Бөлу амалы - көбейту амалына кері амал


Абай Құнанбаев атындағы Саран жоғары гуманитарлы-техникалық колледжі
Дипломдық жұмыс
Тақырып:Бастауыш мектеп математикасындағы арифметикалық ұғымдар және оны оқыту әдістемесі
Орындаған:Әбілқасым А. Е.
Тексерген:
Саран-2023жыл.
Мазмұны
Кіріспе . . . 3
I-тарау. Бастауыш сынып оқушыларында арифметикалық амалдардың мәні және түсінік қалыптастыру саласындағы зерттеулердің жалпы сипаттамасы . . . 6
1. 1 Көптаңбалы сандар. Ондық санау жүйесінде көп таңбалы сандарды қосу, азайту . . . 11
1. 2Көбейтіндінің анықтамасы, заңдары. Бөлудің анықтамасы. Қалдықпен бөлу . . . 20
II-тарау. Бастауыш мектеп курсы барысында арифметикалық амалдардың мәні туралы түсінік қалыптастыру процесі . . . 25
2. 1 Тапсырмалар-жағдайлар және оларды арифметикалық амалдардың мағынасы туралы түсінік қалыптастыру кезінде қолдану . . . 33
III-тарау. Арифметикалық ұғымдарды сабақ процесінде қолдану . . . 38
3. 1 Арифметикалық амалардардың қасиеттері . . . 41
3. 2Бастауыш сыныптағы математика сабағында арифметикалық ұғымдармен таныстыру . . . 45
Қорытынды . . . 51
Практикалық бөлім . . . 53
Пайдаланылған әдебиеттер тізімі . . . 59
Кіріспе
Дипломдық жұмыстың өзектілігі : Математиканың бастауыш курсында арифметикалық амалдарды орындауреті туралы ережелердің маңызы зор. Ол ережелердің өзі математикалық заңдылық емес, тек солай қолданып, қалыптасып кеткен келісім екенін ескерген жөн. Заңдылықты оқытуда алдымен нақты мысалдарды қарастырып сонан кейін байқау және бақылау, салыстыру мен салғастыру арқылы жекелеген жағдайлардан біртіндеп жалпы қорытындыға келуге болады, ең соңында мысалдар арқылы тиянақтала түседі. ҚР орта білімді дамыту тұжырымдамасында: «Бастауыш мектептің негізгі міндеттері - баланың жеке басының алғашқы қалыптасуын қамтамасыз ету, оның қабілетін ашып, дамыту, оқуға деген ықыласын, іскерлігін қалыптастыру, оқу, жазу, санау, қарым-қатынас ынтымақтастық тәжірибесінің берік дағдыларын меңгерту», -дей келіп, оқытудың жаңа мазмұны, тиімді әдістемелер мен педагогикалық технологиялар мәселелер бойынша жедел ақпарат беру үшін қазіргі коммуникациялар жүйесін жасау міндетін қояды. Барлық арифметикалық есептер, оларды шешу үшін орындалатын амалдар санына қарай, жай есептерге және құрама есептерге бөлінеді. оқу процесінде арифметикалық амалдардың нақты мағынасына, олардың қасиеттеріне, нәтижелер мен іс-қимыл компоненттері арасындағы байланыс пен тәуелділікке, сондай-ақ сандардың ондық құрамына сүйене отырып, ауызша және жазбаша есептеу әдістері ашылады. Есептеу әдістерін зерттеудің бұл тәсілі, бір жағынан, саналы Дағдылар мен дағдылардың қалыптасуын қамтамасыз етеді, өйткені студенттер кез-келген есептеу техникасын негіздей алады, ал екінші жағынан, мұндай жүйемен іс-әрекеттің қасиеттері, олардың заңдары және т. б. жақсы игеріледі. Арифметикалық амалдардың қасиеттерін және есептеудің тиісті әдістерін зерттеумен бір уақытта компоненттер мен арифметикалық амалдардың нәтижелері арасындағы жиындар немесе сандар арасындағы байланыс негізінде ашылады, компоненттердің біреуінің өзгеруіне байланысты арифметикалық амалдар нәтижелерінің өзгеруіне бақылау жасалады. Бастауыш сынып оқушыларының арифметикалық амалдардың мәні туралы түсініктерін қалыптастыру процесін сипаттау.
