Сүтқоректілер клеткаларының генетикалық трансформациясы. Бөгде ДНҚ-ны жануар клеткаларына енгізу


Студент: Әбілова Дана БТ17-18топ
Сүтқоректілер клеткаларының генетикалық трансформациясы. Бөгде ДНҚ-ны жануар клеткаларына енгізу.
Гендік инженерия -белгілі қасиеттері бар генетикалық материалдарды In vitro жағдайында алдын-ала құрастырып, оларды тірі клеткаға енгізіп, көбейтіп, зат алмасу процесін жүргізу. Негізгі информацияны тасымалдаушы вектордың ішінде ретровирустар кең қолданылады. Мысалы, тышқандардың лейкоз вирусы. Олар генді жоғары эффективтілікпен тасымалдайды және клетка хромосомасына тұрақты орналасады.
Аденовирустарды вектор ретінде аз пайдаланады. Себебі : аденовирустар күшті иммундық жауап қайтаруға бейім. Соңғы кездері сүтқоректілердің жасанды хромосомалар (MAC - mammalian artificial chromosome) негізінде векторлар жасауға көп көңіл бөлініп жатыр. Мұндай мини-хромосомаларда кәдімгі хромосомалардың негізгі структуралық элементтері бар болғандықтан, клеткада ұзақ уақыт сақталады және толыққанды гендерді, сонымен қатар, геннің дұрыс жұмыс жасауына қажетті табиғи регуляторлық элементтерді тасымалдай алады. Осындай жасанды хромосомалар дрожж (YAK) үшін жасалды, себебі дрожждың геномы толықтай картирленген.
Модифицирленген клетканың идентификациясы үшін маркерлар керек. Егер, соматикалық клетканы трансформацияласа, онда селективті маркерді пайдаланады. Колумбия университетінің терапия және хирургия колледжінде Аксель өзінің әріптестерімен бірге тышқан клеткасының генетикалық дефектісін түзеген. Тағы бір селективті маркер - кодтайтын ген. Осы геннің көптеген көшірмелерінің экспрессиясының арқасында жануар клеткасы мен плазмида фермент ингибиторының жоғары концентрациясына төзімді болып келеді. Одан басқа, нормальді клеткада жұмыс жасай алатын, гендік маркері бар 2 универсалды вектор жасалған. Олар бірдей принциппен құрылған : трансгенді клетканың фенотипін анықтайтын прокариот гені эукариоттық регуляторлы сигналдармен қосылған. Вектордың бірі неомицин антибиогіне тұрақты прокариот генінен тұрады.
Сүтқоректілердің трансформациялық клеткасының культурасын әртүрлі заттар алуда қолданады. Сүтқоректілердің клетка культуралары жануар мен адамдарға вакцина алу мақсатында эффективті болып табылады. Мұндай вакциналық культуралар рекомбинантты ДНҚ техникасының көмегімен немесе сүтқоректілер мен адамдардың клеткасы үшін векторлардың экспрессиясымен алынады. ДНҚ-вакцинаны пайдаланған кезде организмге антиген емес, сол антигеннің синтезін кодтайтын ген енгізіледі. ДНҚ-вакциналар мал шаруашылығында жақсы перспективаларға ие.
Егер көпклеткалы организмнің клеткасына басқа организмнің ДНҚ-сын енгізсек, трансформация нәтижесінде тек бірнеше клетканың өзгерісі байқалады. Бүтін организмнің ерекшелігін өзгерту үшін жыныс клеткасының геномын өзгерту қажет, ол ұрпақтарына жаңа ерекшелікті тасымалдай алады. Мұндай өзгерістер жануарлар мен өсімдіктерде өсудің жылдамдығын, ауруларға тұрақтылығын, жаңа орта факторларына адаптациялануына алып келеді. Осындай жағдайларда маркер ретінде гибридизация, микросателлитті ДНҚ-ның анализі, мини сателлиттің анализдерін пайдалуға болады.
Сүтқоректілердің эмбрионалды клеткасына, шыбындар мен кейбір өсімдіктердің клеткаларына гендердің енгізу жолдары жасалған. Зерттеушілердің айтуы бойынша трансгенді ағзалардың дәрілік заттар нарығында айтарлықтай альтернативтi болмақшы. Қазіргі кезде генетикада екі түрлі бағыт қарастыруда, бірі - клондау болса, екіншісі - трансгенді ағзалар мен жануарларды жасау.
