Жылуөткізгіштіктің стационарлы және стационарлы емес теңдеулерін шешу
Кіріспе. 3
1. Жылу өткізгіштік. 4
2.Стационар теңдеу. 6
3.Стационар емес теңдеулер үшін шекаралық есептер. 7
4.Стационар теңдеулер үшін шекаралық есептер. 9
Қортынды. 11
1. Жылу өткізгіштік. 4
2.Стационар теңдеу. 6
3.Стационар емес теңдеулер үшін шекаралық есептер. 7
4.Стационар теңдеулер үшін шекаралық есептер. 9
Қортынды. 11
Жылулықтың таралу процессін жалпы алғанда және жылу өткізгіштік сондай-ақ, дененің температурасының таралуымен тығыз байланысты. Сондықтан, алдымен температуралық өріс және температура градиенті ұғымдарымен байланыстығын анықтау керек. Температуралық өріс деп, сол моменттегі қаралып отырған дененің барлық нүктелеріндегі температураларының лездегі, сол момент уақыттағы, шамаларының жиынтығын айтады.
1. Исаченко В.П., Осипова В.А., Сукомел А.С. Теплопередача: Учебник- М.: Энергоиздат, 1981- 416 с.
2. Краснощеков Е.А., Сукомел А.С. Задачник по теплопередаче: Учебное пособие – М.: Энергия, 1980 – 288 с.
3. Практикум по теплопередаче / Солодов А.П., Цветков Ф.Ф., Елисеев А.В., Осипова В.А. – М.: Энергоатомиздат, 1986 – 296 с.
4. Михеев, Михеева. Основы теплопередачи: Учебник- М.: Энергоиздат, 1981- 416 с.
5. Авчухов В.В., Паюсте Б.Я. Задачник по процессам тепломассообмена. Энергоиздат, 1986.
6. Тепло- и массообмен. Теплотехнический эксперимент. Справочник под общей редакцией В.А. Григорьева и В.М
2. Краснощеков Е.А., Сукомел А.С. Задачник по теплопередаче: Учебное пособие – М.: Энергия, 1980 – 288 с.
3. Практикум по теплопередаче / Солодов А.П., Цветков Ф.Ф., Елисеев А.В., Осипова В.А. – М.: Энергоатомиздат, 1986 – 296 с.
4. Михеев, Михеева. Основы теплопередачи: Учебник- М.: Энергоиздат, 1981- 416 с.
5. Авчухов В.В., Паюсте Б.Я. Задачник по процессам тепломассообмена. Энергоиздат, 1986.
6. Тепло- и массообмен. Теплотехнический эксперимент. Справочник под общей редакцией В.А. Григорьева и В.М
Қазақстан Республикасы Білім және Ғылым Министірлігі ШҚО Семей қаласы Шәкәрім атындағы МУ
СӨЖ
Орындаған: Румиев А
Тексерген: Нұрғалиев Данияр Нұржанұлы
Тақырыбы: Жылуөткізгіштіктің стационарлы және стационарлы емес теңдеулерін шешу.
2015 жыл
Мазмұны
Кіріспе. 3
1. Жылу өткізгіштік. 4
2.Стационар теңдеу. 6
3.Стационар емес теңдеулер үшін шекаралық есептер. 7
4.Стационар теңдеулер үшін шекаралық есептер. 9
Қортынды. 11
Кіріспе.
Стационарлық процестер үшін xU x,t, Ux F x,tF болғандықтан, толқындық та, жылуөткізгіштік теңдеулері де101 0 2 1 1 2 f U a , a f (5.4.1) f f U түрінде беріледі. теңдеуін Пуассон теңдеуі деп атайды. Егер теңдеуіндегі 0f болса, яғни 0U , онда оны Лаплас теңдеуі деп атайды.
Стационарлық процестер үшін xU x,t, Ux F x,tF болғандықтан, толқындық та, жылуөткізгіштік теңдеулері де101 0 2 1 1 2 f U a , a f f -f U түрінде беріледі. теңдеуін Пуассон теңдеуі деп атайды. Егер теңдеуіндегі 0f болса, яғни 0U , онда оны Лаплас теңдеуі деп атайды.
