Математикалық теңдеулер жүйесі


Мазмұны
Кіріспе
I. Көрсеткіштік теңдеулер
II. Қарапайым логарифмдік теңдеулер
III. Логарифдік теңдеулерді шешу әдістері
Қорытынды
Пайдаланған әдебиеттер тізімі
Кіріспе
Бірдей негізге келтіру арқылы шығарылатын теңдеу.
1) ax=b ( a0, a≠1)
Егер b0 болса, теңдеудің жалғыз ғана түбірі бар болады.
Егер b≤0 болса, теңдеудің түбірі жоқ болады.
2) af(x)=ag(x) мұндағы (a0, a≠1) теңдеуінің сол және оң бөліктерінің
негіздері бірдей болғандықтан, af(x)=ag(x) теңдеуі f(x)=g(x) теңдеуімен
мәндес болады.
Мысал: 5x=125
Шешуі: , 1250, 125=53 ,5x=53, x=3 Жауабы: 3
Мысал: 2x-1=1
Шешуі: 2x-1=20, x-1=0, x=1 Жауабы:1
Мысал: = 5∙
Шешуі: барлық дәрежелерді бір ғана 5негізге келтіреміз.
Сонда 50,5-x ∙5-0,5=5∙5-2x+2 теңдеуін аламыз, оны 5-x=5-2x+3 түріне
түрлендіреміз де, дәреже көрсеткіштерін теңестіріп,теңдеуді шешеміз:
–x= -2x+3, x=3 Жауабы: 3
Жаңа айнымалы енгізу арқылы жиі шығарылатын теңдеулер.
1) A∙a2x+B∙ax+C=0 a0, a≠1
ax=y, y0 деп белгілесек, у-ке қатысты квадрат теңдеуге келеді. Ay2+By+C=0
Мысал: 52x-6∙5x+5=0
Шешуі: 5x=y, y0 белгілесек у-ке байланысты y2-6y+5=0 квадрат теңдеуіне
келеміз. Бұдан y1=1, y2=5 екенін табамыз.
у-тің екі мәніне сәйкес екі көрсеткіштік теңдеу шығады.
1) 5x=1, x=0
2) 5x=5, x=1
Бұл теңдеулерден есептің екі жауабы шығады. Жауабы: 0; 1
2) A∙ax+B∙a-x+C=0 ax=y (y0) деп белгілесек,
Ay2+Cy+B=0 квадрат теңдеуге келеміз.
Мысал: 5x-24=25∙5-x
Шешуі: 5x=y, y2-24y-25=0 квадрат теңдеуге келеміз.
y0
y1= -1; y2=25 у –тің таңбасын ескере отырып теңдеуді
шешсек,
1) 5x= -1 (бұл теңдеудің нақты түбірі жоқ),өйткені кез келген х€R үшін
5x0
2) 5x=25, 5x=52, x=2 Жауабы: 2
3) A∙a2x+B(a∙b)x+C∙b2x=0
Егер теңдеудің барлық мүшелерін b2x≠0, өрнегіне бөлсек мынадай түрге
келеміз: A∙ деп белгілесек, у-ке байланысты Ay2+By+C=0
теңдеуге келеміз.
Мысал: 6∙32x-13∙6x+6∙22x=0
Шешуі: 6∙32x-13∙(2∙3)x+6∙22x=0, 6x=(2∙3)x=2x∙3x теңдеуді шешу үшін екі
жағын 22x≠0 бөлеміз.
6∙ - 13∙ + 6 = 0; = y, (y0) деп белгілесек у-
ке байланысты квадрат теңдеу шығады.
6y2-13y+6=0
y1 = ; y2 =
1) =, x=1
2) =, , x=-1
Жауабы: -1; 1
Кейде көрсеткіштік функцияны ортақ көбейткіш ретінде жақша сыртына
шығару арқылы шешкен тиімді болады.
