Сандық қатарлар
К. Сағадиев атындағы Халықаралық Бизнес Университет
РОС
Тақырыбы: Сандық қатарлар. Қатар жиынтығының қажетті және жеткілікті шарты. Коши Белгісі
Орындаған: Нургожа Перизат
1 курс студент, 22.200 группа
Мамандық: Digital marketing
Ғылыми жетекші: Гусманова Фарида Равиловна
Алматы 2023
Жоспар
I. КІРІСПЕ ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 3
II. НЕГІЗГІ БӨЛІМ
Негізгі ұғымдар мен анықтамалар ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...4
Қатар жиынтығының қажетті және жеткілікті шарты ... ... ... ... ... ... ... ... ..6
Коши белгісі ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 8
Сандық қатар теориясы мен Коши белгісін қолдану мысалдары ... ... ... ..10
III. ҚОРЫТЫНДЫ ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 12
IV. ПАЙДАЛАНЫЛҒАН ӘДЕБИЕТТЕР ТІЗІМІ ... ... ... ... ... ... ... ... ... ... .13
Кіріспе
Сандық қатарлар-бұл белгілі бір санның немесе функцияның сандық ыдырауы арқылы пайда болатын сандар тізбегі. Олар математика, информатика, физика және техника сияқты көптеген салаларда қолданылады. Қарастырылып отырған сандар жиынтығын сандық қатар деп атауға болатындай етіп, осы тізбектің әрбір саны белгілі бір сандық санау жүйесінде көрсетілуі керек. Жеткілікті шарт-бұл серия элементтердің қосындысы ретінде ұсынылуы керек, олардың әрқайсысы сандық жүйенің базасын белгілі бір дәрежеде құру және осы дәрежені бастапқы санның сәйкес цифрына көбейту арқылы алынады. Коши белгісі, өз кезегінде, функцияның шегін сипаттау үшін қолданылатын математикалық талдаудың негізгі құралдарының бірі болып табылады. Бұл сандық қатарлардың конвергенциясын талдау және олардынойам түрде ұсыну үшін пайдалы болуы мүмкін.
Ақпараттық технологиялар саласында Коши белгісін, мысалы, бағдарламалауда қолданылатын алгоритмдердің күрделілігін бағалау үшін қолдануға болады. Бұл алгоритмнің деректердің үлкен көлемінде қаншалықты жылдам жұмыс істейтінін анықтауға және оны ең жақсы өнімділікке жету үшін оңтайландыруға мүмкіндік береді.
Негізгі ұғымдар мен анықтамалар
Сандық қатар - бұл шексіз қосынды ретінде ұсынылуы мүмкін белгілі бір ретпен жазылған сандар тізбегі. Сандарды кез-келген санау жүйесінде жазуға болады, бірақ ондық жүйе жиі қолданылады. Сандық қатардың мысалы ретінде 0.123456789101112131415 қатарын келтіруге болады... Бұл қатар 0-ден 9-ға дейінгі барлық сандардан тұрады, содан кейін 10-нан 15-ке дейінгі сандар дәйекті түрде жазылады. Мұндай қатарды шексіз кіші сандарды көрсету немесе иррационал сандарды құру үшін пайдалануға болады. Сандық сериялардың математикада және ғылым мен техниканың басқа салаларында көптеген маңызды қосымшалары бар. Мысалы, олар шексіз қатарлардың қасиеттерін жиі зерттейтін сандар теориясында, функцияларды сипаттау үшін қатарлар қолданылатын математикалық талдауда, сондай-ақ деректерді кодтау және беру үшін сандық қатарларды пайдалануға болатын ақпарат теориясында қолданылады. Және сандық қатарлар теориясындағы маңызды міндет-шексіз қатардың жақындасатын немесе бөлінетін жағдайларын анықтау. Ол үшін қатардың толықтығы, Коши белгісі және қатарлардың конвергенциясын талдаудың әртүрлі әдістері сияқты ұғымдар қолданылады.