Зерттеу мақсаты:
Жас ерекшеліктеріне байланысты арифметикалық амалдарды толығымен үйрету және де ауызша санағанда олардың орналасу тәртібі жұмыстың негізгі мақсаты болып табылады. Математика сабағында бастауыш сынып оқушыларының белсенділігін арттыруда арифметиканы оқыту технологиясының тиімділігін анықтау. Қойылған мақсатқа сәйкес жұмыстың міндеттері келесідей тұжырымдалған: бастауыш сынып оқушыларында арифметикалық амалдардың мәні туралы идеяларды қалыптастыру саласындағы психологиялық-педагогикалық зерттеулерге шолу; бастауыш сынып оқушыларында арифметикалық амалдардың мәні туралы идеяларды қалыптастыру құралдарының сипаттамасы (мысалы, есептер-жағдайлар) . бастауыш сынып курсы барысында арифметикалық амалдардың мәні туралы идеяларды қалыптастыру процесін бақылау.
Зерттеу міндеттері :
-Арифметикалық есептерді шығару, қосу, азайту таңбаларымен таныстырып, оларды ауызша санауға үйрету.
-арифметикалық амалдарды оқыту технологиясы;
-ауызша есептеуге арналған жаттығулардың түрлері жинақталды;
-бастауыш мектепте арифметикалық амалдарды оқытудың негіздерін анықтау ;
-бастауыш сыныптарда арифметикалық амалдарды оқыту әдіс-тәсілдері қарастырылды ;
-мәтінді арифметикалық есептерді шығаруға үйрету теориясы мен технологиясы зерттелді.
-сан және арифметикалық амалдарды оқытудың әдістемесі нақтыланды;
-бастауыш сынып оқушыларын ауызша санау дағдылары қалыптастыру, арифметикалық есептерге түсінік бере отырып үйрету.
Дипломдық жұмыстың құрылымы: Кіріспеден, үш тараудан, қорытындыдан және пайдаланылған әдебиеттер тізімінен тұрады.
I-тарау. Бастауыш сынып оқушыларында арифметикалық амалдардың мәні және түсінік қалыптастыру саласындағы зерттеулердің жалпы сипаттамасы
Бастауыш сыныпта арифметикалық амалдардың компоненттері мен нәтижелері арасындағы байланыстар, арифметикалық амалдардың дұрыс орындағанын тексеру және белгісіз компоненттерін табу үшін пайдаланылады. Есептеулердің ұтымдылығы-бұл "басқаларға қарағанда жеңілірек және тезірек арифметикалық нәтижеге әкелетін"мүмкін болатын есептеу амалдарын таңдау. Есептеулерді рационализациялауға назар аударудың артуы математикалық білімнің практикалық бағытына байланысты, бұл оқушылардың алған білімдерін қолдану, үлгі бойынша ғана емес, сонымен қатар стандартты емес жағдайларда әрекет ету, оқу мәселесін шешудің белгілі әдістерін біріктіру дағдыларын дамытуды білдіреді. Есептеулерді рационализациялаумен танысу ойлаудың өзгергіштігін дамытады, бір уақытта қолданылатын білімнің құндылығын көрсетеді. Арифметикалық амалдардың қасиеттерін қолдану мұғалімге математикаға деген қызығушылықты арттыруға, балаларды тез, оңай және ыңғайлы тәсілдермен есептеуді үйренуге ынталандыруға мүмкіндік береді. Бұл тәсіл математикалық білімді күнделікті өмірде қолдануға деген ұмтылысты қолдайды. Математика курсы адамның интеллектуалды дамуында, оның жалпы мәдениетін арттыруда үлкен мүмкіндіктерге ие. Негізгі математикалық ұғымдарды қалыптастырумен қатар, бастауыш оқуда сандардың қасиеттерін, арифметикалық амалдарды зерттеумен қатар, мектеп оқушыларының есептеу дағдыларын қалыптастыру әрқашан маңызды орын алатындығы белгілі. Бүгінгі таңда бұл дағдылардың маңыздылығы электронды есептеу техникасының адам қызметінің барлық салаларына кеңінен енгізілуіне байланысты төмендеді, оны қолдану есептеу процесін жеңілдетеді. Алайда, МК әрдайым қолында бола бермейді және оны есептеу дағдыларын білместен пайдалану мүмкін емес. Жоғарыда айтылғандардан есептеу дағдыларын меңгеру қажет, ал кіші студент үшін, ең алдымен, әрі қарай оқу үшін практикалық