Кілттерді басқару жүйелері


Жұмыс түрі:  Дипломдық жұмыс
Тегін:  Антиплагиат
Көлемі: 50 бет
Таңдаулыға:   

Қазақстан Республикасы Білім және ғылым министрлігі

Л. Н. Гумилев атындағы Еуразия ұлттық университеті

Тунгишбаев Талгат Кайратович

« Қазіргі заманғы криптографиядағы үлкен сандармен жұмыс жасауға арналған құралдар »

ДИПЛОМДЫҚ ЖҰМЫС

5B100200 - «Ақпараттық қауіпсіздік жүйелері» мамандығы бойынша

Нұр-Сұлтан 2020

Қазақстан Республикасы Білім және ғылым министрлігі

Л. Н. Гумилев атындағы Еуразия ұлттық университеті

«Қорғауға жіберілді»

Информатика және ақпараттық

қауіпсіздік кафедрасының

меңгерушісі т. ғ. к., доцент

Сагиндыков К. М.

« 6 » 5 2020 ж.

ДИПЛОМДЫҚ ЖҰМЫС

Тақырыбы: «Қазіргі заманғы криптографиядағы үлкен сандармен жұмыс жасауға арналған құралдар»

5B100200 - «Ақпараттық қауіпсіздік жүйелері» мамандығы бойынша

Орындаған: Тунгишбаев Т. К.

Ғылыми жетекші

ф. - м. ғ. к., доцент м. а. Оспанова Ә. Б.

Нұр-Сұлтан - 2020

Л. Н. Гумилев атындағы Еуразия ұлттық университеті

Ақпараттық технологиялар факультеті

5В100200 - «Ақпараттық қауіпсіздік жүйелері» мамандығы

Информатика және ақпараттық қауіпсіздік кафедрасы

Бекітемін

Информатика және ақпараттық

қауіпсіздік жүйелер кафедрасының

меңгерушісі т. ғ. к., доцент

Сагиндыков К. М.

« 4 » 12 2019 ж.

ДИПЛОМ ЖҰМЫСЫН ОРЫНДАУҒА АРНАЛҒАН

Т А П С Ы Р М А

Студент Тунгишбаев Талгат 4 курс, АҚЖ-41, 5B100200 - «Ақпараттық қауіпсіздік жүйелері» мамандығы, күндізгі бөлім

  1. Дипломдық жұмысының тақырыбы «Қазіргі заманғы криптографиядағы үлкен сандармен жұмыс жасауға арналған құралдар» 2019 жылдың «27»11берілген №1935-пректордың бұйрығымен бекітілген.

2 Диплом жұмысының тапсырмасына сәйкес:

Есеп берудің бірінші аралық кезеңі - « 16 » 01 20 20 ж.

Есеп берудің екінші аралық кезеңі - « 12 » 02 20 20 ж.

Есеп берудің үшінші аралық кезеңі - « 27 » 03 20 20 ж.

Алдын-ала қорғауға дипломдық жұмысты әкелу мерзімі - « 25 » 04 20 20 ж.

Норма бақылау тексерісі - « 03 » 05 20 20 ж.

Дипломдық жұмыстың соңғы нұсқасын әкелу мерзімі - « 15 » 05 20 20 ж.

Дипломдық жұмысты қорғау мерзімі - « 6 » 06 20 20 ж.

Аяқталған жұмысты тапсыру мерзімі - « 15 » 05 20 20 ж.

3 Жұмыстың бастапқы деректері:

3. 1 Қазіргі заманғы криптографияда үлкен сандармен жұмыс жасайтын құралдарды анықтау;

4 Диплом жұмысын дайындау үшін сұрақтар тізімі:

4. 1 Заманауи криптографиялық алгоритмдердің жұмысымен танысу;

4. 2 Үлкен сандармен жұмыс жасайтын алгоритмдерді әзірлеу құралдарына қойылатын талаптар мен критерийлерді анықтау;

4. 3 Қойылған талаптар мен критерийлерге сәйкес әзірлеу құралдарын таңдау;

4. 4 Таңдалып алынған программалау құралдарымен криптографиялық есеперді шешу;

4. 5 Жинақталған мәліметтер және жүргізілген есептеулер бойынша саластырмалы анализдер жасау;

4. 6 Құралдармен салыстыруларды жүргізуді ыңғайлы ету мақсатында басқару жүйесін құру.