Қатардың толықтығы - бұл сандық қатарлар теориясының тұжырымдамасы, бұл қатардың барлық мүшелерінің шексіз қосындысын берілген дәлдікпен есептеуге болатындығын білдіреді. Ресми түрде, егер кез-келген берілген эпсилон саны нөлден үлкен болса, онда n саны бар, сондықтан барлық n сандары үшін n-ден үлкен, серияның алғашқы N мүшелерінің қосындысының абсолютті мәні ("жеке сомалар" деп аталады) эпсилоннан аз болады. Бұл дегеніміз, кез-келген дәлдікпен қатардың қосындысын қосу үшін жеткілікті үлкен серия мүшелерін таңдау арқылы есептеуге болады. Қатардың толықтығы сандық қатарлар теориясындағы маңызды ұғым болып табылады, өйткені ол шексіз қатарды берілген дәлдікпен есептеуге болатынын немесе болмайтынын анықтауға мүмкіндік береді. Мысалы, егер қатар толық болса, онда оны шексіз кіші сандарды көрсету немесе иррационал сандарды құру үшін пайдалануға болады. Дегенмен, барлық шексіз жолдар толық емес. Мысалы, гармоникалық сандар қатары 1 + 12 + 13 + 14 + ... толық емес, яғни оның қосындысын дәл есептеу мүмкін емес. Мұндай жағдайларда қатардың конвергенциясын бағалау және шамамен соманы алу үшін шамамен әдістер қолданылады.
Коши белгісі - бұл сандық қатар теориясындағы шексіз қатардың жақындасуын немесе алшақтығын анықтауға мүмкіндік беретін құрал. Бұл әдісті алғаш қолданған математик Август Кошидің есімімен аталады. Ресми түрде, Коши белгісі an жалпы мүшесімен шексіз қатар үшін келесідей анықталады: lim inf an^(1n) мұндағы lim inf жолдың төменгі шегін білдіреді және an жолдың жалпы мүшесінің абсолютті мәнін білдіреді. Егер Коши белгісі нөлге тең болса, онда серия мүлдем жинақталады, яғни.оның мүшелерінің кез-келген ауысуы үшін жинақталады. Егер Коши белгісі шексіздікке тең болса, онда қатар әр түрлі болады. Егер Коши белгісі нөлден шексіздікке дейінгі аралықта болса, онда оның жалпы мүшелерінің қасиеттеріне байланысты қатар бір-біріне жақындауы немесе бөлінуі мүмкін. Коши белгісі шексіз қатарлардың конвергенциясын анықтаудың күшті құралы болып табылады, өйткені ол қатардың конвергенциясы немесе дивергенциясы туралы сұраққа жауап бере алады, оның барлық мүшелерінің қосындысын есептеуді қажет етпейді. Ол сонымен қатар күрделі математикалық модельдерді талдау үшін пайдалы болуы мүмкін қатардың конвергенция жылдамдығын бағалауға мүмкіндік береді.
Қатар жиынтығының қажетті және жеткілікті шарты
Қатар жиынтығының толықтығы туралы жалпы түсінік - оның барлық мүшелерінің шексіз қосындысын кез-келген дәлдікпен есептеуге болады. Егер қатар толық болса, онда кез-келген берілген Сан үшін эпсилон нөлден үлкен N нөмірін табуға болады, сондықтан барлық n сандары үшін n-ден үлкен, серияның алғашқы N мүшелерінің қосындысының абсолютті мәні эпсилоннан аз болады. Осылайша, егер қатар толық болса, онда ол кез-келген дәлдікпен табуға болатын соңғы сомаға ие, оны қосу үшін жеткілікті үлкен серия мүшелерін таңдау арқылы. Қатардың толықтығы Математикалық талдау мен сандық қатарлар теориясындағы маңызды ұғым болып табылады. Бұл шексіз қатарды дәл есептеуге болатындығын немесе болмайтынын және оны есептеу кезінде қандай дәлдікке қол жеткізуге болатындығын анықтауға мүмкіндік береді. Сонымен қатар, шексіз қатарлар арқылы берілген функциялардың қасиеттерін анықтау үшін қатар жиынтығын пайдалануға болады. Егер қатар толық болса, онда оны шексіз кіші сандарды көрсету немесе иррационал сандарды құру үшін пайдалануға болады. Дегенмен, барлық шексіз қатарлар толық емес және кейбір қатарлар үшін олардың қосындысын есептеудің немесе олардың конвергенциясын бағалаудың шамамен әдістері ғана бар.