Мысал: 5x+5x+2=26
Шешуі: 5x(1+52)=26
5x∙26=26
5x=1
x=0 Жауабы: 0
Графиктік тәсілмен шығарылатын теңдеулер.
aφ(x)=f(x) түріндегі теңдеулер
Ал мұндай теңдеулер түбірлерінің жуық мәндерін графиктік тәсілмен табуға
болады.
ax=b a0, a≠1, b0
y=b түзуі y=ax функциясының графигін бір ғана нүктеде қиып өтеді. Қиылысу
нүктесінің абсциссасы берілген көрсеткіштік теңдеудің түбірі болады.
Мысал: 2x=6-x
Шешуі: y=6-x түзуі y=2x функциясының графиктерін сызып, олардың қиылысу
нүктесінің абсциссасын табайық. Екі графиктің қиылысу нүктесінің абсциссасы
x=2.
Жауабы: 2
Негіздері әр түрлі болып келген көрсеткіштік теңдеулерді шешу мысалдары.
Мысал: 2x=3x
Шешуі: 3x0, =1, =, x=0 Жауабы: 0
Мысал: + =4
= =
+ = 4, = y, (y0) деп белгілесек
y + = 4, y2 - 4y + 1= 0, y1,2 =2 ±
1) = 2 +
= 1 , x = 2
2) = 2
=
= -1 , x = -2
Жауабы:
Мысал: 7 х-4 = 10 x-4 , Шешуі: теңдіктің екі жағын 10 х-4 –ке бөлеміз
= 1, =, x-4=0,x=4 Жауабы: 4
Оқулықпен жұмыс: № 168; № 176; № 177
Көрсеткіштік теңдеулерді шешу икемдіктерін тексеру тест
I топ
1. 9x - 4∙3x -45=0
A) 5 B) 2 C) -5 D) 9 E) 7
2. 5x+1 + 2∙5x = 175
A) 1 B) C) 0 D) 4 E) 2
3. 4x – 10∙2x-1 – 24 = 0
A) 3,8 B) -3,8 C) 8 D) -3;3 E) 3
4. 8x-3 = 9x-3
A) 4 B) 3 C) 2 D) 1
5. ∙ = 36
A) 2 B) 4 C) 1 D) -1
6. 5x-1 + 5x-2 + 5x-3 = 155
A) 0 B) 2 C) 625 D) 1,24 E) 4
7. 125 ∙ 25x – 70 ∙10 x + 8∙4x =0
A) 1;1 B) -2;-1 C) 2;2 D) -3;3 E) (-1;1)
II топ
1. 121x -2∙11x +1 = 0
A) 2 B) 3 C) 1 D) 0 E) 6
2. 2x+4 + 3∙2x = 76
A) 2 B) 4 C) 3,5 D) 4,5 E) 3
3. 4x + 2x+1 – 24 = 0
A) -2;6 B) 2 C) 2;-6 D) -4;6 E) 4;-6
4. 2x-4 = 5x-4
A) 4 B) 3 C) 2 D)1
5. ∙ = 216
A) 3 B) 9 C) 1 D) 0
6. 3x + 3x+1 +3x+2 +3x+3 = 360
A) 2 B) -2 C) 4 D) 1 E)3
7. 7∙49x + 5∙14x = 2∙4x
A) Ø B) -0,5 C) -1 D) 1 E) 0,5
Деңгейлік тапсырмалар (тақтада орындалады)
I топ
А деңгейі
9x+1 + 92x-1 = 54 ∙ 27x-1
Жауабы: х=2
В деңгейі
42x – 3x +3 = 24 ... жалғасы
Кіріспе
I. Көрсеткіштік теңдеулер
II. Қарапайым логарифмдік теңдеулер
III. Логарифдік теңдеулерді шешу әдістері
Қорытынды
Пайдаланған әдебиеттер тізімі
Кіріспе
Бірдей негізге келтіру арқылы шығарылатын теңдеу.
1) ax=b ( a0, a≠1)
Егер b0 болса, теңдеудің жалғыз ғана түбірі бар болады.
Егер b≤0 болса, теңдеудің түбірі жоқ болады.
2) af(x)=ag(x) мұндағы (a0, a≠1) теңдеуінің сол және оң бөліктерінің
негіздері бірдей болғандықтан, af(x)=ag(x) теңдеуі f(x)=g(x) теңдеуімен
мәндес болады.