5 Графикалық материалдың тізімі (сызбалар, кестелер, диаграммалар және тағы басқалары) :

5. 1 «Шифрлеу алгоритмдерін салыстыру» кестесі

5. 3 «Салыстырмалы анализ кестесі»

6 Негізгі ұсынылатын әдебиеттер тізімі:

6. 1 Основы современной криптографии и стеганографии. - 2-е изд. - М. : Горячая линия - Телеком, 2013. - 232 с.

6. 2 Евсютин О. О. Криптографические методы защиты информации: учебное пособие для вузов. - Томск: ТУСУР, 2014. - С. 4-7

7 Жұмысқа қатысты кеңестер (оларға қатысты жұмыс бөлімдерінің көрсетілуімен)

C:\Users\Talgat\Desktop\13.png C:\Users\Talgat\Desktop\13.png

Нөмір, бөлімнің, бөлімшенің аты
Ғылыми жетекші, кеңесші
Тапсырманы алу уақыты

Тапсырма бердім

C:\Users\Talgat\Desktop\12.png (қолы)

Тапсырма

алдым

(қолы)

Нөмір, бөлімнің, бөлімшенің аты: Кіріспе
Ғылыми жетекші, кеңесші: Оспанова Ә. Б.
Тапсырманы алу уақыты: 05. 12. 2019
Тапсырма бердім(қолы): C:\Users\Talgat\Desktop\12.png
Тапсырмаалдым(қолы):
Нөмір, бөлімнің, бөлімшенің аты: Негізгі бөлім
Ғылыми жетекші, кеңесші: Оспанова Ә. Б.
Тапсырманы алу уақыты: 18. 12. 2019
Тапсырма бердім(қолы):
Тапсырмаалдым(қолы): C:\Users\Talgat\Desktop\13.png
Нөмір, бөлімнің, бөлімшенің аты: Практикалық бөлім
Ғылыми жетекші, кеңесші: Оспанова Ә. Б.
Тапсырманы алу уақыты: 06. 01. 2020
Тапсырма бердім(қолы): C:\Users\Talgat\Desktop\12.png
Тапсырмаалдым(қолы): C:\Users\Talgat\Desktop\13.png
Нөмір, бөлімнің, бөлімшенің аты: Дипломдық жұмыстың техникалық-экономикалық негіздеме бөлімі
Ғылыми жетекші, кеңесші: Оспанова Ә. Б.
Тапсырманы алу уақыты:
Тапсырма бердім(қолы):
Тапсырмаалдым(қолы):
Нөмір, бөлімнің, бөлімшенің аты: Еңбекті қорғау бөлімі
Ғылыми жетекші, кеңесші: Оспанова Ә. Б.
Тапсырманы алу уақыты:
Тапсырма бердім(қолы):
Тапсырмаалдым(қолы):
Нөмір, бөлімнің, бөлімшенің аты: Қорытынды
Ғылыми жетекші, кеңесші: Оспанова Ә. Б.
Тапсырманы алу уақыты: 14. 02. 2020
Тапсырма бердім(қолы): C:\Users\Talgat\Desktop\12.png C:\Users\Talgat\Desktop\12.png
Тапсырмаалдым(қолы):
Нөмір, бөлімнің, бөлімшенің аты: Қолданылған әдебиеттер тізімі
Ғылыми жетекші, кеңесші: Оспанова Ә. Б.
Тапсырманы алу уақыты: 20. 02. 2020
Тапсырма бердім(қолы):
Тапсырмаалдым(қолы):
Нөмір, бөлімнің, бөлімшенің аты: Нормабақылау
Ғылыми жетекші, кеңесші: Назырова А. Е.
Тапсырманы алу уақыты: 02. 05. 2020
Тапсырма бердім(қолы):
Тапсырмаалдым(қолы): C:\Users\Talgat\Desktop\13.png