Қатар жиынтығының толықтығының қажетті шарты - оның конвергенциясы. Егер шексіз қатар біріктірілмесе, онда ол толық бола алмайды. Осылайша, серия толық болуы үшін ол конвергентті болуы керек. Алайда, қатардың конвергенциясы оның толықтығына кепілдік бермейді, өйткені конвергентті қатарда оның мүшелерін қосу тәртібіне байланысты әр түрлі сомалар болуы мүмкін. Мысалы, ∑(-1)^nn қатары Лейбництің белгісі бойынша конвергентті, бірақ оның қосындысы екі Логарифмге тең, егер оның мүшелері белгілі бір ретпен қосылса ғана. Осылайша, конвергенция сериялардың толықтығының қажетті, бірақ жеткіліксіз шарты болып табылады. Серияның толық болуы үшін серияның жалпы мүшесінің қасиеттеріне байланысты өзгеруі мүмкін қосымша шарттарды орындау қажет.
Қатардың толықтығының жеткілікті шарты-Коши шартын орындау. Егер кош an шексіз қатары үшін Коши шарты орындалса, онда бұл қатар толық болады. Коши шартында кез-келген берілген эпсилон саны үшін нөлден үлкен N нөмірін табуға болады, бұл барлық m және n сандары үшін N-ден үлкен, M-M және ... жалғасы
РОС
Тақырыбы: Сандық қатарлар. Қатар жиынтығының қажетті және жеткілікті шарты. Коши Белгісі
Орындаған: Нургожа Перизат
1 курс студент, 22.200 группа
Мамандық: Digital marketing
Ғылыми жетекші: Гусманова Фарида Равиловна
Алматы 2023
Жоспар
I. КІРІСПЕ ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 3
II. НЕГІЗГІ БӨЛІМ
Негізгі ұғымдар мен анықтамалар ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...4
Қатар жиынтығының қажетті және жеткілікті шарты ... ... ... ... ... ... ... ... ..6
Коши белгісі ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 8
Сандық қатар теориясы мен Коши белгісін қолдану мысалдары ... ... ... ..10
III. ҚОРЫТЫНДЫ ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 12
IV. ПАЙДАЛАНЫЛҒАН ӘДЕБИЕТТЕР ТІЗІМІ ... ... ... ... ... ... ... ... ... ... .13
Кіріспе
Сандық қатарлар-бұл белгілі бір санның немесе функцияның сандық ыдырауы арқылы пайда болатын сандар тізбегі. Олар математика, информатика, физика және техника сияқты көптеген салаларда қолданылады. Қарастырылып отырған сандар жиынтығын сандық қатар деп атауға болатындай етіп, осы тізбектің әрбір саны белгілі бір сандық санау жүйесінде көрсетілуі керек. Жеткілікті шарт-бұл серия элементтердің қосындысы ретінде ұсынылуы керек, олардың әрқайсысы сандық жүйенің базасын белгілі бір дәрежеде құру және осы дәрежені бастапқы санның сәйкес цифрына көбейту арқылы алынады. Коши белгісі, өз кезегінде, функцияның шегін сипаттау үшін қолданылатын математикалық талдаудың негізгі құралдарының бірі болып табылады. Бұл сандық қатарлардың конвергенциясын талдау және олардынойам түрде ұсыну үшін пайдалы болуы мүмкін.
Ақпараттық технологиялар саласында Коши белгісін, мысалы, бағдарламалауда қолданылатын алгоритмдердің күрделілігін бағалау үшін қолдануға болады. Бұл алгоритмнің деректердің үлкен көлемінде қаншалықты жылдам жұмыс істейтінін анықтауға және оны ең жақсы өнімділікке жету үшін оңтайландыруға мүмкіндік береді.
