдық жұмыстың ғылыми жаңалығы. Зерттеу объектісі ретінде Түркістан облысының территориясындағы түрлі органикалық биомасса негізінде мекең ететің биометаногенді микробты ассоциациялар зерттелініп, алғаш рет жергілікті штамдары бөліп алынды, бактериологиялық зертхана жағдайында дақылданып, дақылдық белгілері сарапталды.
Дипломдық жұмыстың объектілері мен әдістері: Зерттеу объектісі ретінде Түркістан облысының территориясындағы жылқы мен сиырдың көктемгі органикалық биомассасы зерттелінді.
Зерттеу әдістері келесі болып келді:
1) Тәжірибелік метанотенк үлгісінде жергілікті жылқы мен сиыр тезегінің биомассасын ферменттеу технологиясы;
2) Биометаногенді ассоциациядағы өзгерістердің динамикасын өлшеп, талдау тәсілі;
3) Колониялардың дақылдық белгілерін зерттеу арқылы биометаногенезді бактериялардың жергілікті штамдарын бөліп алу әдісі;
4)бактериологиялық идентификация жұмыстарын төменде берілген микробиологиялық жолдарымен анықтау: қоректік ортаға сынаманы инокуляттау, элективті жағдайда дақылдау, дақылдық белгілерін сараптау тәсілі, микроскопиялық зерттеу мақсатында Тірі, Қақталағн, Романовский-Гимзе микропрепараттарын дайындап, микроскопиялау, салыстырмалы сараптау.
Микропрепараттар мен дақылдық популяцияларды микрофототүсірілім тәсілімен түсіру.

FUNDAMENTALS OF BIOMETHANOGENIC PRODUCTION

1.1 Modern technologies for biomethanogenesis

In many countries, Biotechnology has begun to be considered as one of the most promising areas in science, aimed at largely solving traditional problems of agriculture, medicine, ecology, and national security.
The development of DNA technologies, which are in demand by Science, opens up new opportunities for solving the problems of combating hunger and diseases, improving the ecological state of economic territories.
Biotechnology has a great contribution to increasing the yield of new varieties and improving the quality and environmental safety of food products, developing and implementing new harmless resource-saving methods for organizing production.
In the domestic market of the Republic, the following issues are currently relevant:
1)prevention and treatment of animal diseases by biological means,
2)preparation of biologics for silage of feed,
3) production of bitumen with means of protection of agricultural crops,
4) replenishment of enzyme preparations for Environmental Protection,
5) significantly increase productivity,
6)reducing the cost of controlling diseases, pests and weeds,
6)cleaning of areas contaminated with toxic chemicals that have an economic, social and environmental impact,
7)creation of genetically modified cells and high-performance strains for the production of biologically active substances and high-quality products, principles of their use,
8)creation, evaluation and selection of primary genetic materials based on the basic principles of "in vitro" breeding and increasing the productivity of animals and the quality of their products by biotechnological methods,
9) new formation of genetic diversity of animals in" in vitro " conditions,
10) consideration of the possibility of improving and applying methods based on the regularities and specifics of using "in vitro" technology in animal breeding [2].
Crop production accounts for about half of the total production - agricultural plants, straw and flat. In agricultural production, manure consists of a large amount of organic waste.
About half of the straw and no more than 30% of the flat is used for animal feed.
The rest of the straw and plums are practically not used, rot or burn in fields or temporary storage facilities.
About 70% of the manure is used for fertilizer, the rest gets into ravines, forest areas, drains and pollutes the environment.
The main task of using organic waste is to introduce it into the soil to increase its fertility.
At the same time, biotechnologists and engineers have proposed their transformation into biogas through bioconversion pathways.
Bioconversion is the production of biogas (methane) from organic waste, that is, the technology of converting gas into energy in form as a result of fermentation of energy in manure.
400 m3 of biomethane is extracted from a ton of dry matter manure and uses bioconversion installations.
Each cubic meter of methane, together with the Energy Transfer of 8,000 MJ during combustion, uses carbon, phosphorus, potassium, calcium, and trace elements as organic fertilizers in the composition of organic residues left after bioconversion.
The bioconversion of manure and other organic waste can become a permanent renewable energy source and provide 5% of the total energy consumed in agriculture.
In the late 90s, energy consumption for the production of the main types of agricultural products in the Republic of Kazakhstan was 3-4 times higher.
For example, the United States, Great Britain, Belgium, and the Netherlands have relatively high rates [3.4].
Therefore, the economy of the agricultural sector is starting to move to an energy-saving basis.
The principles of energy saving and bioconversion have been raised to the level of state policy by the state commission established under the Ministry of energy of the Republic of Kazakhstan (2003), which attracts the attention of the public, scientific researchers and farms.
A certain success has been achieved in all sources of production aimed at energy saving - from the enterprise level to the state level.
For example, as a result of the implementation of the Republican energy saving program for 2003-2007, we managed to reduce the energy intensity of gross domestic product by 25%.
The basic principles of energy security and energy independence of the Republic of Kazakhstan have been adopted and published in the legislation of the production fund "state comprehensive modernization program".
As a result, the work of the energy system of the Republic includes monitoring energy efficiency, publishing the results of the control for 2008-2017, and a wide increase in domestic fuel and energy resources.
When using an alternative fuel source, local livestock farms pay attention to the technology of anaerobic fermentation of biomass.
During bioconversion of biomass, agricultural waste is processed, environmental issues are resolved, fertilizers are formed, and most importantly, the process of biomethanogenesis is directed and carried out, an efficient form of energy is formed [5].