Жылулықтың таралу процессін жалпы алғанда және жылу өткізгіштік сондай-ақ, дененің температурасының таралуымен тығыз байланысты. Сондықтан, алдымен температуралық өріс және температура градиенті ұғымдарымен байланыстығын анықтау керек. Температуралық өріс деп, сол моменттегі қаралып отырған дененің барлық нүктелеріндегі температураларының лездегі, сол момент уақыттағы, шамаларының жиынтығын айтады.
1. Жылу өткізгіштік.
Жылу өткізгіштік -- дененің температура айырмасы бар нүктелері арасында бір нүктеден екінші нүктеге жылу энергиясын жеткізу қасиеті; дененің температурасы жоғары жақтан температурасы төмен жағына қарай жылу өткізу қабілеті.
Жылуөткізгіштің негізгі заңдары. Жылулықтың таралу процессін жалпы алғанда және жылу өткізгіштік сондай-ақ, дененің температурасының таралуымен тығыз байланысты. Сондықтан, алдымен температуралық өріс және температура градиенті ұғымдарымен байланыстығын анықтау керек. Температуралық өріс деп, сол моменттегі қаралып отырған дененің барлық нүктелеріндегі температураларының лездегі, сол момент уақыттағы, шамаларының жиынтығын айтады. Егер, дененің қандай болмасын, температурасының уақыт аралығында өзгермеуі және сондықтан, ол, тек ғана, кеңістіктегі координат нүктелерінің (x,y,z) функциясы болуы, онда, мұндай температуралық өрісті тұрақталған немесе тұрақты деп атайды. Егер температура уақытқа байланысты болса, яғни t = f(x, у, z, Ί), онда, температуралық өріс тұрақталмаған немесе тұрақсыз деп аталады. Температуралық өрістің, қарапайым категориясы болып, бір өлшемді тұрақталған өрісі болып есептеледі, ол, бір координатты өске бағытталған, температураның өзгеруін сипаттайды.
Өрістегі барлық нүктелердің, бірдей температуралықтарын қосып сыза, изотермиялық бетті табамыз. Бұл беттер, бір бірімен қиылыспайды; олар, өзімен тұйықталмайды, немесе дене шекарасында бітеді. Жылулықтың денеде таралып өтуі, тек ғана, бір изотермиялық беттен екінші жағына температураның төмендеуі бағытында болады. Денедегі, жылулықтың таралу жолы, изотермиялық бетке нормалы бағытпен сәйкес келеді.
Δn нөлге үмтылғандағы, изотермиялардың аралық қашықтығының, Δt температура шегінде өзгеру қатынасын температуралық градиенті деп атайды:
grad t = lim (ΔtΔn)Δa--0=dtḋn
Оның, оң бағытта қолдануы температураның ұлғаю бағыты болып есептеледі. Жылулық мөлшері қатынасының, тең шамадағы бет арқылы өтетін уақыттағысы, бұл жылу мөлшерінің - осы бет арқылы өтуін, жылулық ағыны деп атайды.
Ф = dQd'Ί , Вт.
Егер ағын тұрақты болса: Ф = QТ Жылулық ағынының беттік тығыздығымен - жылулық ағынының, ауа бетінің қатынасына тең, шама арқылы, осы ағын ағып өтеді, (Втм2).
q = dФdҒ немесе q = ФҒ.
Жылу жүргізгіштің (Фурье) негізгі заңына сәйкес, жылулық ағынының тығыздығы, градиент температурасына пропорционалды болады:
-λ grad t = -λḋt ḋn.
Осы формуланың, оң жақ бөлігіндегі теріс таңбаның көрсетуі, таралу бағытындағы, дененің жылулық температурасы азаяды және шама grad t, теріс таңбалы шамада болады. Сонымен, жылу жүргізгішпен берілген жылулық мөлшерін, мына формуламен табады:
dQ = -λ(ḋtḋn) dF d'Ί.
Бүл байланыстылықты 1822жылы Ж. Фурье анықтаған және оны, Фурье заңы деп атайды: жылулық мөлшерін, жылу жүргізгіштік жолымен берілуі, температураның төмендеуіне, пропорционалды уақытына және қима ауданына, жылулықтың таралу бағытына перпендикулярлы болады. Қарапайым жағдайда, қашан жылулық жазық қабырғамен және бір бағытта (х өсі бойымен) таралса, онда Фурье заңы былай жазылады:
qx = -λḋtḋn = -λḋtḋx,
мүндағы λ = - qgrad t.