Мысал: 5x=125
Шешуі: , 1250, 125=53 ,5x=53, x=3 Жауабы: 3
Мысал: 2x-1=1
Шешуі: 2x-1=20, x-1=0, x=1 Жауабы:1
Мысал: = 5∙
Шешуі: барлық дәрежелерді бір ғана 5негізге келтіреміз.
Сонда 50,5-x ∙5-0,5=5∙5-2x+2 теңдеуін аламыз, оны 5-x=5-2x+3 түріне
түрлендіреміз де, дәреже көрсеткіштерін теңестіріп,теңдеуді шешеміз:
–x= -2x+3, x=3 Жауабы: 3
Жаңа айнымалы енгізу арқылы жиі шығарылатын теңдеулер.
1) A∙a2x+B∙ax+C=0 a0, a≠1
ax=y, y0 деп белгілесек, у-ке қатысты квадрат теңдеуге келеді. Ay2+By+C=0
Мысал: 52x-6∙5x+5=0
Шешуі: 5x=y, y0 белгілесек у-ке байланысты y2-6y+5=0 квадрат теңдеуіне
келеміз. Бұдан y1=1, y2=5 екенін табамыз.
у-тің екі мәніне сәйкес екі көрсеткіштік теңдеу шығады.
1) 5x=1, x=0
2) 5x=5, x=1
Бұл теңдеулерден есептің екі жауабы шығады. Жауабы: 0; 1
2) A∙ax+B∙a-x+C=0 ax=y (y0) деп белгілесек,
Ay2+Cy+B=0 квадрат теңдеуге келеміз.
Мысал: 5x-24=25∙5-x
Шешуі: 5x=y, y2-24y-25=0 квадрат теңдеуге келеміз.
y0
y1= -1; y2=25 у –тің таңбасын ескере отырып теңдеуді
шешсек,
1) 5x= -1 (бұл теңдеудің нақты түбірі жоқ),өйткені кез келген х€R үшін
5x0
2) 5x=25, 5x=52, x=2 Жауабы: 2
3) A∙a2x+B(a∙b)x+C∙b2x=0
Егер теңдеудің барлық мүшелерін b2x≠0, өрнегіне бөлсек мынадай түрге
келеміз: A∙ деп белгілесек, у-ке байланысты Ay2+By+C=0
теңдеуге келеміз.
Мысал: 6∙32x-13∙6x+6∙22x=0
Шешуі: 6∙32x-13∙(2∙3)x+6∙22x=0, 6x=(2∙3)x=2x∙3x теңдеуді шешу үшін екі
жағын 22x≠0 бөлеміз.
6∙ - 13∙ + 6 = 0; = y, (y0) деп белгілесек у-
ке байланысты квадрат теңдеу шығады.
6y2-13y+6=0
y1 = ; y2 =
1) =, x=1
2) =, , x=-1
Жауабы: -1; 1
Кейде көрсеткіштік функцияны ортақ көбейткіш ретінде жақша сыртына
шығару арқылы шешкен тиімді болады.
Мысал: 5x+5x+2=26
Шешуі: 5x(1+52)=26
5x∙26=26
5x=1
x=0 Жауабы: 0
Графиктік тәсілмен шығарылатын теңдеулер.
aφ(x)=f(x) түріндегі теңдеулер
Ал мұндай теңдеулер түбірлерінің жуық мәндерін графиктік тәсілмен табуға
болады.
ax=b a0, a≠1, b0
y=b түзуі y=ax функциясының графигін бір ғана нүктеде қиып өтеді. Қиылысу
нүктесінің абсциссасы берілген көрсеткіштік теңдеудің түбірі болады.
Мысал: 2x=6-x
Шешуі: y=6-x түзуі y=2x функциясының графиктерін сызып, олардың қиылысу
нүктесінің абсциссасын табайық. Екі графиктің қиылысу нүктесінің абсциссасы
x=2.
Жауабы: 2
Негіздері әр түрлі болып келген көрсеткіштік теңдеулерді шешу мысалдары.