1.2 Technological stages of the Biomethanogenesis process

Biogas energy was used by the Chinese for the first time in a hundred years BC.
At the present stage, thanks to such deep historical roots and the state support program for the industry, 30 million units of biogas units were widely used in China in 2000 [12].
The process of "fermentation" of methane or biomethanogenesis - the conversion of biomass into energy-was discovered by Europeans only in 1776.
Volta proved and studied this process and found that as a result of the phenomenon, a gas formation consisting of 65% methane, 30% carbon dioxide, 1% hydrogen sulfide and nitrogen, a small amount of indirect oxygen, hydrogen and carbon monoxide was formed [13].
The first data on the practical use of biogas obtained from agricultural waste by Europeans are found in the works of Davey. For example, in this data, studying the agrochemical properties of cattle manure, it is given that biogas were collected (1814).
Since 1881, small modified closed vessels called "septic tanks" have been used to collect waste. In one of the districts of the city of Exeter (England), street lamps were equipped with gas obtained as a result of fermentation of wastewater in 1895.
Since 1897, in the process of water purification in this city, biogas has been collected and used for heating and lighting.
Currently, bioreactors of various structures are known, which primarily take into account the strength of the material from which the installation is created, mass and thermal conductivity, mixing devices, preparation and heating of the loaded substrate, collection and accumulation of biogas and precipitation diversion.
Since December 1, 2000, the BIOGAS project for the introduction of biogas technologies has been implemented in the Eco-Park of the Karaganda region of the Republic of Kazakhstan [14].
This project is the first experience of using biogas technologies in central Kazakhstan.
During the implementation of the project, the ecological museum has accumulated a lot of experience and information on the construction, commissioning and operation of biogas facilities.
The experience is based on the local characteristics of central Kazakhstan, and previously these technologies were not used.
Employees of the Karaganda ecological Museum have developed and implemented several technologies for the construction of biogas installations for farmers and farmers of Kazakhstan.
Biogas is a product of the metabolism of methane bacteria formed as a result of the decomposition of organic mass.
Biogas is a high-quality and full-fledged energy carrier and can be used as fuel in households and in medium and small businesses for cooking, electricity generation, heating, brewing, drying and maintenance of residential and industrial premises. On average, combustion and Heat are equal to 6.0 kWh M3 [15].
The raw materials used during the operation of the biogas plant are useful products that can improve the economic and environmental conditions of a peasant or farm farm.
Bioshlam is a high-quality, convenient biogumus that serves as a source of substrate for growing mushrooms.
Feed additive necessary for the normal development of protein and complementary foods for feeding in fish, sheep, and chicken farms.
The use of biomethanogenesis technology brings the following benefits::
- Save time and labor,
- Reduce cooking time,
- Reduce the washing time of dishes and tools,
- Reduce cleaning time in the kitchen,
- Exemption from time spent on furnace maintenance: ash removal, ash collection, fuel delivery, loading, burning, monitoring the furnace and adding fuel,
- Release from the time previously spent on collecting, transporting, drying and storing kizyak or searching, transporting and loading coal, searching, purchasing, cutting, drying and storing fuel,
- Reduced weed weeding time: seeds die in the picker,
- Save money,
- Save money on furnace fuel or electricity
- Extended service life of kitchen utensils,
- Money will be saved on the purchase of fertilizers and herbicides.
At the same time, there is an opportunity to receive additional money:
- There is an opportunity to sell or exchange excess gas,
- There will be an opportunity to sell compost,
- When using compost, the yield of agricultural crops increases, and funds arrive during the sale process.
At the same time, it brings environmental benefits:
- Reduced methane emissions into the atmosphere (greenhouse gas),
- Coal burned to generate electricity, the share of fuel is reduced,
- Harmful combustion products of the coal bed (greenhouse gas) are destroyed and do not cause harm to the atmosphere,
The biomethanogenesis process contributes to the problem of releasing polluted water into the environment:
- Treatment of contaminated water from organic substances and microorganisms,
- Protection from deforestation,
- Reduce the need for chemical fertilizers,
- Cleaning of rural air from coal,
- Reducing air pollution with nitrogenous compounds,
- Air deodorization.
Biomethanogenesis process leads to space savings:
- The place where you used to deal with coal or kizyak is released,
- Air purification in the house and kitchen,
- Reduced amount of unused garbage,
- All organic waste, including toilet waste, is used,
- There will be fewer weeds in the garden and field, and their seeds will die in the Collector,
- The smell of manure in the yard is reduced (there is no contact with air in the anaerobic bioavailability),
