Анықталған интеграл. Ньютон-Лейбниц формуласы
Жоспар
1. Анықталған интеграл: қасиеттері,
2. Ньютон.Лейбниц формуласы, қолданулары.
3. Меншіксіз интегралдар.
4. Жазық фигуралардың ауданы..
1. Анықталған интеграл: қасиеттері,
2. Ньютон.Лейбниц формуласы, қолданулары.
3. Меншіксіз интегралдар.
4. Жазық фигуралардың ауданы..
Интегралдық қосындының шегі кесіндісінің саны шексіздікке ұмтылғанда ,ал олардың ең үлкенінің ұзындықтары нольге ұмтылса, онда ол функциясының анықталған интегралы деп аталады. былай белгіленеді.
Негізгі әдебиеттер тізімі.
№ Авторлары Оқу құралы мен кітаптың аты. Басылым, шыққан жылы.
1 Пискунов Н.С. Дифференциальное и интегральное исчисление для втузов. Т.1 М: Наука, 1985
2 Пискунов Н.С. Дифференциальное и интегральное исчисление для втузов. Т.2 М: Наука, 1985
3 Рябушко А.П. Сборник индивидуальных заданий по высшей матем атике Минск: Вышейшая школа,
2001
4 Шипачев В.С. Задачник по высшей математике М: Высшая школа,
1998
№ Авторлары Оқу құралы мен кітаптың аты. Басылым, шыққан жылы.
1 Пискунов Н.С. Дифференциальное и интегральное исчисление для втузов. Т.1 М: Наука, 1985
2 Пискунов Н.С. Дифференциальное и интегральное исчисление для втузов. Т.2 М: Наука, 1985
3 Рябушко А.П. Сборник индивидуальных заданий по высшей матем атике Минск: Вышейшая школа,
2001
4 Шипачев В.С. Задачник по высшей математике М: Высшая школа,
1998
Анықталған интеграл. Ньютон-Лейбниц формуласы
Жоспар
1. Анықталған интеграл: қасиеттері,
2. Ньютон-Лейбниц формуласы, қолданулары.
3. Меншіксіз интегралдар.
4. Жазық фигуралардың ауданы..
f x функциясы a, b кесіндісінде анықталған болсын. Осы кесіндіні n
бірлікке бөлейік. Сонда мына нүктелер a x0 x1 x2 ... xn b алынады.
xi 1 , xi кесіндісінің әрбір бөлігінен i кез келген нүктесін алып, мына
қосындыны құрайық.
n
f x ,
мұндағы xi xi xi 1
(1) - a, b кесіндісіндегі f x
функциясының интегралдық қосындысы деп аталады.
Интегралдық қосындының шегі n кесіндісінің саны шексіздікке
ұмтылғанда ,ал олардың ең үлкенінің ұзындықтары нольге ұмтылса, онда ол
f x функциясының анықталған интегралы деп аталады. былай
белгіленеді.
i
i
i 1
b
f x dx lim
max x i 0
n
f x
i
i
(2)
Егер функция a, b кесіндісінде үздіксіз болса, онда осы кесіндіде ол
a
i 1
f x dx F x C
интегралданған болады. Егер a, b кесіндісінде
анықталмаған
интегралы бар болса, онда кез келген f x анықталған интегралы үшін
b
Ньютон-Лейбниц формуласы орын алады:
Анықталған интегралдың қасиеттері.
b
a
a
a
b
a
f x dx F b F a
a
(3)
f x dx f x dx, f x dx 0
b
b
b
a
a
a
f x q x dx f x dx q x dx
b
b
a
a
cf x dx c f x dx, c постоянная
Егер интегралдау интервалы a, b екі a, c және c, b бөлікке бөлінсе, онда
b
c
b
a
a
c
f x dx f x dx f x dx
b
f x dx 0
a,
b
f
x
0
a
Егер
интервалында
, онда
Егер f x 0 және
f x dx 0
b
b
f x dx q x dx
a
Барлық x a, b үшін, f x q x , онда a
7 Егер f x a, b интервалда үздіксіз болса, онда осы интервалда нүктесі
табылып, мына теңдік орындалады.
b
f x dx f b a
a
Жазық фигуралардың ауданы..
1) Тік бұрышты координатадағы ауданды есептеу. Егер үзіліссз қисық
және
, онда
вертикальдерімен және абцисса осіндегі
y f x
f x 0
x a, x b
кесіндесімен шектелген қисық сызықты трапецияның ауданы
a x b
төмендегі формуламен есептеледі.
b
S f x dx
a
Егер
f x 0
,
x a, b
, онда
b
S
f x dx
a
Егер
S
ауданы
y f1 x
және
y f2 x
қисықтармен және
вертикальдерімен шектелсе, онда
, то
a x b
x a, x b
b
S
f x f x dx
a
2) Параметрлік теңдеумен берілген қисықтармен шектелген
қисықтың ауданы.
x t
y t
вертикальдерімен ... жалғасы
Жоспар
1. Анықталған интеграл: қасиеттері,
2. Ньютон-Лейбниц формуласы, қолданулары.