Дипломдық жұмысты орындау графигі

Жұмыс сатысы
Жұмыс сатысын орындау мерзімі
Ескерту
№: 1
Жұмыс сатысы: Дипломдық жұмыстың тақырыбын бекіту
Жұмыс сатысын орындау мерзімі: 27. 11. 2019
Ескерту:
№: 2
Жұмыс сатысы: Дипломдық жұмысты дайындау үшін мәліметтер жинау
Жұмыс сатысын орындау мерзімі: 05. 12. 2019
Ескерту:
№: 3
Жұмыс сатысы: Дипломдық жұмыстың теориялық бөлігін дайындау (1 Бөлім)
Жұмыс сатысын орындау мерзімі: 06. 01. 2020
Ескерту:
№: 4
Жұмыс сатысы: Дипломдық жұмыстың аналитикалық бөлігін дайындау (2-3 Бөлім)
Жұмыс сатысын орындау мерзімі: 28. 03. 2020
Ескерту:
№: 5
Жұмыс сатысы: Дипломдық жұмыстың толық мәтінінің қолжазбалық нұсқасын аяқтау
Жұмыс сатысын орындау мерзімі: 30. 04. 2020
Ескерту:
№: 6
Жұмыс сатысы: Алдын-ала қорғауға дипломдық жұмысты әкелу
Жұмыс сатысын орындау мерзімі: 25. 04. 2020
Ескерту:
№: 7
Жұмыс сатысы: Рецензияға дипломдық жұмысты жіберу
Жұмыс сатысын орындау мерзімі: 05. 05. 2020
Ескерту:
№: 8
Жұмыс сатысы: Ғылыми жетекшінің пікірі мен рецензиясы бар дипломдық жұмыстың соңғы нұсқасын әкелу
Жұмыс сатысын орындау мерзімі: 15. 05. 2020
Ескерту:
№: 9
Жұмыс сатысы: Дипломдық жұмысты қорғау
Жұмыс сатысын орындау мерзімі: 06. 06. 2020
Ескерту:

Тапсырманың берілген мерзімі « 4 » 12 2019 жыл

C:\Users\Talgat\Desktop\12.png

Ғылыми жетекші

ф. - м. ғ. к., доцент м. а.

C:\Users\Talgat\Desktop\13.png Оспанова Ә. Б.
Ғылыми жетекшіф. - м. ғ. к., доцент м. а.:

Тапсырманы орындаған

АҚЖ-41 тобы студенті

Оспанова Ә. Б.: Тунгишбаев Т. К.

НОРМАТИВТІК СІЛТЕМЕЛЕР

1 ҚР МЖМБС 5. 03. 016 -2009. Жоғары оқу орындарындағы дипломдық жұмыстарды орындау ережелері

2 ҚР МЖМБС 5. 04. 019 -2008 Қазақстан Республикасының мемлекеттік жалпыға міндетті білім беру стандарты. Жоғары кәсіптік білім. Бакалавриат. Негізгі ережелері.

3 МСТ 7. 1-84. Ақпараттық, кітапханалық және баспалар бойынша стандарттар жүйесі. Құжаттың кітапханалық жазбасы. Қолданылған әдебиеттер тізімін жазудың жалпы талаптары мен ережелері. М. : Стандарттар, 1984.

МАЗМҰНЫ

Кіріспе8

1 Қазіргі заманғы криптографиядағы үлкен сандар10

1. 1 Практикалық криптографиялық беріктілік . . . 10

1. 2 Криптографиялық примитивтер және олардың криптоберіктілігі ………. . 13

1. 2. 1 Заманауи симметриялық алгоритмдер. 14

1. 2. 2 Заманауи ассиметриялық алгоритмдер17

2 Критографияда үлкен сандармен жұмыс жасауға арналған құралдар………22

2. 1 Программалау тілдерінің стандартты кітапханалары мен криптографиялық беріктілігі. . 22

2. 1. 1 Бүтін сандардың диапазоны. . 23

2. 1. 2 Кездейсоқ сандардың генераторлары . . . 24

2. 1. 3 Жай сандарды генерациялау алгоритмі және оларды қарапайымдылыққа тексеру . 26

2. 2 Үлкен сандармен жұмыс жасауға арналған арнайы кітапханаларалар……27

2. 2. 1 С/С++ үлкен сандармен жұмыс жасауға арналған кітапханалар. GMP кітапханасы. . 28