Теңдеудегі (-λ grad t = -λḋt ḋn) көбейткіш х, пропорционалдылығының жылужүргізгіштігі деп атайды. Ол, физикалық көрсеткіш болып, дененің жылулық өткізгіштік қабілеті немесе үдемелі қарқындылығын сипаттайды, заттардың жылу жүргізгіштік процессі және температуралық градиенті кезіндегі, жылу жүргізгіштік әрекетінің жылулық ағыны, тығыздығының санына тең, ол бірге тең. Сонымен, X - өлшем бірлігі Вт(мК).
Заттардың жылу жүргізгіштігі әр түрлі және өте көп санды факторларға байланысты. Газдар үшін, елеулі болып, температурасы мен қысымдары жатады. Мысалы, газ үшін, температураның көбеюінен, жылу жүргізгіштігі артады, ал өте қыздырылған бу үшін, сол сияқты артады, қысымы да, дәл солай артады; сұйықтар үшін, температураның артуынан біраз азаяды. Бұған, су қосылмайды, оның шамамен 120°С температура кезінде, жылу жүргізгіштігі максимумда болады, ал одан ары температурасын көбейткен сайын, судың X кемиді. Көп металлдар үшін, температура ұлғайған сайын, X кемиді. құрылыс материалдары үшін, кеуектілігі мен ылғалдығы ерекше шамасында болады. Кеуектілігі көбейген сайын, X азаяды, себебі материалдардың кеуегі газбен толып, аз жылу өткізгішті болады
2.Стационар теңдеу.
Стационарлық процестер үшін xU x,t, Ux F x,tF болғандықтан, толқындық та, жылуөткізгіштік теңдеулері де101 0 2 1 1 2 f U a , a f (5.4.1) f f U түрінде беріледі. теңдеуін Пуассон теңдеуі деп атайды. Егер теңдеуіндегі 0f болса, яғни 0U , онда оны Лаплас теңдеуі деп атайды.
Стационарлық процестер үшін xU x,t, Ux F x,tF болғандықтан, толқындық та, жылуөткізгіштік теңдеулері де101 0 2 1 1 2 f U a , a f f -f U түрінде беріледі. теңдеуін Пуассон теңдеуі деп атайды. Егер теңдеуіндегі 0f болса, яғни 0U , онда оны Лаплас теңдеуі деп атайды.
Жылулықтың таралу процессін жалпы алғанда және жылу өткізгіштік сондай-ақ, дененің температурасының таралуымен тығыз байланысты. Сондықтан, алдымен температуралық өріс және температура градиенті ұғымдарымен байланыстығын анықтау керек. Температуралық өріс деп, сол моменттегі қаралып отырған дененің барлық нүктелеріндегі температураларының лездегі, сол момент уақыттағы, шамаларының жиынтығын айтады.
3.Стационар емес теңдеулер үшін шекаралық есептер.
Толқындық теңдеу үшін Коши есебі: ( , ), {( , ) ; , 0} 2 1 U a U f x t Q x t R x R t n n tt теңдеуін ( , ) ( ) 0 U x t x t , ( , ) ( ) 0 x t x t U t , n R x бастапқы шарттарын қанағаттандыратын ( ) ( ) C Q2,2 0,1 C Q класына жататын x,tU функциясын табуды толқындық теңдеуіне қойылған Коши есебі деп атайды. Мұндағы x - n координатадан тұратын вектор, ал C(Q),f (x,t) ( ) ( ) R , ( ) ( )C x n RC x n көрсетілген кеңістіктерде жататын белгілі функциялар. Жылуөткізгіштік теңдеуі үшін Коши есебі: Ut Q f (x,t), (x,t)U a 2 теңдеуін ( , ) ( ) 0 U x t x t , n R (6.1.4)x бастапқы шартын қанағаттандыратын ( ) ( ) C Q2,1 C Q класында жататын x,tU функциясын табуды жылуөткізгіштік теңдеуіне қойылған Коши есебі деп атайды. Мұндағы C(Q) , ( ) ( )f (x,t) RC x n белгілі функциялар. Екінші ретті дифференциалдық теңдеулер үшін жалпыланған Коши есебі: n i n j n i i n i i j ij t U x