маңыздылығы тұрғысынан маңызды. Есептеу қабілеті-бұл әр операция жүзеге асырылатын және бақыланатын іс-әрекеттің егжей-тегжейлі орындалуы. Есептеу қабілеті есептеу техникасын игеруді қамтиды. Кез-келген есептеу әдісі операциялардың реттілігі түрінде ұсынылуы мүмкін, олардың әрқайсысының орындалуы белгілі бір математикалық тұжырымдамамен немесе қасиетпен байланысты. Вариативтілікпен тікелей байланысты ұтымдылық ретінде есептеу шеберлігінің сапасы туралы толығырақ тоқталайық. Есептеулерді ұтымды орындау мүмкіндігі арифметикалық амалдар заңдарын саналы түрде қолдануға, осы заңдарды стандартты емес жағдайларда қолдануға, есептеулерді жеңілдетудің жасанды (әмбебап) әдістерін қолдануға негізделген. Арифметикалық амалдардың қасиеттері (қосу мен көбейтудің ауыспалы және үйлесімді қасиеттері, қосуға қатысты көбейтудің бөлу қасиеті) бастауыш мектепте арнайы зерттеу пәні болып табылмайды, бірақ ауызша есептеу әдістерінің қалыптасуына байланысты қарастырылады. Бұл дегеніміз, оқу процесінде нақты қарапайым сандық мысалдарда санды санға, санға қосудың әртүрлі тәсілдері қарастырылады; санды сомадан, саннан қосындыдан алу; соманы санға көбейту және т. б. есептеу процесін ұтымды жүзеге асыруға мүмкіндік беретін әдістерді саналы түрде таңдау қабілетін қалыптастыру үшін. Математиканың бастапқы курсында есептеу әдісін зерттеу студенттер оның теориялық негізін игергеннен кейін пайда болады (арифметикалық амалдардың анықтамалары, олардан туындайтын әрекеттер мен салдарлардың қасиеттері) . Сонымен қатар, әр нақты жағдайда студенттер есептеу техникасының негізіндегі тиісті теориялық ережелерді қолдану фактісін түсінеді, әртүрлі теориялық ұстанымдарды қолдана отырып, есептеудің бір жағдайы үшін әртүрлі әдістерді құрастырады. Рационалды есептеу мәселесі "бастауыш мектеп"журналының беттерінде бірнеше рет көтерілді. Басылым авторлары әртүрлі есептеу әдістерінің теориялық негіздерін егжей-тегжейлі сипаттайды, олардың бір бөлігін мұғалімдер бастауыш сынып оқушыларын оқытуда сәтті қолдана алады. Бұл 11, 5, 50, 15, 25 және т. б. топтастыру, көбейту және бөлу, арифметикалық амалдардың бір компонентін дөңгелектеу және т. б. әдісі; олардың теориялық негізі - математиканың бастапқы курсында танысатын арифметикалық амалдардың қасиеттері. Есептеу әдістерінің кейбіріне тоқталайық, біздің ойымызша, студенттер үшін мүмкін, бірақ бастауыш сынып оқушыларын оқыту тәжірибесінде қолданылмайды. Бір немесе бірнеше компоненттерді өзгерту кезінде есептеу нәтижесінің өзгеруіне негізделген дөңгелектеу әдісі. Көбейту факторлардың біреуін бірнеше бірлікке көбейту (азайту) кезінде алынған бүтін санды және қосылған (алынған) бірліктерді басқа факторға көбейтіп, бірінші көбейтіндіден екінші көбейтінді аламыз (алынған өнімді қосамыз) X6=(100-3) X6=100x6-3x6=600-18=582. Факторлардың бірін айырмашылық түрінде ұсынудың бұл әдісі 9, 99, 999-ға оңай көбейтуге мүмкіндік береді. Ол үшін санды 10-ға (100, 1000) көбейту және алынған бүтін саннан көбейтілген санды алу жеткілікті: 154x9=154x10-154=1540-154=1386. Бірақ балаларды ережемен таныстыру одан да оңай - "санды 9-ға көбейту үшін (99, 999) осы саннан бірлікке көбейтілген оның ондаған (жүздеген, мың) санын алып тастап, алынған айырмашылыққа оның цифрларын осы санның соңғы екі (үш) сандарынан құралған 10-ға (100 (1000) санға қосу жеткілікті) : x9=(154-16) X10+(10-4) =138x10+6=1380+6=1386 студенттер үшін және 15, 150, 11 және т. б. көбейтуді қамтитын қысқартылған көбейту әдістері қызықты, олардың теориялық негізі санды сомаға көбейту болып