Трансгенді жануарлардан алынған ағзалар - арзан, әрi тәжірибелік нәтижені тезірек береді. Сыртқы келбеті жағынан еш айырмашылығы жоқ. Олардың жалғыз айырмашылығы - жануар клеткасына адамның гендері имплантацияланған. Италиялық ғалымдарға адам гені бар шошқалардың бір отарын жасады. Ең алғаш рет клондайтын жануар үшін адам шауіті қолданылды. 20 жатырдан 205 шошқа алынды. Олардың жартысында адам гендері орнықты орналасып, және олар барлық негізгі ағзаларда байқалды.
Эбриогенетикалық инженерия - жануарлар геномын, олардың өсіп өнуіне онтогенездің (жеке даму) алғашқы сатыларында белсенді араласу арқылы қайта құру. Геномды қайта құру - клондау арқылы ұрықты (эмбрионды) реконструкциялау, біріктіру немесе олардың ядроларына бөгде ДНҚ-ны енгізу. Бірақ эмбриондық өркендерді, химерлерді (грек. "chimaira" - әртүрлі генетикалық тканьдардан тұратын мозаик-организм), немесе трансгендік жануарларды алу, тек қана реконструкцияланған эмбрионды ұқыпты трансплантациялау нәтижесінде ғана мүмкін.
Трансплантация (лат. "transplantare" - көшіріп отырғызу) - жоғарғы өнімді малдардың (донорлар) бір немесе бірнеше эмбрионын алып, өнімі төмен малдарға (рецепиенттерге) салу арқылы жүргізіледі. Трансплантацияны қолдану генетикалық құнды бір аналықтан ондаған есе көп ұрпақ алуға мүмкіндік береді.
Трансплантация технологиясы жануарлар өсіп-өну биологиясының зор табыстарына негізделген, оның ішіне мынадай тәсілдер кіреді:
- гормондар арқылысуперовуляция(лат. "super" - «көп», "ovum" - «жұмыртқа») туғызу;
- ұрпақтары бойынша бағаланған аталықтардың ұрығымен донорларды ұрықтандыру;
- эмбрионды тауып алу және оның сапасын анықтап, сақтау және рецепиентке көшіріп отырғызу немесе оны сұйық (грек. "kryos" - «суық», "conservare" - «сақтау»), жібіту және отырғызу.
Ұрықты трансплантациялауды төмендегі мақсаттар үшін пайдаланады
- генетикалық құнды тұлғаларды көбейту үшін; осы әдістің көмегімен жоғарғы өнімді, ауруға төзімді аталық іздері (линиялар) және ұяларды (семейства) шығаруды тездету;
- алғашқы эмбриондарды бөлшектеу арқылы ұқсас жануарларды алу. Бұл әдіс генотип- қоршаған орта өзара қатынасын, тұқым қуудың шаруашылыққа пайдалы әсерін зерттеуге мүмкіндік береді. Эмбриондарды бөлу технологиясы алынған жарты бластоцистаны терең мұздатып, ал екінші жартысынан жануар өсіруге мүмкіндік береді. Егер аталық (бластоцистаның бір жартысынан алынған) генетикалық жағынан құнды болса, онда оның көшірмесін белгілі бір уақыттан кейін екінші жартысынан өндіруге болады;
- аз популяциялардың және тұқымның генофондының мутантты гендерін сақтау;
- генетикалық құнды, бірақ бедеу жануарлардан ұрпақ алу;
- зиянды рецессивті гендерді және хромосомалық аномалияларды анықтау;
- жануарлардың ауруларға төзімділігін арттыру;
- ауруларды болдырмау үшін сыртқа шығарылатын және ішке кіргізілетін малдардың орнына бұл мақсаттар үшін олардың криоконсервацияланған ұрықтарын қолдану;
- ұрықтын жынысын анықтау және белгілі жыныстағы жануарларды алу;
- түр аралық трансплантация;
- әртүрлі алғашқы сатыдағы эмбриондардан, әртүрлі жануарлар бластомерлерінен құралған химерлік жануарларды алу.