2. 2. 2 Java үлкен сандармен жұмыс жасауға арналған кітапханалар………. …. 32

2. 2. 3 Python үлкен сандармен жұмыс жасауға арналған кітапханалар……. . …35

2. 2. 4 Crypto++, libgcrypt, PyСryptodome криптографиялық кітапханалары. …. 35

2. 3 GMP кітапханасын орнату және қолдану. …. . …39

2. 3. 1 Crypto++, Sage, Maple программаларында GMP кітапханасының қолданылуы . . . . 40

Қорытынды. …. …47

Пайдаланылған әдебиеттер тізімі. . 48

Қосымша 1 . . ……50

Қосымша 2 . . ……55

Кіріспе

Қазіргі заманғы криптография (1970жж. соңынан қазіргі заманға дейін) қазіргі уақытта барлық цифрлық құрылғылардағы қауіпсіздіктің негізі болып табылады. Себебі, бүгінгі таңда криптографиялық қорғау әдістері дегеніміз транзакцияларды шифрлау және криптовалюта өндірісін бақылау үшін ғана емес, сонымен қатар банк жүйелерінің, пластикалық карталардың, банкоматтардың, электрондық коммерцияның және сымсыз құрылғылардың қауіпсіз жұмысын, яғни ақпараттардың қауіпсіз тасымалдануын қамтамасыз ету болып табылады [1] .

Қазіргі заманғы криптография сандар теориясы, есептеу күрделілігі теориясы және ықтималдық теориясы сияқты әртүрлі математикалық теорияларға негізделгендіктен оны математикасыз елестету мүмкін емес. Себебі, математикалық әдістерді қолдана отырып, сіз қазіргі заманғы күрделі шифрларды құрып қана қоймай, сонымен қатар олардың криптографиялық беріктігін - практикалық немесе теориялық бұзушылықтарға төтеп беру қабілеттілігін - криптанализді негіздей аласыз. Өз кезегінде қазіргі заманғы криптографиялық алгоритмдердің берікілігін арттыру үшін, ондағы сандардың көлемін үлкен мәндерге дейін өзгерту қажеттілігі туындап тұр.

Қазіргі заманғы криптографияда үлкен сандармен жұмыс істейтін шифрлау алгоритмдердің көптеген түрлері бар. Олар жоғарыда келтірілген талаптарға сай келуі керек, және уақытылы жаңартылып тұруы керек.

Осыған орай қазіргі уақытта әлемнің көптеген криптографтары жаңа технологияларды, соның ішінде олардың криптографияға тигізетін әсерін зерттеп жатыр. Әрине, жаңа технологиялар қазіргі заманғы криптографияға жаңа дем берсе, бір жағынан осы технологиялар криптографияға үлкен қауіп төндіруі ықтимал. Мысалы, бұлар қазіргі серверлер немесе суперкомпьютерлерден бірнеше есе мықты кванттық компьютерлер болуы мүмкін, ал олар өз кезегінде қазіргі заманғы криптографиядағы үлкен сандарды аз уақытта факторизациялауға мүмкіндік береді деп тұжырымдалуда.

Зeрттeу тaқырының өзeктілігі: Қазір криптография адам өмірінде күнделікті қолданатын ұялы телефондарда, компьютерлерде, арнайы желімен қамтылған жұмыс орындары мен заманауи қалаларда және т. б. технологияларға қатысты барлық құрылғыларда ақпаратпен жұмыс жасайды.

Қазіргі криптографияның қауіпсіздігін немесе ақпараттың маңыздылығының айқындау үшін оны үлкен сандармен шифрлеу өте тиімді әдістердің бірі болып табылады. Әрине, кез-келген заттың екі жағы болғандықтан, криптографияда үлкен сандардың тиімсіз жақтары да бар. Осы үлкен сандардың алгоритмдерде, программалау тілдерінде қандай ерекшеліктері мен кемшіліктерін бар екендігін анықтау, дипломдық жұмысымның өзекті тақырыбы болып келеді.