- The number of pests decreases.
Influence of the biomethanogenesis process on health maintenance:
- With polluted air-the risk of developing diseases associated with respiratory and eye diseases is reduced,
- The epidemiological situation will improve due to the destruction of microorganisms, the reduction of insect breeding sites [36].
Types of biogas installations:
There are several definitions of boigaz production units:
a) a bioreactor - a methane generating unit is a tank (vessel, vessel) in which conditions are created for the vital activity of methane bacteria.
B) in some literature, as a synonym for the term" Methanotenk", the term "reactor" is used instead.
C) in some literature, as a synonym for the term" septic tank", the term "reactor" is used instead.
d)" heating system " - a steam (water) heating system that allows you to maintain the operating temperature in the bioreactor, especially in winter.
e) mixing device-a device that is located inside the bioreactor and allows you to mix the processed mass to accelerate complete processing.
e) loading and unloading holes - grooves in a bioreactor in which raw materials are loaded and recycled biomass is unloaded.
All biogas installations are divided into two types according to the operating cycle:
a)continuously operating installations
B) periodically operating installations.
Continuously operating biogas plants are constantly loaded with raw materials and simultaneously loaded with recycled biomass. This way, the installation work will not be interrupted.
Biogas installations operating periodically or in cycles are loaded to the full operating level and hermetically sealed, for some time actively distribute biogas within the unit, after complete processing of biomass is unloaded from the unit and the working cycle is repeated.
The resulting biomethane enters the second apparatus. It allows you to intensify the process using such a biosystem by 2-3 times.
The specific consumption of electricity per 1 ton of live weight depends on the cyclical breeding of broilers, and keeping them in a cage is 30-35% higher than keeping them on the floor.
In the new cellular equipment, the method of removing tape droppings allows you to reduce this process by 30-40%.
The technology of processing poultry droppings into organic and mineral fertilizers allows you to save up to 300 kg of conventional fuel per ton of manufactured products.
The most effective way to dispose of manure is the use of BGS. The resulting biogas can be used for heating industrial premises.
In large cities, solid waste is becoming a major environmental problem. Every day, each citizen throws away an average of 2-3 kg of various waste, half of which is polyethylene, paper, packaging materials.
Municipal waste is placed in landfills where complete decomposition does not occur.
At very low financial costs, the simplest technical solution to the problem of solid waste is to bury them underground. But this method is ineffective from an environmental point of view: for decades,many sites have been used for the purpose of garbage disposal, which is why there is environmental pollution [17,18].
In such burials, organic matter decomposes slowly for up to 30-50 years.
At the initial stage of solid waste processing,aerobic processes predominate, during which more easily destroyed molecules are used by invertebrates (mites, worms, smoothies, nematodes), fungi and microorganisms of the lower stage.
At the next stage, only macromolecules such as lignocellulose, lignin, tannin, and melanin, which can slowly decompose, are destroyed.
The duration of this period varies greatly and depends partly on processing.
High temperatures (up to 800C) and the presence of microbial antibiotics lead to the death or inactivation of pathogenic microorganisms and viruses, insect larvae and plant seeds. The temperature is used as an indicator of the operation of the garbage dump.
After some time, oxygen is absorbed by the aerobic microflora, CO2 accumulates and the activity of the anaerobic microflora, which forms methane, and then methanogens, begins.
After a few months or a year, depending on local conditions, stable methane fermentation begins, and the released gas contains 50-55% CH4, 40% CO2, and 5% N2.
The use of gas generated in landfills has great prospects, as it can be obtained in large quantities.
However, at the moment, it does not find liquid, it is only waste and creates inconveniences in the use of landfills [19,20,21].
They learned to remove the gas formed in landfills with the help of polyethylene pipes.
After removing condensate and dust, this biogas can be used as fuel .
An alternative method to this method is irrigation of filtered water with recirculation (reuse). In this case, the litter is used as an anaerobic biofilter.
The effect of water consists in increasing humidity and transporting these waters through the thickness of waste, which accelerates the biodegradation process.
The effect of water recirculation is enhanced if the pH is adjusted before re-irrigation, additional nutrients and active cultures of microorganisms are introduced. Water recirculation by spraying accelerates evaporation, the departure of low-molecular-weight organic compounds.
The Chinese were the first to use biogas energy for a hundred years BC (fig.1).
At the present stage, thanks to such deep historical roots and the state support program for the industry, about 30 million biogas technologies are widely used in China.