Гендік инженерияда гендерді тасымалдау арқылы түраралық кедергілерді жойып, қажетті тұқым қуалайтын белгілерді бір организмнен екіншісіне беру іске асырылады.
Инженерия түсінігінің өзі құрастыру деген мағынаны береді. Олай болса, гендік инженерия организмнің жағымды белгілерін сақтай отырып, оған арнайы мақсатта қосымша жаңа қасиет беріп, генотипін қалаған бағытта өзгерту болып табылады. Гендік инженерияны ауыл шаруашылығында, медицинада пайдалану арққылы өсімдіктер, жануарлар мен микроорганизмдердің қажетті гендерінің қызметін басқаруға мүмкіндік туды.
Қазіргі биотехнологияны көбінесе генетикалық инженерия негізіндегі биотехнология ретінде сипаттайды. Шындығында, бұл жасанды жасалған генетикалық бағдарламаларды жүргізудің нәтижесінде, бионысандардың бағытталған түрөзгергіштігіне қолданылатын негізгі жол. Кейде генетикалық инженерияның үш деңгейін ажыратады: 1) гендік - жеке гендерден тұратын, рекомбинантты ДНҚ - ымен тікелей манипуляциялау; 2) хромосомдық - гендердіңүлкен топтарымен немесе тұтас хромосомаларымен манипуляциялар; 3) геномдық - генетикалық материалдың барлығын немесе үлкен бөлігін біржасушадан басқасына тасымалдау. Қазіргі түсінікте генетикалық инженерияға рекомбинантты ДНҚ технологиясы кіреді. Генетикалық инженерия облысындағы жұмыстар төрт негізгі кезеңнен тұрады: 1) қажет генді алу; 2) оны репликацияға қабілетті, генетикалық элементке (векторға) құру; 3) реципиент - ағзаға, вектордың құрамына кіретін, генді енгізу; 4) қажетті генге ие болған, жасушаларды сәйкестендіру (скрининг және селекция) . Әрбіркезеңді жеке - жеке қарастырайық. Гендерді алу. Қажетті генді келесі түрмен алуға болады: а) оны ДНҚ - дан бөлумен; б) химиялық - ферментатитвті синтез жолымен; в) РНҚ тәуеді ДНҚ полимеразаның (ревертозаның) көмегімен, оқшауланған матрицалық РНҚ - ның негізінде жаңғыртумен.
Гендерді ДНҚ - дан бөлу. Оқшауланған ДНҚ бөлшектеуге ұшыратады. Ол үшін, нуклеотидтердің белгілі тізбектеріне ие болатын, үлескілерде ДНҚ ыдырауын өршітетін, рестрипциялық эндонуклеозаларды пайдаланады. Қазіргі уақытта, 85 әртүрлі нуклеотидті тізбектерді танитын, 400 - ден астам рестриктазалар белгілі. Ыдырау нуклеотидті жұптардың танылатын үлескісінің ортасында жүруі мүмкін, сонда ДНҚ - дың екі тармақшасы да бір деңгейде «қиылады». Түзілген бөлшектер екітармақты (тұйық) ұштарға ие болады. Басқа рестриктазалар ДНҚ - ның тармақшаларын ығыстырумен ыдыратады, сондықтан баспалдақ түзіледі. ДНҚ жіпшелерінің шығыңқы болады. Біржіпшелі (жабысқақ) ұштары түзіледі. Бір рестриктазаның әрекетімен алынған, ДНҚ - дың екі жабысқақ бөлшегі кездессе, онда ұштық тізбектерінің әсерінен өзара әрекетте оңай түседі. Қажет болғанда тұйық ұштары жабысқақтарға айналуы мүмкін. Ол үшін, тұйық ұштарға, жабысқақ ұштар беретін, рестриктазаның тану үлескілерімен екітізбекті тізбектілерді қосады. Жабысқақ ұштарымен нуклеотидті тізбектілік болуы мүмкін: а) алдын - ала сол рестриктазамен өңделген, векторға қосылуы; б) өзара комплементар ұштарды тігу жолымен сызықтық молекуладан сақиналыққа түрленуі мүмкін. Рестриктазалардың көмегімен ДНҚ - дан гендерді әдісі мәнді кемшіліктерге ие болған. Қажет генге сәйкес келетін, сол бірүлескіні ДНҚ - дан кесіп алуға мүмкіндік беретін, рестриктазаларды таңдап алу қиын. Қызықты генмен қатар, ДНҚ бөлшектреі, генді қолдануға кедергілер келтіретін, артық нуклеотидті тізбектіліктерге де ие болады. Рестриктаза нуклеотидті ген тізбектілігінің бөлігін ыдырата алады, нәтижесінде ген функционалдық толық құндылығын жоғалтады.
