Операторлық модельдер


Динамикалық жүйе математикалық модель процестердi жүйеде даму бiрмәндi анықтайтын математикалық символдардың жиынтығы атау қабылданған, яғни қозғалыс . Пайдаланылатын символдар байланысты бұл ретте аналитикалық танып бiледi және графоаналитикалық үлгiлер. Аналитикалық үлгiлер әрiптiк символдардың көмегiмен салады, осы уақытта графоаналитикалық график түрiнде белгiлер қолдануға жол бередi.
№ Авторлар Оқулықтың, оқу құралының аталуы Баспасы,
шығарылған жылы
1 Трусов П.В. Введение в математическое моделирование:
– М.: Логос, 2005. 440 c.
2 Макарова Н.А. Основные этапы моделирования – СПб.: Питер, 2005
3 Самарский А А., Михайлов А.П. Математическое моделирование.Идеи.Методы.Примеры. – М.: ФИЗМАТЛИТ, 2001. 320с.
4 Советов Б.Я. Моделирование систем: Практикум.
– М.: Высшая школа, 2003. 295 с.
5 Лазарев Ю. Моделирование процессов и систем в MATLAB: учеб. курс / – СПб.: Питер BHV, 2005. 512 с.

Пән: Математика, Геометрия
Жұмыс түрі:  Материал
Тегін:  Антиплагиат
Көлемі: 4 бет
Таңдаулыға:   
Бұл жұмыстың бағасы: 400 теңге
Кепілдік барма?

бот арқылы тегін алу, ауыстыру

Қандай қате таптыңыз?

Рақмет!






Операторлық модельдер.

Динамикалық жүйе математикалық модель процестердi жүйеде даму бiрмәндi анықтайтын математикалық символдардың жиынтығы атау қабылданған,‭ ‬яғни қозғалыс‭ ‬.‭ ‬Пайдаланылатын символдар байланысты бұл ретте аналитикалық танып бiледi және графоаналитикалық үлгiлер.‭ ‬Аналитикалық үлгiлер әрiптiк символдардың көмегiмен салады,‭ ‬осы уақытта графоаналитикалық график түрiнде белгiлер қолдануға жол бередi.
Байланысты түрiндегi сигнал үздiксiз танып бiлiнедi және систем дискреттi үлгiлер.‭ ‬Пайдаланылатын операторлар байланысты‭ ‬-‭ ‬сызықты және сызықты емес,‭ ‬сонымен бiрге уақытша және жиiлiк үлгiлерi.‭ ‬Уақытшаға аргументке уақытты‭ (‬үздiксiз немесе дискреттi‭) ‬болып көрiнген үлгiнi жатады.‭ ‬Бұл дифференциалды және айқын түр жазылған‭
айырма теңдеулер немесе операторлық пiшiнде.‭ ‬Жиiлiк үлгiлерi аргументi тиiстi сигналды жиiлiктi болып көрiнген операторларды пайдалануды ескередi,‭ ‬яғни Лапластың операторлары,‭ ‬Фурье және тағы басқалар.
Бөлiм бұл систем үздiксiз сызықты уақытша динамикалық үлгiлердi қаралады.‭
Динамикалық жүйенiң сигналдары байланыстың сипаттамасы кiрiс және шығатын‭ (‬ҒҒ‭ ) ‬кiру-шығу үлгi‭ ‬-.‭ ‬Мұндай сипаттамада қажеттiлiк жеке блоктердi мiнез-құлық қарастыру кезiнде көрiнiп қалады және,‭ (‬ОБ‭ ) ‬басқарушы объект жеке алғанда,‭ ‬сол сияқты барлық басқару жүйесi негiзiнен.‭ ‬Блок математикалық сипаттауда айырмашылық және басқару жүйесi маңызсыз,‭ ‬бiрақ‭ (‬см.‭ ‬п.1.5‭) ‬әр түрлi белгiлердiң пайдалануы талап етедi.‭ ‬Осылай,‭ (‬t‭ ) ‬y‭* ‬тағайындаушы әсер сауы кiретiн сигналын болып көрiнедi,‭ ‬ал демалыс‭ ‬-‭ (‬t‭ ) ‬y айнымалы.‭ (‬t‭ ) ‬белгi x2‭ ‬блоктердi сипаттамада жиi пайдаланады және‭ (‬t‭ ) ‬x1,‭ ‬сәйкесiнше сәйкесiнше.‭ ‬Белгi ендiгәрi пайдаланып қаламыз,‭ ‬кiретiн сигнал‭ (‬t‭ ) ‬u басқарушы әсер болып көрiнген басқарушы объект тәнбiз,‭ ‬ал‭ (‬t‭ ) ‬y реттелетiн айнымалы шығумен.
2.1.1.‭ ‬Аналитикалық үлгiлер.‭ (‬мұнда‭ ‬-‭ ‬басқарушы объект‭) ‬бiр арналы динамикалық жүйесi кiру-шығуы сызықты үлгiсi мүмкiн түрдiң таныстырылған кәдiмгi дифференциалды теңдеу болу:
‭ [ ‬М1‭ ]‬,

мұндағы‭ ‬где‭ ‬ai‭ ‬,‭ ‬bi‭ ‬-коэффициенттері‭ (‬ модели‭ )‬,‭ ‬a0‭ ‬0‭ ‬,‭ ‬b0‭ ‬0,‭ ‬n‭ – ‬моделдің реті,‭ ‬0‭ ‬mn‭ ‬.‭ [‬M1‭]‬ теңдеуі кіру байланысы‭ ‬және оның туындысы‭ ‬ шығу байланысы‭ ‬y‭(‬t‭)‬ және олардың туындысы‭ ‬ кейбір уақытша аралықтағы және т.б.,‭ ‬.‭ ‬,‭ ‬,...,‭ ‬ мәндері бастапқы мәнді‭ ‬,ал‭ ‬r‭ = ‬n‭ ‬-‭ ‬m‭ ‬1‭ – ... жалғасы
Ұқсас жұмыстар
Математикалық модельдеу бойынша дәрістер
Математикалық модельдерге қойылатын талаптар
IP-телефония негізіндегі байланыс орталығының жұмысын талдау
Өзара әсерлесуші бозондар моделі
Компьютер көмегімен есеп шығару технологиясы
Программаларды техникалық жобалау
«Математикалық модельдер және сандық әдістер байланысы туралы»
Математикалық модельдеудің кезеңдері
Техникалық жүйелердің математикалық негіздері пәнінен алынған білімді автоматтандыру
Химиялық өндірістерді ұйымдастыру
Пәндер