Мысал: 2x=3x
Шешуі: 3x0, =1, =, x=0 Жауабы: 0
Мысал: + =4
= =
+ = 4, = y, (y0) деп белгілесек
y + = 4, y2 - 4y + 1= 0, y1,2 =2 ±
1) = 2 +
= 1 , x = 2
2) = 2
=
= -1 , x = -2
Жауабы:
Мысал: 7 х-4 = 10 x-4 , Шешуі: теңдіктің екі жағын 10 х-4 –ке бөлеміз
= 1, =, x-4=0,x=4 Жауабы: 4
Оқулықпен жұмыс: № 168; № 176; № 177
Көрсеткіштік теңдеулерді шешу икемдіктерін тексеру тест
I топ
1. 9x - 4∙3x -45=0
A) 5 B) 2 C) -5 D) 9 E) 7
2. 5x+1 + 2∙5x = 175
A) 1 B) C) 0 D) 4 E) 2
3. 4x – 10∙2x-1 – 24 = 0
A) 3,8 B) -3,8 C) 8 D) -3;3 E) 3
4. 8x-3 = 9x-3
A) 4 B) 3 C) 2 D) 1
5. ∙ = 36
A) 2 B) 4 C) 1 D) -1
6. 5x-1 + 5x-2 + 5x-3 = 155
A) 0 B) 2 C) 625 D) 1,24 E) 4
7. 125 ∙ 25x – 70 ∙10 x + 8∙4x =0
A) 1;1 B) -2;-1 C) 2;2 D) -3;3 E) (-1;1)
II топ
1. 121x -2∙11x +1 = 0
A) 2 B) 3 C) 1 D) 0 E) 6
2. 2x+4 + 3∙2x = 76
A) 2 B) 4 C) 3,5 D) 4,5 E) 3
3. 4x + 2x+1 – 24 = 0
A) -2;6 B) 2 C) 2;-6 D) -4;6 E) 4;-6
4. 2x-4 = 5x-4
A) 4 B) 3 C) 2 D)1
5. ∙ = 216
A) 3 B) 9 C) 1 D) 0
6. 3x + 3x+1 +3x+2 +3x+3 = 360
A) 2 B) -2 C) 4 D) 1 E)3
7. 7∙49x + 5∙14x = 2∙4x
A) Ø B) -0,5 C) -1 D) 1 E) 0,5
Деңгейлік тапсырмалар (тақтада орындалады)
I топ
А деңгейі
9x+1 + 92x-1 = 54 ∙ 27x-1
Жауабы: х=2
В деңгейі
42x – 3x +3 = 24 ... жалғасы
Ұқсас жұмыстар
Пәндер
- Іс жүргізу
- Автоматтандыру, Техника
- Алғашқы әскери дайындық
- Астрономия
- Ауыл шаруашылығы
- Банк ісі
- Бизнесті бағалау
- Биология
- Бухгалтерлік іс
- Валеология
- Ветеринария
- География
- Геология, Геофизика, Геодезия
- Дін
- Ет, сүт, шарап өнімдері
- Жалпы тарих
- Жер кадастрі, Жылжымайтын мүлік
- Журналистика
- Информатика
- Кеден ісі
- Маркетинг
- Математика, Геометрия
- Медицина
- Мемлекеттік басқару
- Менеджмент
- Мұнай, Газ
- Мұрағат ісі
- Мәдениеттану
- ОБЖ (Основы безопасности жизнедеятельности)
- Педагогика
- Полиграфия
- Психология
- Салық
- Саясаттану
- Сақтандыру
- Сертификаттау, стандарттау
- Социология, Демография
- Спорт
- Статистика
- Тілтану, Филология
- Тарихи тұлғалар
- Тау-кен ісі
- Транспорт
- Туризм
- Физика
- Философия
- Халықаралық қатынастар
- Химия
- Экология, Қоршаған ортаны қорғау
- Экономика
- Экономикалық география
- Электротехника
- Қазақстан тарихы
- Қаржы
- Құрылыс
- Құқық, Криминалистика
- Әдебиет
- Өнер, музыка
- Өнеркәсіп, Өндіріс
Қазақ тілінде жазылған рефераттар, курстық жұмыстар, дипломдық жұмыстар бойынша біздің қор #1 болып табылады.

Ақпарат
Қосымша
Email: info@stud.kz