Эупариотты ағзалардың гендері күрделі құрылысқа ие болған: кодтайтын ақуыздан, мәнді (экзондар) және аралық, мәнсіз үлескілерден (интрондар) тұрады. Осындай ДНҚ - матрицада синтезделген, алғашқы РНҚ түрөзгеріске ұшырайды. Нәтижесінде интрондарға сәйкес келетін, үлескілер жойылады, ал, экзондарға сәйкес келетін үлескілер, қосыла отырып, жетілген матрицалық РНҚ түзеді. Интрондардың болуы трансплантацияланған гендердің қалыпты қызметіне кедергі болып табылады. Рестриктазалармен ДНҚ - ын өңдеу барысында бөлшектердің қоспасы түзіледі. Бұлқоспадан, қажетті генге ие болатын, бөлшектерді бөліп алу - оңай мәселе емес. Бактериялық жасуша шамамен бес мың гендерден, ал эукариоттық жасуша 10 - 20 мың гендерден тұрады. Гендердің химиялық - ферментативті синтезі. Бұләдіс - нативті ДНҚ - дан рестриктазалардың көмегімен гендерді «қиюға» маңызды альтернатива. Әдіс нуклеотидтердің арасында эфир байланыстарының кезеңдік түзілуі есебінен, қысқа (8 - 16 буынды) біртізбекті ДНҚ бөлшектерінің химиялық синтезінен және екі тізбекті поленуклеотидтердің түзілуінен, ДНҚ лигаза арқылы өзара олегонуклеотидтердің тігісінен тұрады.
Химиялық - ферментативтік синтез нуклоетидтердің минимальді қажетті тізбектілігін дәл жаңғыртуға және ДНҚ бөлшектерінде артық нуклеотидті тізбектіліктердің, сонымен қатар, интрондардың элиминирленуімен байланысқан, мәселелерді болдырмауға мүмкіндік береді. Сонымен қатар, әртүрлі рестриктазалардың реттегішіне тізбектіліктердің т. б. тану үлескілерін гендерге енгізу мүмкіндігі бар.
Гендердің химиялық - ферментативті синтезіне оның нуклеотидті тізбектілігі туралы толық ақпарат қажет, сондықтан әдістің қолданысы осындай ақпаратты алу мүмкіндіктерімен шектелген. Генде нуклеотидтердің тізбектілігі сәйкесті ақуыздың алғашқы құрылымы негізінде жаңғыруы мүмкін. Ген құрылымын талдаудағы триумф - кодталатын ақуызда аминқышқылды қалдықтар тізбегінің және ДНҚ нуклеотидті тізбектілігінің параллель жаңғыруы. Химиялық - ферментативтік синтез әдісімен ас - оператор Е coli, проинсулиннің, инсулиннің А және В тізбектеріндегі, соматостатиндегі гендер алынған.