Figure 1. stages of biomass use in the ancient guide "creating Chinese biogas"

And the process of "fermentation" of methane or biomethanogenesis - the conversion of biomass into energy-was discovered by Europeans only in the 18th century. The presence of methane in swamp gas was first proved by the scientist Volta, and only in 1776 by ashikan [22].
The biogas obtained during this process are a mixture consisting of 62-64% methane, 27-31% carbon dioxide, 0.5-1% hydrogen sulfide, a small amount of nitrogen, oxygen, hydrogen and carbon monoxide.
The first data on the practical use of biogas obtained from agricultural waste by Europeans was found in the records of Davey. He noted that Europeans began to collect biogas in the course of studying the agrochemical properties of cattle manure, these data date back to 1814.
And since 1881, closed containers have been used for waste collection, which, after a small modification, received the name "septic tank".
In 1895, in one of the districts of the city of Exeter (England), street lamps were equipped with gas obtained as a result of fermentation of sewage [23].
Since 1897, water treatment in this city has been carried out in biogas collection tanks and has been used for heating and lighting.
At present, bioreactors of various structures are known, which provide for the strength of the material from which the installation is created, devices for mixing mass and thermal conductivity, preparation and heating of the loaded substrate, collection and concentration of biogas and precipitation distribution.
During the implementation of technological stages, the ecological museum has accumulated a lot of experience and information about the construction, commissioning and operation of biogas plants, this experience is connected with the local conditions of central Kazakhstan, where such technologies have not been used before.
Currently, biotechnologists have developed and implemented several technologies for the construction of biogas plants for farmers and Farmers of Kazakhstan.
Biogas is a product of the metabolism of methane bacteria formed as a result of the decomposition of organic mass.
Biogas is a high-quality and full-fledged energy carrier and can be used as fuel for cooking, electricity generation, heating, boiling, drying and cooling of premises in multi-party households and businesses. The heat of combustion is on average 6.0 kWh cubic meter.
At what level biogas can replace traditional fuel depends on the size and efficiency of the unit.
The experience of using Karaganda BGS shows that the volume is 8 cubic meters. M. The Unit working on sheep manure can completely replace propane gas, which is used for cooking in a family of five people. BGS with a volume of 60 cubic meters can be used for heating residential premises with an area of 200 square meters and industrial premises with a volume of 400 square meters [24].
The raw materials used during the operation of the biogas plant are useful products that can improve the economic and environmental conditions of a farm or farm.
Bioshlam is a high-quality fertilizer, biogumus, and Substrate for growing mushrooms.
And when monitoring compliance with the appropriate parameters of the unit and the temperature regime, BGS are installed - a feed additive necessary for the normal development of animals (sheep, chickens, etc.) and additional feed for fish in fisheries.
Advantages of technology:
- Save time and labor
- Reduced cooking time
- Reduced time spent washing dishes
- Reduced time spent cleaning the kitchen
- The time spent on servicing the furnace (cleaning the furnace from ash, collecting ash, bringing fuel, loading the furnace, burning, monitoring the furnace and adding fuel) is exempt.
- The time previously spent on collecting, transporting, drying and storing the queue or searching, transporting and reloading coal and searching, purchasing, cutting, drying and storing fuel is released.
- The time of weeding weeds is reduced (their seeds die in the picker).
Saving money
- Saves money on furnace fuel or electricity
Possibility to get extra money
- You can sell excess gas to neighbors or exchange it for something
- You can sell compost
- When using compost, the yield of your agricultural crops increases and you can earn more money by selling them.
Environmental benefits
- Reduction of methane emissions into the atmosphere (greenhouse gas)
- A decrease in the amount of coal, fuel or fuel burned to generate electricity and a decrease in the resulting carbon dioxide (greenhouse gas) and harmful combustion products
- Reduce the emission of polluted water into the environment
- Treatment of contaminated water from organic substances and microorganisms
- Protection from deforestation
- Reduce the need for chemical fertilizers
- Cleaning the air in the house and in the village from the products of burnt coal
- Reduce air pollution with nitrogenous compounds, deodorize the air
Save space
- The place where the coal or queue was previously located is released
Convenience
- Air purification in the house and kitchen
- The amount of unused garbage is reduced (the amount of garbage is reduced)
- All organic waste, including toilet waste, is used
- Less weeds grow in the garden and in the field, and their seeds die in the Collector