U x U x t U x t U a x x U a t U 1 1 1 1 2 0 2 2 2 , , , ,..., , (6.1.5)108 екінші ретті дифференциалдық теңдеу және бөлік - тегіс (x) t теңдеуімен анықталатын беті берсін. Q - деп (x) t теңсіздігімен анықталатын және бетімен шенелген облысты белгілейік. (6.1.5) теңдеуін және (x,t)U(x,t) , ( , ) ( , ) __ x t x t n U (6.1.6), x шекаралық шарттарын қанағаттандыратын ( ) ( ) C Q2,2 1,1 C Q класына жататын x,tU функциясын табу екінші ретті теңдеуге қойылған жалпыланған Коши есебі деп аталады. Мұндағы n - бетіне t аргументінің өсу бағытына қарай бағытталған нормаль вектор. Енді шекаралық шартқа бастапқы да, шектік те шарттар қатысатын болсын. Мұндай шекаралық есептерді бастапқы - шекаралық есептер деп атайды. Олар есепке қатысатын шекаралық шарттардың түріне байланысты бастапқы - бірінші шекаралық, бастапқы - екінші шекаралық және бастапқы - үшінші шекаралық болып үш класқа бөлінеді. Мысалы, жылуөткізгіштік теңдеуі үшін қойылатын бастапқы - бірінші шекаралық есеп бір бастапқы шартты және бірінші шекаралық шарттарды қамтиды. Толқындық теңдеу үшін қойылатын бастапқы - бірінші шекаралық есеп екі бастапқы және бірінші шекаралық шарттарды қамтиды. Жылуөткізгіштік теңдеуі үшін бастапқы - бірінші шекаралық есеп: R n кеңістігінде жататын шенелген D облысын қарастырамыз. QT деп D облысымен (0,Т] жартылай кесіндісінің бірігуінен шыққан цилиндрді белгілейік, яғни {( , ) ; , 0 } 1 Q x t R x D t T n T . - деп QT цилиндрінің бүйір бетін, яғни {( , ) ; , 0 } 1 x t R x D t T n жиынын, ал {( , ) ; ... жалғасы
СӨЖ
Орындаған: Румиев А
Тексерген: Нұрғалиев Данияр Нұржанұлы
Тақырыбы: Жылуөткізгіштіктің стационарлы және стационарлы емес теңдеулерін шешу.
2015 жыл
Мазмұны
Кіріспе. 3
1. Жылу өткізгіштік. 4
2.Стационар теңдеу. 6
3.Стационар емес теңдеулер үшін шекаралық есептер. 7
4.Стационар теңдеулер үшін шекаралық есептер. 9
Қортынды. 11
Кіріспе.
Стационарлық процестер үшін xU x,t, Ux F x,tF болғандықтан, толқындық та, жылуөткізгіштік теңдеулері де101 0 2 1 1 2 f U a , a f (5.4.1) f f U түрінде беріледі. теңдеуін Пуассон теңдеуі деп атайды. Егер теңдеуіндегі 0f болса, яғни 0U , онда оны Лаплас теңдеуі деп атайды.
Стационарлық процестер үшін xU x,t, Ux F x,tF болғандықтан, толқындық та, жылуөткізгіштік теңдеулері де101 0 2 1 1 2 f U a , a f f -f U түрінде беріледі. теңдеуін Пуассон теңдеуі деп атайды. Егер теңдеуіндегі 0f болса, яғни 0U , онда оны Лаплас теңдеуі деп атайды.
Жылулықтың таралу процессін жалпы алғанда және жылу өткізгіштік сондай-ақ, дененің температурасының таралуымен тығыз байланысты. Сондықтан, алдымен температуралық өріс және температура градиенті ұғымдарымен байланыстығын анықтау керек. Температуралық өріс деп, сол моменттегі қаралып отырған дененің барлық нүктелеріндегі температураларының лездегі, сол момент уақыттағы, шамаларының жиынтығын айтады.
1. Жылу өткізгіштік.
Жылу өткізгіштік -- дененің температура айырмасы бар нүктелері арасында бір нүктеден екінші нүктеге жылу энергиясын жеткізу қасиеті; дененің температурасы жоғары жақтан температурасы төмен жағына қарай жылу өткізу қабілеті.