Ғылыми-зeрттeу нысaны: Дипломдық жұмысымның практикалық бөлімінде ғылыми зерттеу нысандары ретінде криптографиядағы үлкен сандармен жұмыс жасағанда қолданылатын кітапханалар болып келеді. Ол үшін мен қазіргі таңда үлкен қолданыстағы Java, Python, C++ тілдерін таңдап алдым. Оған қоса зерттелу нысандары ретінде қазіргі заманғы криптографияда үлкен сандармен жұмыс жасауға арналған кітапханаларды қолдана отырып, алгоритмдердің үш программалау тілдерінде хабарламаны шифрлайтын құралдарды анықтау болып табылады. Бұл таңда мен қазіргі криптографияда көп қолданылатын симметриялық криптожүйеге жататын AES алгоритмін және асимметриялы криптожүйеге жататын RSA алгоритмін алатын боламын [2] .

Жұмыстың мaқсaты: Дипломдық жұмыс екі бөлімнен тұрады. Aлғaшқы бөлімдегі мақсат криптография саласының өзін қарастырып, жалпы ақпараттар беріп өту. Ары қарай осы бөлемде заманауи криптографияның бөлімдеріне жалпы түсініктемелер беріп, олардың беріктілігін, онда үлкен сандармен жұмыс жасайтын алгоритмдерге мысалдар көрсету болып табылады.

Екінші бөлімде заманауи криптографияда үлкен сандармен жұмыс жасайтын құралдарды қарастырылады. Ары қарай осы құралдарға практикалық жұмыстардан дәлелдер көрсетемін. Яғни, үлкен сандармен жұмыс жасағанда программалау тілтерінде олардың жүзеге асатын кітапханалары және программаларына мән беріледі.

  1. Қазіргі заманғы криптографиядағы үлкен сандарПрактикалық криптографиялық беріктілік

Алдымен қазіргі заманға криптографияда үлкен сандармен жұмыс жасау кезінде қолданылатын негізгі анықтамалар мен ұғымдарға тоқталып өтейік.

Криптография - ақпараттың конфиденциалдығын, бүтіндігін және аутентификациялығын қорғау мақсатында оны түрлендірудің математикалық әдіс-тәсілдерін іздеумен және зерттеумен айналысатын ғылым.

Криптоанализ (жасырын + анализ) - құпия кілтсіз, шифрленген ақпаратқа қол жеткізу мақсатында зерттеу әдістерін жүргізумен айналысатын ғылым. Криптоанализ криптографиялық тұрғыдан қарағанда алгоритмдер мен хаттамалардағы осалдықты табудың кез-келген іс-әрекетін болып саналады. Бұл термин алғаш рет 1920 жылы америкалық криптограф Уильям Ф. Фридманның «Криптоанализ элементтері» кітабының аясында пайда болған.

Криптология - криптография және криптоанализ ғылымдарын математикалық тұрғыда қамтитын сала. Қазіргі заманғы криптограф саласында ақпаратты қорғаудың негізгі үш әдісі бар, олар: шифрлеу, хештеу және электрондық қолтаңба. Бұл криптография бағыттарының әрбірінің ақпаратты қорғау тақырыбында атқаратын өзіндік бір немесе бірнеше қызметтері бар. Соның ішінде олар криптография саласында үлкен сандармен жұмыс жасайтын барлық аспектілерді де қамтамасыз етеді.

Криптографияға қойылатын негізгі талаптары:

1. Конфиденциалдық - ақпараттың мазмұнын білетін адамның, оны ақпарат иесінсіз үшінші жаққа ашпай, онымен жасырын жұмыс жасай білу болып табылады;

2. Бүтіндікті қамтамасыз ету - тек заңды және сәйкес өкілдігі бар тұлғаның ақпаратты модификафиялау, ауыстыру, қайталау немесе жою мүмкіндігі болып табылады;

3. Қолжетімділікті қамтамасыз ету - қорғалған ақпаратқа өкілеттілігі бар заңды қолданушыларға бөгетсіз қатынауды ұйымдастыру және оның кепілі болу [7] .