- Reduces the smell of manure in the yard (anaerobic bioavailability, that is, it does not come into contact with air)
- The number of flies decreases
Maintaining health
- With polluted air-the risk of developing diseases associated with respiratory and eye diseases is reduced
- The epidemiological situation improves due to the death of microorganisms in the accumulator and the reduction of insect breeding sites [45].
For greater clarity, here are some definitions of the most commonly used terms in this chapter as an example:
Bioreactor-a reservoir (vessel, vessel) in which conditions are created for the vital activity of methangenizing bacteria. As a synonym for the term" reactor", some literature uses the terms" reactor"," metantank"," metantanank"," septic tank", and they all have the same meaning.
Heating system-a steam (water) heating system that allows you to maintain the operating temperature in the bioreactor, especially in winter.
A mixing device is a device that is located inside a bioreactor and allows you to mix the processed mass to speed up complete processing.
Loading and unloading holes are grooves in a bioreactor that produce loaded raw materials and recycled biomass.
All biogas installations are divided into two types according to the operating cycle: continuous and periodic.
Continuously operating biogas plants are constantly loaded with raw materials and simultaneously released recycled biomass. Thus, the operation of the unit is not interrupted.
Biogas installations operating periodically or in cycles are loaded to the full operating level and tightly closed , and for some time the unit actively distributes biogas, after full processing of biomass, the unit is released, and the working cycle is repeated.
The Shape of the reactor and the building materials used.
During the implementation of the project, biogas units have been developed that can work in the conditions of central Kazakhstan.
Cylindrical biogas installations are located horizontally if the installation is of a continuous operation type,and vertically if the installation is of a cyclic operation.
Ellipsoid biogas units have a shape closer to the egg. This type of bioreactor from the point of view of the biomethanogenesis process more optimal is the natural mixing process, as well as the diversion of sludge and precipitation flows.Biogas installations of this type are built of concrete or brick.
Equipment used for the production of biogas. Additional equipment is used to increase the output of biogas from the plant:
1.fecal pumps are used to pump processed biomass and facilitate the maintenance of the biogas unit.
2.Rotary pumps are used in the heating system of the unit and allow you to maintain the operating temperature with low energy consumption.
3.mixing devices are used to mix the processed biomass inside the reactor, which increases the production of the unit and reduces the time required to process the biomass.
4.the check valve is installed in the gas discharge system, it is necessary to prevent air from entering the bioreactor.
A gas boiler for heat transfer, connected to the heating system of installations and operating on split biogas and consuming up to 5% of the total gas boiler [46].
BGS performance
As mentioned earlier, the products produced by BGH are biogas and bioshlam.
Biogas productivity-the output of biogas from the substrate unit (m3) during the fermentation period.
The performance of biogas depends on the following parameters::
- to the size of the unit reactor;the larger the volume of the unit, the greater the gas output
-to the temperature in the reactor to the degree at which fermentation is carried out;in the absence of oxygen, methane-forming bacteria can release gas at a temperature range of 0-70C.
However, the most intense biogas are distributed at 2 temperature intervals.
It should be noted that different methanogeneration bacteria work at different temperatures.
The first interval (mesophilic;because mesophilic bacteria work) is 25-340c, the optimal temperature is 370C. the second interval (thermophilic; because thermophilic bacteria work) is 450C - 600C, the optimal temperature is 560c.
Each of these intervals has its own advantages and disadvantages, and you can read them more clearly below.
Mesophilic type of fermentation
Advantages
- When the temperature fluctuates by 1-2 C from the optimum, the gas performance practically does not decrease;
- Low energy costs are required to maintain the temperature.
Disadvantages
- Less gas separation intensity;
- It takes a long time to completely decompose the substrate -25 days;
- The bio-lamp obtained in this mode is not completely sterile.
Thermophilic type of fermentation
Advantages
- Gas distribution is more intense;
- It takes a short time for the substrate to fully decompose-12 days;
- Bioshlams obtained in this mode are completely sterile and therefore can be used as feed additives for animals.
Disadvantages
- gas productivity is significantly reduced when the temperature fluctuates by 1-2 C from the optimum;
- high energy costs are required to maintain the temperature;
- moisture content of the substrate to be loaded;
- raw materials for BGH can be domestic manure, plant mass and other organic waste [47].
Depending on the substrate used, the performance of biogas varies. Sample data is shown in Table № 1.