Негізгі ұғымдар мен анықтамалар
Сандық қатар - бұл шексіз қосынды ретінде ұсынылуы мүмкін белгілі бір ретпен жазылған сандар тізбегі. Сандарды кез-келген санау жүйесінде жазуға болады, бірақ ондық жүйе жиі қолданылады. Сандық қатардың мысалы ретінде 0.123456789101112131415 қатарын келтіруге болады... Бұл қатар 0-ден 9-ға дейінгі барлық сандардан тұрады, содан кейін 10-нан 15-ке дейінгі сандар дәйекті түрде жазылады. Мұндай қатарды шексіз кіші сандарды көрсету немесе иррационал сандарды құру үшін пайдалануға болады. Сандық сериялардың математикада және ғылым мен техниканың басқа салаларында көптеген маңызды қосымшалары бар. Мысалы, олар шексіз қатарлардың қасиеттерін жиі зерттейтін сандар теориясында, функцияларды сипаттау үшін қатарлар қолданылатын математикалық талдауда, сондай-ақ деректерді кодтау және беру үшін сандық қатарларды пайдалануға болатын ақпарат теориясында қолданылады. Және сандық қатарлар теориясындағы маңызды міндет-шексіз қатардың жақындасатын немесе бөлінетін жағдайларын анықтау. Ол үшін қатардың толықтығы, Коши белгісі және қатарлардың конвергенциясын талдаудың әртүрлі әдістері сияқты ұғымдар қолданылады.
Қатардың толықтығы - бұл сандық қатарлар теориясының тұжырымдамасы, бұл қатардың барлық мүшелерінің шексіз қосындысын берілген дәлдікпен есептеуге болатындығын білдіреді. Ресми түрде, егер кез-келген берілген эпсилон саны нөлден үлкен болса, онда n саны бар, сондықтан барлық n сандары үшін n-ден үлкен, серияның алғашқы N мүшелерінің қосындысының абсолютті мәні ("жеке сомалар" деп аталады) эпсилоннан аз болады. Бұл дегеніміз, кез-келген дәлдікпен қатардың қосындысын қосу үшін жеткілікті үлкен серия мүшелерін таңдау арқылы есептеуге болады. Қатардың толықтығы сандық қатарлар теориясындағы маңызды ұғым болып табылады, өйткені ол шексіз қатарды берілген дәлдікпен есептеуге болатынын немесе болмайтынын анықтауға мүмкіндік береді. Мысалы, егер қатар толық болса, онда оны шексіз кіші сандарды көрсету немесе иррационал сандарды құру үшін пайдалануға болады. Дегенмен, барлық шексіз жолдар толық емес. Мысалы, гармоникалық сандар қатары 1 + 12 + 13 + 14 + ... толық емес, яғни оның қосындысын дәл есептеу мүмкін емес. Мұндай жағдайларда қатардың конвергенциясын бағалау және шамамен соманы алу үшін шамамен әдістер қолданылады.
Коши белгісі - бұл сандық қатар теориясындағы шексіз қатардың жақындасуын немесе алшақтығын анықтауға мүмкіндік беретін құрал. Бұл әдісті алғаш қолданған математик Август Кошидің есімімен аталады. Ресми түрде, Коши белгісі an жалпы мүшесімен шексіз қатар үшін келесідей анықталады: lim inf an^(1n) мұндағы lim inf жолдың төменгі шегін білдіреді және an жолдың жалпы мүшесінің абсолютті мәнін білдіреді. Егер Коши белгісі нөлге тең болса, онда серия мүлдем жинақталады, яғни.оның мүшелерінің кез-келген ауысуы үшін жинақталады. Егер Коши белгісі шексіздікке тең болса, онда қатар әр түрлі болады. Егер Коши белгісі нөлден шексіздікке дейінгі аралықта болса, онда оның жалпы мүшелерінің қасиеттеріне байланысты қатар бір-біріне жақындауы немесе бөлінуі мүмкін. Коши белгісі шексіз қатарлардың конвергенциясын анықтаудың күшті құралы болып табылады, өйткені ол қатардың конвергенциясы немесе дивергенциясы туралы сұраққа жауап бере алады, оның барлық мүшелерінің қосындысын есептеуді қажет етпейді. Ол сонымен қатар күрделі математикалық модельдерді талдау үшін пайдалы болуы мүмкін қатардың конвергенция жылдамдығын бағалауға мүмкіндік береді.