Қазіргі заманға криптографиядағы алгоритмдердің беріктігі

Криптографиялық беріктілік - криптографиялық алгоритмнің криптоанализге қарсы тұру қабілеті. Алгоритм криптоберік деп аталу үшін ол келесі талаптарға сай болуы қажет. Біріншіден, алгоритмге жасалатын шабуыл барлық тұрғыдан күрделі болуы қажет. Екіншіден, ақпаратқа санкцияланбаған шабуыл болғанымен, ол өзектілігін жоғалтқанша көп ресурс пен уақыттың жұмсалуына әкелуі керек [4] .

Ақпаратты қорғаудың заманауи криптографиялық жүйелері үшін келесі жалпы қабылданған талаптар тұжырымдалады:

  • шифрланған хабарлама тек егер кілт болса ғана оқылуы керек;
  • пайдаланылған шифрлау кілтін шифрланған хабарламаның фрагментінен және тиісті қарапайым мәтіннен анықтау үшін қажет әрекеттер саны мүмкін кілттердің жалпы санынан кем болмауы керек;
  • кілттердің барлық түрлерін сұрыптау арқылы ақпаратты шифрлау үшін қажет операциялардың саны қатаң төменгі шекке ие болуы керек және қазіргі компьютерлердің мүмкіндіктерінен асып кетуі керек (желілік есептеулерді қолдану мүмкіндігін ескере отырып) ;
  • шифрлау алгоритмін білу қорғаныс сенімділігіне әсер етпеуі керек;
  • кілттің шамалы өзгеруі сол кілтті қолданған кезде де шифрланған хабарламаның сыртқы түрінің айтарлықтай өзгеруіне әкелуі керек;
  • шифрлау алгоритмінің құрылымдық элементтері өзгеріссіз болуы керек;
  • шифрлау процесінде хабарламаға енгізілген қосымша биттер толық және сенімді түрде шифрланған мәтінде жасырылуы керек;
  • шифр мәтінінің ұзындығы бастапқы мәтіннің ұзындығына тең болуы керек;
  • шифрлау процесінде жүйелі түрде қолданылатын кілттер арасында қарапайым және оңай орнатылатын тәуелділік болмауы керек;
  • көптеген мүмкін кілттердің кез-келгені сенімді ақпаратты қорғауды қамтамасыз етуі керек;
  • алгоритм бағдарламалық жасақтамаға да, аппараттық құралға да рұқсат беруі керек, ал кілт ұзындығын өзгерту шифрлау алгоритмінің сапалы нашарлауына әкелмеуі керек.

Жоғарыда келтірілген талаптарға сай криптографияда келесідей беріктілік жүйелері қалыптасады.

Абсолютті берік жүйелер. Егер шабуылдаушыда үлкен есептеу ресурстары болған жағдайдың өзінде де теориялық түрде де, іс жүзінде де ақпаратты оқу мүмкін болмайтын жағдай. Практикалық тұрғыда шифрлеудің абсолютті тұрақты алгоритмдерінің болуы 1949 жылы америкалық математик Клод Шеннонның Bell System Technical Journal журналындағы "Құпия жүйелердегі байланыс теориясы" мақаласында жарияланған. Осы журналда абсолютті берік жүйелерге келесідей талаптар көрсетілген:

  • кілт әр хабарламаға генерацияланады (кілт тек бір рет қана қолданылады) ;
  • кілт статистикалық тұрғыда берік (яғни әрбір мүмкін символдардың пайда болу мүмкіндігі тең, және символдардың ретпен орналасуы тәуелсіз және кездейсоқ) ;
  • кілттің ұзындығы хабарлама ұзындығына тең немес ұзын;
  • бастапқы мәтіннің кейбір артықтығы бар (бұл расшифровка дұрыстығын бағалау критерийі болып табылады) .

Бұл жүйелердің тұрақтылығы криптоаналитиктің қандай есептеу мүмкіндіктеріне ие екендігіне байланысты емес. Абсолюттік беріктілік талаптарын қанағаттандыратын жүйелерді іс жүзінде қолдану, құны және пайдалану ыңғайлылығы тұрғысынан шектелген.

Шеннон практикалық тұрғыда абсолютті берік алгоритмнің мысалы, Вернам шифры (бір реттік блокнот) екендігін дәлелдеді. Яғни, Вернам шифрін дұрыс пайдалану зиянкеске ашық мәтін туралы ешқандай ақпарат бермейді (кез-келген хабарламаның битін 1/2 ықтималдығымен ғана табуға болады) .