Жасушадан бөлінген матрицалық РНҚ негізінде гендердің ферментативті синтезі. Бұл гендер синтезінің ең танымал әдісі. Кері транскриптаза (ревертаза), мРНҚ - на комплементарлы, ДНҚ жіпшелерінің синтездерін өршітеді. Комплементарлық ДНҚ және кДНҚ деп аталатын, алынған біртізбекті ДНҚ - лып, ДНҚ - полимеразаны немесе ревертазаны қолданумен, ДНҚ - ның екінші жіпшесін синтездлеуге арналған матрица ретінде пайдаланады. Қарастырылатын әдістің артықшылығы, ген интрондарсыз және басқа транскрибцияланбайтын тізбектілерсіз алынады. Сонымен қатар, генді ДНҚ бөлшектерінің қоспасынан іріктегеннен гөрі, мРНҚ - ның қажет түрін жасуша аккумуляциялайтын, жағдайларды жасау оңайырақ. РНҚ тәуелді ДНҚ синтезінде негізделген, әдісті қолдануда 1979ж. адамның өсу гормонының генін алу үлкен жетістік болып табылады. Генді векторға енгізу. Сол немесе өзге тәсілмен алынған, ген ақуыз құрылымы туралы ақпаратты жүзеге асыра алмайды. Геннің әрекетін басқаратын қосымша механизмдер қажет, сондықтан генетикалық ақпаратты жасушаға тасымалдау векторлар құрамында жүзеге асырылады. Векторлар - өз бетінше реплткацияға қабілетті сақиналы молекулалар. Ген вектормен бірге рекомбинантты ДНҚ - ын түзеді. Рекомбинантты ДНҚ - ды құрастыру in Vitro жүзеге асырылады. Вектордың сақиналы молекуласы рестриктазамен айырылады. Алынған сызықты ДНҚ молекуласы, ДНҚ - ны енгізетін ұштарға комплементарлы, жабысқақ ұштарға ие болуы қажет. Енгізілетін геннің және вектордың комплементарлы жабысқақ ұштарын ДНҚ лигазаның көмегімен, біріңғай сақиналы молекула түзумен, қайта тұйықтайды. Векторлардың екі негізгі класын ажыратады: вирустар және плазмидтер. Генетикалық векторлар ретінде вирустарды пайдалану барысында туындайтын, маңызды мәселе - аттеньюация болып табылады. Аттеньюация - вируспен зақымдалған жасушалар аман қалуы және ұрпаққа өзгерген генетикалық бағдарламаны беруі үшін патогенділіктің әлсіреуі. Бүкілағза бойымен басты инфекция қысқа мерзімде дамитындай, жануар немесе өсімдік ұлпасында тарай отырып, жасушадан жасушаға тез тасымалданатын вирустардың қабілеті биотехнология үшін үлкен мәнге ие болған. Вирустардың осындай қасиеті ересек ағзадағы соматикалық жасушалардың генетикалық түрөзгеру мүмкіндігін ашады. Бұл қатынаста барлық он адам ағзасының жасышаларымен жетіспейтін гендерді таситын, вирустарды енгізу жолымен, адамның тұқым қуалайтын ауруларын емдеу жолдары ашылады.
... жалғасы- Іс жүргізу
- Автоматтандыру, Техника
- Алғашқы әскери дайындық
- Астрономия
- Ауыл шаруашылығы
- Банк ісі
- Бизнесті бағалау
- Биология
- Бухгалтерлік іс
- Валеология
- Ветеринария
- География
- Геология, Геофизика, Геодезия
- Дін
- Ет, сүт, шарап өнімдері
- Жалпы тарих
- Жер кадастрі, Жылжымайтын мүлік
- Журналистика
- Информатика
- Кеден ісі
- Маркетинг
- Математика, Геометрия
- Медицина
- Мемлекеттік басқару
- Менеджмент
- Мұнай, Газ
- Мұрағат ісі
- Мәдениеттану
- ОБЖ (Основы безопасности жизнедеятельности)
- Педагогика
- Полиграфия
- Психология
- Салық
- Саясаттану
- Сақтандыру
- Сертификаттау, стандарттау
- Социология, Демография
- Спорт
- Статистика
- Тілтану, Филология
- Тарихи тұлғалар
- Тау-кен ісі
- Транспорт
- Туризм
- Физика
- Философия
- Халықаралық қатынастар
- Химия
- Экология, Қоршаған ортаны қорғау
- Экономика
- Экономикалық география
- Электротехника
- Қазақстан тарихы
- Қаржы
- Құрылыс
- Құқық, Криминалистика
- Әдебиет
- Өнер, музыка
- Өнеркәсіп, Өндіріс
Қазақ тілінде жазылған рефераттар, курстық жұмыстар, дипломдық жұмыстар бойынша біздің қор #1 болып табылады.

Ақпарат
Қосымша
Email: info@stud.kz