табылады. Мысалы, 15-ке көбейтілгенде, егер сан тақ болса, оны 10-ға көбейтіп, алынған өнімнің жартысын қосыңыз: 23x15=23x(10+5) =230+115=345; егер Сан жұп болса, онда біз одан да оңай әрекет етеміз - оның жартысын санға қосамыз және нәтижені 10-ға көбейтеміз: x15=(18+9) X10=27x10=270. Санды 150-ге көбейту кезінде біз бірдей әдісті қолданамыз және нәтижені 10-ға көбейтеміз, өйткені 150 = 15x10: x150=((24+12) X10) X10=(36x10) X10=3600. Екі таңбалы сандарды көбейтудің теориялық негізі-санды санға көбейту ережесі. Мысалы, 18х16. Біріншіден, 18 саны "ыңғайлы (биттік) терминдердің қосындысы" түрінде ұсынылған, содан кейін қосуға қатысты көбейту бөлу Заңын қолдана отырып дәйекті есептеулер жүргізіледі:(10+8) x16=10x16+8x16=160+128=288. Бұл өрнектің мәнін ауызша табу оңай: сандардың біріне екіншісінің бірліктерінің санын қосу керек, бұл соманы 10-ға көбейтіп, оған осы сандар бірліктерінің көбейтіндісін қосу керек: 18x16=(18+6) X10+8x6= 240+48=288. Сипатталған әдіспен 20-дан кіші екі таңбалы сандарды, сондай-ақ ондықтардың саны бірдей сандарды көбейтуге болады: 23x24 = (23+4) X20+4x6=27x20+12=540+12=562. Бұл әдіс балаларға мектепте оқытылатын "ұтымды есептеулерден" ерекшеленеді. Бір қарағанда, бұл есептеу әдістері күрделі болып көрінеді, бірақ сабақта және сыныптан тыс сабақтарда жұмысты дұрыс ұйымдастырумен студенттер оларды игеріп, есептеу қызметінде қолдануға қуанышты. Мұндай есептеулерді ауызша орындау әдеті күрделі материалды үйрену кезінде бірнеше рет жақсы қызмет атқаратын тұрақты шеберлікті қалыптастырады. Оқу әдебиеттерінде жылдам есептеудің басқа әмбебап әдістері сипатталған (рационалды есептеулер), оларды әрдайым математикалық түрде негіздеуге болады және олар белгілі заңдар мен арифметикалық амалдардың қасиеттеріне негізделген. Оқушылардың есептеу дағдыларының өзгергіштігі қызығушылық тудырады, есептеу қызметіне оң түрткі болады. Бірақ іс жүзінде мұғалімдердің математикалық дайындығының жеткіліксіздігіне байланысты есептеудің әмбебап әдістеріне аз көңіл бөлінеді. Жақсы дайындалған мұғалім оқушыларды белгілі есептеу құпияларымен таныстыруға, оқушыларға математиканың практикалық маңыздылығын көрсетуге мүмкіндік табады, содан кейін балалардың алдында мүлдем басқа математика ашылады - жанды, пайдалы және түсінікті. Өйткені сабақтар математика тиіс деп санауға үйрету керек жаттықтыру ойлау, ақыл-ой, ерік-жігер. Сонда біздің оқушылар біздің алдымызда қабілетті, сенімді және мәдениетті көрінеді. Өйткені, сіздің басыңыз ең заманауи есептеу құралдарына қарағанда сенімді. Математиканың бастауыш курсында арифметикалық амалдар орындау реті туралы ережелердің маңызы өте зор. Ол ережелердің өзі математикалық заңдылық емес, тек солай қолданып, қалыптасып кеткен келісім екенін ескерген жөн. Заңдылықты оқытып-үйретуде алдымен нақты мысалдарды қарастырып сонан кейін байқау және бақылау, салыстыру мен салыстыру арқылы жекелеген жағдайлардан біріндеп жалпы қорытындыға келуге болады, ең соңында мысалдар арқылы тиянақты түседі. Мұндағы түсіндірме «Жеке - жалпы - жеке» тізбектігімен жүргізілуі мүмкін. Егер келісілген мәселе оқытылса, онда алдымен неге келісілгені жалпы түрде хабарланады да, ол әрі қарай мысалдармен қорытылады, ал 2-сыныпта құрамында екі амал кездесетін өрнектер енгізілген алғашқы күннен бастап «жақшаның ішінде жазылған амал бірінші орындалады» деген ереже беріліп, қосу және азайту амалдары (екі амал) алмасып келетін өрнектерде, олардың орындалу тәртібі осы ережеге сүйеніп анықталады. әрі қарай бұл ережелерден еш жерде ешқандай ауытқу болмайды.