Есептеу ресурстарының немесе қалған ашық және шифрленген хабарламалардың іс жүзінде қол жетпейтін көлемін шабуылдаудан не оны ашуға кететін уақыттың соншалықты маңызды шығынын талап ететін, қорғалған ақпарат өзінің өзектілігін жоғалтатын алгоритм тұрақты болып саналады. Көп жағдайларда криптотөзімділік математикалық дәлелденген мүмкін емес; тек криптографиялық алгоритмнің осалдығын дәлелдеуге болады немесе (ашық кілтті криптожүйе жағдайоған кез келген ақпарат төтеп беруі ында) алгоритмді ашу міндетін есептеу күрделі болып саналатын кейбір міндетке қоюға болады (яғни "бұзу" бұл міндетті шешу оңай емес екенін дәлелдеу) .

Жеткілікті берік жүйелер. негізінен азаматтық мақсаттағы криптографиялық жүйелерде іс жүзінде берік немесе есептеу тұрғысынан берік жүйелер қолданылады. Жүйенің есептеу тұрғысынан беріктілігі туралы, егер шифрды ашу ықтималдығы бар, бірақ ол үшін тек таңдалған параметрлер мен шифрлау кілттері қолданылса ғана айтылады. Практикада шабуылдаушы заманауи технологияларды дамытудың қазіргі кезеңінде өзіне қолайлы уақытта шифрді ашу үшін жеткілікті есептеу ресурстарына ие емес. Мұндай жүйелердің тұрақтылығы криптоаналитиктің қандай есептеу мүмкіндіктеріне ие екендігіне байланысты.

Мұндай жүйелердің практикалық тұрақтылығы күрделілік теориясына негізделеді және тек қана белгілі бір уақытта және екі позициядан жүйелі түрде бағаланады:

  • толық іріктеудің есептеуіш күрделілігі;
  • қазіргі уақытта белгілі криптографиялық осалдылықтарының есептеу күрделілігіне әсері.

Әрбір нақты жағдайда беріктілікті бағалаудың қосымша критерийлері болуы мүмкін.

Егер криптожүйенің беріктілігің дәлелдемесі алгоритмнің негізіне жататын белгілі бір қиын шешілетін математикалық проблеманы шешуге жеткен жағдайда, біз дәлелденген беріктілік туралы айта аламыз. Мысалы, RSA криптожүйесі келесі жағдайда берік болып саналады, егер сандық түрлендіру модулі полиномиалды уақыт ішінде факторизациялау мүмкін болмаса. Бұл дегеніміз, RSA шифрында n модулі үшін таңдап алынатын екі көбейткіштердің мәні үлкен сандарға ие болған сайын, алгоритмнің беріктілігі арта түседі.

  1. Криптографиялық примитивтер және олардың криптоберіктілігі

Криптографиялық примитивтер - криптографиялық хаттамаларды құру үшін жиі қолданылатын төмен деңгейлі криптографиялық алгоритмдер. Бұл криптожүйенің талап етілетін қасиеттерін анықтайтын операциялар мен процедуралар.

Криптографиялық примитивтер криптожүйені құру кезінде негізгі құрылыс блоктары ретінде пайдаланылады, яғни олар сенімділіктің жоғары деңгейімен тек кейбір кластағы тапсырмаларды шешуге арналған. Мысал ретінде мұндай жағдайды қарастыруға болады: кейбір шифрлаудың үшін ол тек компьютердегі X операциясының санымен ғана бұзылуы мүмкін деп көрсетілсін, егер ол X-тен әлдеқайда аз операциялар санының көмегімен бұзылса, бұл криптографиялық примитив сенімсіз деп саналады.

Хаттамаларды және криптожүйелерді жобалау кезінде әзірлеуші композициялық кемшіліктерді жоюға жауапты болады. Олардың қауіпсіздігін дәлелдеу мүмкіндігі болмаса, әзірлеуші олар пайдаланатын сенімді примитивтерді санауы тиіс. Хаттамада пайдалану үшін қол жетімді ең жақсы примитивті таңдау, әдетте мүмкін ең жақсы қолжетімді қауіпсіздікті қамтамасыз етеді. Егер криптографиялық примитив бұзылған болса, оны пайдаланатын әрбір хаттама осал болады.