№1 Table
Relationship of biogas productivity with the type of raw material used


Raw material (substrate)
Biogas (m3 substrattags m33)

1
2
3
1
Chicken droppings
54, 72

2
Horse droppings,
41, 63

3
Cattle droppings,
31, 44

4
cattle droppings obtained Immediately on
75,70

5
Sheep droppings,
165, 0

6
Goat droppings,
27, 57

The fermentation process can take place at a humidity of 50% to 95%, but scientists have found that the process of ... жалғасы

Сіз бұл жұмысты біздің қосымшамыз арқылы толығымен тегін көре аласыз.
Ұқсас жұмыстар
Биогаз түзілу технологиясының басты кезеңдері
Биогаз технологиясы
Сарқылмайтын және қайта қалпына келетін энергетикалық ресурстардың энергетикадағы даму стимулы
АУЫЛ ШАРУАШЫЛЫҒЫ ҚАЛДЫҚТАРЫНЫҢ ЖІКТЕЛУІ ЖӘНЕ ОЛАРДЫҢ ҚОРШАҒАН ОРТАҒА ӘСЕРІ
Қалдықтарды өңдеу технологиясы
Геотермальды энергия
Анаэробты байланысты процесс жайлы мәлімет
Күннің, атомның энергиясын пайдалану
Биогазды өндіру
Биогаз
Пәндер