Қатар жиынтығының қажетті және жеткілікті шарты
Қатар жиынтығының толықтығы туралы жалпы түсінік - оның барлық мүшелерінің шексіз қосындысын кез-келген дәлдікпен есептеуге болады. Егер қатар толық болса, онда кез-келген берілген Сан үшін эпсилон нөлден үлкен N нөмірін табуға болады, сондықтан барлық n сандары үшін n-ден үлкен, серияның алғашқы N мүшелерінің қосындысының абсолютті мәні эпсилоннан аз болады. Осылайша, егер қатар толық болса, онда ол кез-келген дәлдікпен табуға болатын соңғы сомаға ие, оны қосу үшін жеткілікті үлкен серия мүшелерін таңдау арқылы. Қатардың толықтығы Математикалық талдау мен сандық қатарлар теориясындағы маңызды ұғым болып табылады. Бұл шексіз қатарды дәл есептеуге болатындығын немесе болмайтынын және оны есептеу кезінде қандай дәлдікке қол жеткізуге болатындығын анықтауға мүмкіндік береді. Сонымен қатар, шексіз қатарлар арқылы берілген функциялардың қасиеттерін анықтау үшін қатар жиынтығын пайдалануға болады. Егер қатар толық болса, онда оны шексіз кіші сандарды көрсету немесе иррационал сандарды құру үшін пайдалануға болады. Дегенмен, барлық шексіз қатарлар толық емес және кейбір қатарлар үшін олардың қосындысын есептеудің немесе олардың конвергенциясын бағалаудың шамамен әдістері ғана бар.
Қатар жиынтығының толықтығының қажетті шарты - оның конвергенциясы. Егер шексіз қатар біріктірілмесе, онда ол толық бола алмайды. Осылайша, серия толық болуы үшін ол конвергентті болуы керек. Алайда, қатардың конвергенциясы оның толықтығына кепілдік бермейді, өйткені конвергентті қатарда оның мүшелерін қосу тәртібіне байланысты әр түрлі сомалар болуы мүмкін. Мысалы, ∑(-1)^nn қатары Лейбництің белгісі бойынша конвергентті, бірақ оның қосындысы екі Логарифмге тең, егер оның мүшелері белгілі бір ретпен қосылса ғана. Осылайша, конвергенция сериялардың толықтығының қажетті, бірақ жеткіліксіз шарты болып табылады. Серияның толық болуы үшін серияның жалпы мүшесінің қасиеттеріне байланысты өзгеруі мүмкін қосымша шарттарды орындау қажет.
Қатардың толықтығының жеткілікті шарты-Коши шартын орындау. Егер кош an шексіз қатары үшін Коши шарты орындалса, онда бұл қатар толық болады. Коши шартында кез-келген берілген эпсилон саны үшін нөлден үлкен N нөмірін табуға болады, бұл барлық m және n сандары үшін N-ден үлкен, M-M және ... жалғасы
Ұқсас жұмыстар
Пәндер
- Іс жүргізу
- Автоматтандыру, Техника
- Алғашқы әскери дайындық
- Астрономия
- Ауыл шаруашылығы
- Банк ісі
- Бизнесті бағалау
- Биология
- Бухгалтерлік іс
- Валеология
- Ветеринария
- География
- Геология, Геофизика, Геодезия
- Дін
- Ет, сүт, шарап өнімдері
- Жалпы тарих
- Жер кадастрі, Жылжымайтын мүлік
- Журналистика
- Информатика
- Кеден ісі
- Маркетинг
- Математика, Геометрия
- Медицина
- Мемлекеттік басқару
- Менеджмент
- Мұнай, Газ
- Мұрағат ісі
- Мәдениеттану
- ОБЖ (Основы безопасности жизнедеятельности)
- Педагогика
- Полиграфия
- Психология
- Салық
- Саясаттану
- Сақтандыру
- Сертификаттау, стандарттау
- Социология, Демография
- Спорт
- Статистика
- Тілтану, Филология
- Тарихи тұлғалар
- Тау-кен ісі
- Транспорт
- Туризм
- Физика
- Философия
- Халықаралық қатынастар
- Химия
- Экология, Қоршаған ортаны қорғау
- Экономика
- Экономикалық география
- Электротехника
- Қазақстан тарихы
- Қаржы
- Құрылыс
- Құқық, Криминалистика
- Әдебиет
- Өнер, музыка
- Өнеркәсіп, Өндіріс
Қазақ тілінде жазылған рефераттар, курстық жұмыстар, дипломдық жұмыстар бойынша біздің қор #1 болып табылады.
Ақпарат
Қосымша
Email: info@stud.kz