Криптографиялық примитивтер келесі қасиеттерге ие болуы керек:

  • қауіпсіздік деңгейі;
  • функционалдығы;
  • жұмыс жасау әдістері;
  • өнімділік;
  • реализациялау жеңілдігі.

Қазіргі заманғы криптографияның негізгі примитивтері:

  • Симметриялық криптожүйелер;
  • Блоктық шифрлау;
  • Ағындық шифрлау;
  • Асимметриялық криптожүйелер;
  • Хештау;
  • Электрондық қолтаңба;
  • Кілттерді басқару жүйелері;
  • Міндеттемелер схемасы;
  • Псевдокездейсоқ сандар генераторы.

1. 2. 1 Заманауи симметриялық алгоритмдер

Симметриялық криптожүйелер - хабарламаны шифрлау және дешифрлау үшін тек қана бір криптографиялық кілт қолданылады. Бұл критожүйе ассиметриялық криптожүйенің алдында қолданыста болған. Бұл криптожүйеде қолданылатын алгоритмдердің кілттері хабарлама алмасатын екі жақтанда барынша құпия болуы қажет және хабарлама алмасатын каналда үшінші артық адамдар болмауы қажет. Сонымен қатар, шифрланатын алгоритм екі жақпен хабарлама алмасудың алдында таңдалу керек [8] .

Заманауи симметриялық криптожүйелер келесі талаптарға сай болуы қажет:

  1. криптоанализге төзімділігі, кілттерді толығымен іріктегенде ғана хабарламаны оқу мүмкін болу қажет;
  2. криптоберіктілік шифрлеу алгоритмінің құпиялығын емес, кілттің құпиялығын қамтамасыз ету керек;
  3. шифрленген хабарлама ашық хабарлама көлемінен тым көп болмауы керек;
  4. ақпаратты шифрлау уақыты мен бағасы тиімді болуы керек.

Заманауи симметриялық криптожүйелер келесідей екі топқа бөлінеді:

  • блоктық шифрлар. 64-256 бит аралығындағы блоктарда ақпаратты өңдейді, белгіленген тәртіпте блоктың кілтін қолдана отырып, әдетте бірнеше араластыру және орналастыру циклдары арқылы, раунд деп аталады. Екінші раундтардың нәтижесі-лавин тәрізді әсер-ашық және шифрланған деректер блоктарының арасындағы биттік сәйкестіктің жоғалуы.
  • ағымдық шифрлар. Гаммалау әдісін қолданатынШифрлеу әрбір бит немесе гаммирлеуді пайдалана отырып, бастапқы (ашық) мәтіннің байты үстінде жүргізілетін ағынды шифрлар. Ағынды шифр арнайы режимде іске қосылған блоктық (мысалы, ГОСТ 28147-89 гаммалау режимінде) негізінде оңай жасалуы мүмкін.

AES алгоритмі

... жалғасы

Сіз бұл жұмысты біздің қосымшамыз арқылы толығымен тегін көре аласыз.
Ұқсас жұмыстар
АҚПАРАТТЫ ҚОРҒАУДЫҢ МАТЕМАТИКАЛЫҚ ӘДІСТЕРІ
Криптография тарихы
Ақпаратты қорғаудың криптографиялық жүйелері
АҚПАРАТТЫ КРИПТОГРАФИЯЛЫҚ ҚОРҒАУ
Телім жолы бой
Криптографиялық кілттерді басқару
Криптография және криптоанализ
Ақпаратты қорғаудың криптографиялық әдістері
Кілттермен басқару
Параллельді алгоритімді ақпараттық қауіпсіздікте қолдану
Пәндер



Реферат Курстық жұмыс Диплом Материал Диссертация Практика Презентация Сабақ жоспары Мақал-мәтелдер 1‑10 бет 11‑20 бет 21‑30 бет 31‑60 бет 61+ бет Негізгі Бет саны Қосымша Іздеу Ештеңе табылмады :( Соңғы қаралған жұмыстар Қаралған жұмыстар табылмады Тапсырыс Антиплагиат Қаралған жұмыстар kz