1. 1 Көптаңбалы сандар. Ондық санау жүйесінде көп таңбалы сандарды қосу, азайту
Қоғамды қайта құру жағдайында Қазақстан Республикасының білім беру саласындағы басты міндеттердің бірі - жастарға терең білім мен тәрбие беру ісін одан әрі дамыту және жетілдіру. Жастарға білім берудің негізі болып саналатын жалпы білім беретін мектептердің педагогикалық процесін жақсарту бірінші кезектегі мәселе болса, бастауыш мектеп - негізгі түп қазығы. Білім беру мақсатының приоритеті түбегейлі өзгеріп, бірінші кезекте бұрынғыша оқушыны білім, біліктің белгілі бір жиынтығымен қаруландыру емес, оқу әрекетін қалыптастыру негізінде жеке тұлғаны тәрбиелеу мақсаты қойылады. Сан - математиканың негізгі ұғымдарының бірі. Қарапайым түрде алғашқы қоғамдарда-ақ пайда болған, кейін бірте-бірте қолданыс аясы кеңейіп әрі жалпыланды. Кейбір заттарды санауға байланысты бүтін оң (натурал) сандар ұғымы, кейіннен сандардың натурал қатарының (1, 2, 3, 4) туралы идея пайда болды. Сан ұғымының алғашқы кеңеюі - натурал сандарға бөлшек сандардың қосылуы болды. Ол ұзындықты өлшеу, ауданды табу, сондай-ақ, атаулы шамалардың үлесін бөліп шығару қажеттілігіне байланысты қолданысқа енгізілді. Теріс сандар арифметикалық есептерді шешудің жалпы тәсілдерін беретін алгебраның ғылым ретінде дамуына байланысты шықты. Бүтін, бөлшек (оң және теріс) және нөл сандары рационал сан деп аталды. Айнымалы шамалардың шексіз өзгеруін зерттеу үшін сан ұғымы кеңейтіліп, нақты сандар жиынтығы пайда болды. Шамалардың қатынасын (мыс., квадрат диагоналының оның қабырғасына қатынасы) дәл өрнектеу қажеттігі иррационал сандар ұғымын енгізуге себепші болды. 16 ғасырда квадрат және куб теңдеулерді шешуге байланысты жорамал сандар ұғымы енгізілді. Сан ұғымы дамуының соңғы кезеңі комплекс сандардың енгізілуі болды. Бұл идея 16 ғасырда үшінші және төртінші дәрежелі алгебралық теңдеулердің шешімін табуға байланысты пайда болғанКөптаңбалы сандарды разрядтық қосылғыштардың қосындысы түрінде қалай жазуға болады? Мысалды қара. Берілген сандарды разрядтық қосылғыштардың қосындысы түрінде жаз. Мысалы: 71 362 = 70 000 + 1 000 + 300 + 60 + 2
805 007 = + +
654 000 = + +
525 452 = + + + +
785 402 = + + +
Математиканы бастауыш буында оқытудың белгiлi бiр кезеңiнде арифметикалық амалдарды жазбаша орындаудың тәсiлдерi оқытылып үйретiледi. Төрт жылдық бастауыш мектепте 100 көлемiндегi сандар мен жазбаша есептеулердi, қосу мен азайту амалдарына қатысты алғанда, жүргiзудiң әдiс-тәсiлдерi, 1000 көлемiндегi сандарды жазбаша қосу мен азайту 2-сыныпта енгiзiледi, ал көбейту мен бөлу сондай-ақ үш таңбалы санды бiр таңбалы санға көбейту мен бөлудiң жазбаша тәсiлдерiн қарастыру 3 сыныпта көзделедi. Ары қарай 4-сыныпта амалдарды орындаудың жазбаша тәсiлдерi көп таңбалы сандарға қолданылады да, сәйкес есептеулер жүргiзу бiлiктерi мен дағдылары қалыптастырылады. Жазбаша есептеу тәсiлдерi амалдардың алгоритмдерiнiң мән-мазмұны болып табылады. өйткенi осындай тәсiлдердi оқып-үйрену барысында амалдардың әрқайсысын жазбаша