3. Меншіксіз интегралдар.
4. Жазық фигуралардың ауданы..
f x функциясы a, b кесіндісінде анықталған болсын. Осы кесіндіні n
бірлікке бөлейік. Сонда мына нүктелер a x0 x1 x2 ... xn b алынады.
xi 1 , xi кесіндісінің әрбір бөлігінен i кез келген нүктесін алып, мына
қосындыны құрайық.
n
f x ,
мұндағы xi xi xi 1
(1) - a, b кесіндісіндегі f x
функциясының интегралдық қосындысы деп аталады.
Интегралдық қосындының шегі n кесіндісінің саны шексіздікке
ұмтылғанда ,ал олардың ең үлкенінің ұзындықтары нольге ұмтылса, онда ол
f x функциясының анықталған интегралы деп аталады. былай
белгіленеді.
i
i
i 1
b
f x dx lim
max x i 0
n
f x
i
i
(2)
Егер функция a, b кесіндісінде үздіксіз болса, онда осы кесіндіде ол
a
i 1
f x dx F x C
интегралданған болады. Егер a, b кесіндісінде
анықталмаған
интегралы бар болса, онда кез келген f x анықталған интегралы үшін
b
Ньютон-Лейбниц формуласы орын алады:
Анықталған интегралдың қасиеттері.
b
a
a
a
b
a
f x dx F b F a
a
(3)
f x dx f x dx, f x dx 0
b
b
b
a
a
a
f x q x dx f x dx q x dx
b
b
a
a
cf x dx c f x dx, c постоянная
Егер интегралдау интервалы a, b екі a, c және c, b бөлікке бөлінсе, онда
b
c
b
a
a
c
f x dx f x dx f x dx
b
f x dx 0
a,
b
f
x
0
a
Егер
интервалында
, онда
Егер f x 0 және
f x dx 0
b
b
f x dx q x dx
a
Барлық x a, b үшін, f x q x , онда a
7 Егер f x a, b интервалда үздіксіз болса, онда осы интервалда нүктесі
табылып, мына теңдік орындалады.
b
f x dx f b a
a
Жазық фигуралардың ауданы..
1) Тік бұрышты координатадағы ауданды есептеу. Егер үзіліссз қисық
және
, онда
вертикальдерімен және абцисса осіндегі
y f x
f x 0
x a, x b
кесіндесімен шектелген қисық сызықты трапецияның ауданы
a x b
төмендегі формуламен есептеледі.
b
S f x dx
a
Егер
f x 0
,
x a, b
, онда
b
S
f x dx
a
Егер
S
ауданы
y f1 x
және
y f2 x
қисықтармен және
вертикальдерімен шектелсе, онда
, то
a x b
x a, x b
b
S
f x f x dx
a
2) Параметрлік теңдеумен берілген қисықтармен шектелген
қисықтың ауданы.
x t
y t
вертикальдерімен ... жалғасы
Ұқсас жұмыстар
Пәндер
- Іс жүргізу
- Автоматтандыру, Техника
- Алғашқы әскери дайындық
- Астрономия
- Ауыл шаруашылығы
- Банк ісі
- Бизнесті бағалау
- Биология
- Бухгалтерлік іс
- Валеология
- Ветеринария
- География
- Геология, Геофизика, Геодезия
- Дін
- Ет, сүт, шарап өнімдері
- Жалпы тарих
- Жер кадастрі, Жылжымайтын мүлік
- Журналистика
- Информатика
- Кеден ісі
- Маркетинг
- Математика, Геометрия
- Медицина
- Мемлекеттік басқару
- Менеджмент
- Мұнай, Газ
- Мұрағат ісі
- Мәдениеттану
- ОБЖ (Основы безопасности жизнедеятельности)
- Педагогика
- Полиграфия
- Психология
- Салық
- Саясаттану
- Сақтандыру
- Сертификаттау, стандарттау
- Социология, Демография
- Спорт
- Статистика
- Тілтану, Филология
- Тарихи тұлғалар
- Тау-кен ісі
- Транспорт
- Туризм
- Физика
- Философия
- Халықаралық қатынастар
- Химия
- Экология, Қоршаған ортаны қорғау
- Экономика
- Экономикалық география
- Электротехника
- Қазақстан тарихы
- Қаржы
- Құрылыс
- Құқық, Криминалистика
- Әдебиет
- Өнер, музыка
- Өнеркәсіп, Өндіріс
Қазақ тілінде жазылған рефераттар, курстық жұмыстар, дипломдық жұмыстар бойынша біздің қор #1 болып табылады.
Ақпарат
Қосымша
Email: info@stud.kz