орындаудың рет-тәртiбi тағайындалады. Қосу мен азайту амалдарының алгоритмдерiнiң мән-мазмұын мынадай мәселелердi қамтиды: сандарды разряд бiрлiктерiн бiрiнiң атына бiрiн дәл келтiрiп реттi жазу, амалды кiшi разрядтан бастап бiртiндеп орындау, амалды орындау кезiнде разряд бiрлiктерiн “iрiлеу” немесе “ұсақтау”, нәтижедегi сәйкес разряд бiрлiктерiнiң астына дәл келтiрiп жазу, нәтиженiң дұрыс табылғанына тексеру арқылы көз жеткiзу. Енгiзiлетiн есептеу тәсiлiн оқушылардың санды игеруiне мүмкiндiк жасалады. Ол үшiн оқушылардың өздiгiнен орындауына 44+16 және 53-10 сияқты мысал ұсынылады. Оқушылар нәтиженi өздерiне белгiлi есептеу тәсiлдерi арқылы табады.
44 53
+ 16 - 10
Әрi қарай осы жағдайлардың разрядтар бойынша орындалатын жайындағы қорытындыға оқушылар көрнекi құралдардың ең тиiмдiсiнiң жәрдемiмен келтiрiледi. 44+16 және 53-10 мысалдарында нәтиженi табуцды разрядтар бойынша орындауға болатынын көрсетiп беру үшiн, айталық, дөңгелектер салынған жолақтарды пайдаланудың үлгiсi. Арифметикалық амалдар - берілген сандар бойынша тиісті шартты қанағаттандыратын басқа бір санды табу әдісі. Математиканың бастауыш курсында арифметикалық амалдарды орындау реті туралы ережелердің маңызы өте зор. Ол ережелердің өзі математикалық заңдылық емес, тек солай қолданып, қалыптасып кеткен келісім екенін ескерген жөн.
-қосу - ортақ элементтері жоқ жиындарды біріктіру;
-азайту - жиынның бір бөлігін (ішкі жиынды) айырып алу;
-көбейту - элементтерінің саны бірдей жиындарды біріктіру;
-бөлу - жиынды саны бірдей қиылыспайтын жиындарға айыру ретінде анықталуы мүмкін. Бұл балалардың тәжірибесі негізінде қалыптасқан білімнің көрнекі негізін салуға мүмкіндік береді. Сондықтан да қосу амалын оқып - үйрену заттардың әр түрлері топтарын біріктірумен, ал азайту - заттардың тобынан қандай да бір белгісіне қарай біраз заттарды алып тастаумен байланысты орындалатын практикалық жұмыс болып табылады. Сонда заттардың тобымен жүргізілетін нақты іс - әрекеттермен санау қатар жүргізіледі. Мұндай жаттығуларды орындау қосу және азайту амалдарын оқып - үйренуге дайындайды, яғни олардың мән - мағынасын ашуға негіз қалайды да, әрі қарай мәтінді жай есептерді шығару барысында жалғасады. Арифметикалық амалдардың компоненттері мен нәтижелері арсындағы байланыстар, арифметикалық амалдардың дұрыс орындалғанын тексеру және белгісіз компоненттерін табу үшін пайдаланылады. Сондықтан әрбір арифметикалық амалдың нақтылығы мағынасын айқындаумен бірге, олардың белгіленуі, яғни амал таңбасы және терминалогия, амалдардың, амалдардың компоненттері мен нәтижелерінің атаулары енгізіледі. Ол ережелердің өзі математикалық заңдылық емес, тек солай қолданып, қалыптасып кеткен келісім екенін ескерген жөн. Бастауыш буында математиканы оқытудың ең негізгі мақсаттарының бірі - оқушыларға натурал сандар мен қарапайым шамаларға амалдар қолдануды үйрету болып табылады. Ол математика курсының құрамды бөлігі және өзекті мәселесі, таза арифметикалық материалдарды оқытудың қорытынды нәтижесі.
Осыған орай:
- аса күрделі емес есептеулерді ауызша жүргізудің берік дағдыларын игеру, яғни бір таңбалы сандарды қосу мен көбейту кестелерін және азайтудың, бөлудің сәйкес жағдайларын жатқа білу;
- екі таңбалы сандарды қосу мен азайтуды, екі таңбалы санды бір таңбалы санға көбейту мен бөлуді ауызша орындауға машықтану;
- көп таңбалы сандар мен арифметикалық амалдарды жазбаша қатесіз орындау, яғни миллиондар көлеміндегі сандарды қосу мен азайту, көп таңбалы санды бір және екі таңбалы сандарға көбейту және бөлу;
- арифметикалық амалдардың заңдарына және арифметикалық заңдардың орындалу реті туралы ережелерге негіздей отырып, құрамында үш - төрт арифметикалық амалдар болатын санды өрнектердің (жақшасыз немесе жақшалар бар) мәндерін есептеп табуды меңгеру;
- екі - үш таңбалы сандарды жоғары разрядтан бастап бір таңбалы сандарға ауызша көбейтуде шығатын жүздіктердің, ондықтардың, бірліктердің санын табуға машықтану. Арифметикалық амалдардың мән - мағынасын ашу, олардың таңбаларын және сәйкес терминдерді енгізумен жалғасады.
Көбейту мен бөлуге қатысты алғанда:
- көбейтудің орын ауыстырымдылық қасиеті;
- көбейту мен бөлудің ерекше жағдайлары;
- қосындыны санға көбейту;
- санды қосындыға көбейту;
- қосындыны санға бөлу;
- санды қосындыға бөлу;
- санды көбейтіндіге көбейту;
- санды көбейтіндіге бөлу сияқты мәселелер қарастырылады.
Көрнекі құралдар, оқулықтағы суреттер мен үлгі жазулар және нақты мысалдар арқылы түсіндіріліп, ілгеріде енгізілетін есептеу тәсілінің негізіне алынады.
Келесі кезеңде мынадай екі ереже енгізіледі:
1. Жақшасыз өрнекте алдымен солдан оңға қарай көбейту және бөлу, ал сонан кейін қосу және азайту орындалады.
2. Егер өрнекте жақша болса, онда алдымен жақша ішіндегі амалдар орындалады.
... жалғасы- Іс жүргізу
- Автоматтандыру, Техника
- Алғашқы әскери дайындық
- Астрономия
- Ауыл шаруашылығы
- Банк ісі
- Бизнесті бағалау
- Биология
- Бухгалтерлік іс
- Валеология
- Ветеринария
- География
- Геология, Геофизика, Геодезия
- Дін
- Ет, сүт, шарап өнімдері
- Жалпы тарих
- Жер кадастрі, Жылжымайтын мүлік
- Журналистика
- Информатика
- Кеден ісі
- Маркетинг
- Математика, Геометрия
- Медицина
- Мемлекеттік басқару
- Менеджмент
- Мұнай, Газ
- Мұрағат ісі
- Мәдениеттану
- ОБЖ (Основы безопасности жизнедеятельности)
- Педагогика
- Полиграфия
- Психология
- Салық
- Саясаттану
- Сақтандыру
- Сертификаттау, стандарттау
- Социология, Демография
- Спорт
- Статистика
- Тілтану, Филология
- Тарихи тұлғалар
- Тау-кен ісі
- Транспорт
- Туризм
- Физика
- Философия
- Халықаралық қатынастар
- Химия
- Экология, Қоршаған ортаны қорғау
- Экономика
- Экономикалық география
- Электротехника
- Қазақстан тарихы
- Қаржы
- Құрылыс
- Құқық, Криминалистика
- Әдебиет
- Өнер, музыка
- Өнеркәсіп, Өндіріс
Қазақ тілінде жазылған рефераттар, курстық жұмыстар, дипломдық жұмыстар бойынша біздің қор #1 болып табылады.

Ақпарат
Қосымша
Email: info@stud.kz