Жылуөткізгіштің негізгі заңдары. Жылулықтың таралу процессін жалпы алғанда және жылу өткізгіштік сондай-ақ, дененің температурасының таралуымен тығыз байланысты. Сондықтан, алдымен температуралық өріс және температура градиенті ұғымдарымен байланыстығын анықтау керек. Температуралық өріс деп, сол моменттегі қаралып отырған дененің барлық нүктелеріндегі температураларының лездегі, сол момент уақыттағы, шамаларының жиынтығын айтады. Егер, дененің қандай болмасын, температурасының уақыт аралығында өзгермеуі және сондықтан, ол, тек ғана, кеңістіктегі координат нүктелерінің (x,y,z) функциясы болуы, онда, мұндай температуралық өрісті тұрақталған немесе тұрақты деп атайды. Егер температура уақытқа байланысты болса, яғни t = f(x, у, z, Ί), онда, температуралық өріс тұрақталмаған немесе тұрақсыз деп аталады. Температуралық өрістің, қарапайым категориясы болып, бір өлшемді тұрақталған өрісі болып есептеледі, ол, бір координатты өске бағытталған, температураның өзгеруін сипаттайды.
Өрістегі барлық нүктелердің, бірдей температуралықтарын қосып сыза, изотермиялық бетті табамыз. Бұл беттер, бір бірімен қиылыспайды; олар, өзімен тұйықталмайды, немесе дене шекарасында бітеді. Жылулықтың денеде таралып өтуі, тек ғана, бір изотермиялық беттен екінші жағына температураның төмендеуі бағытында болады. Денедегі, жылулықтың таралу жолы, изотермиялық бетке нормалы бағытпен сәйкес келеді.
Δn нөлге үмтылғандағы, изотермиялардың аралық қашықтығының, Δt температура шегінде өзгеру қатынасын температуралық градиенті деп атайды:
grad t = lim (ΔtΔn)Δa--0=dtḋn
Оның, оң бағытта қолдануы температураның ұлғаю бағыты болып есептеледі. Жылулық мөлшері қатынасының, тең шамадағы бет арқылы өтетін уақыттағысы, бұл жылу мөлшерінің - осы бет арқылы өтуін, жылулық ағыны деп атайды.
Ф = dQd'Ί , Вт.
Егер ағын тұрақты болса: Ф = QТ Жылулық ағынының беттік тығыздығымен - жылулық ағынының, ауа бетінің қатынасына тең, шама арқылы, осы ағын ағып өтеді, (Втм2).
q = dФdҒ немесе q = ФҒ.
Жылу жүргізгіштің (Фурье) негізгі заңына сәйкес, жылулық ағынының тығыздығы, градиент температурасына пропорционалды болады:
-λ grad t = -λḋt ḋn.
Осы формуланың, оң жақ бөлігіндегі теріс таңбаның көрсетуі, таралу бағытындағы, дененің жылулық температурасы азаяды және шама grad t, теріс таңбалы шамада болады. Сонымен, жылу жүргізгішпен берілген жылулық мөлшерін, мына формуламен табады:
dQ = -λ(ḋtḋn) dF d'Ί.
Бүл байланыстылықты 1822жылы Ж. Фурье анықтаған және оны, Фурье заңы деп атайды: жылулық мөлшерін, жылу жүргізгіштік жолымен берілуі, температураның төмендеуіне, пропорционалды уақытына және қима ауданына, жылулықтың таралу бағытына перпендикулярлы болады. Қарапайым жағдайда, қашан жылулық жазық қабырғамен және бір бағытта (х өсі бойымен) таралса, онда Фурье заңы былай жазылады:
qx = -λḋtḋn = -λḋtḋx,
мүндағы λ = - qgrad t.
Теңдеудегі (-λ grad t = -λḋt ḋn) көбейткіш х, пропорционалдылығының жылужүргізгіштігі деп атайды. Ол, физикалық көрсеткіш болып, дененің жылулық өткізгіштік қабілеті немесе үдемелі қарқындылығын сипаттайды, заттардың жылу жүргізгіштік процессі және температуралық градиенті кезіндегі, жылу жүргізгіштік әрекетінің жылулық ағыны, тығыздығының санына тең, ол бірге тең. Сонымен, X - өлшем бірлігі Вт(мК).
Заттардың жылу жүргізгіштігі әр түрлі және өте көп санды факторларға байланысты. Газдар үшін, елеулі болып, температурасы мен қысымдары жатады. Мысалы, газ үшін, температураның көбеюінен, жылу жүргізгіштігі артады, ал өте қыздырылған бу үшін, сол сияқты артады, қысымы да, дәл солай артады; сұйықтар үшін, температураның артуынан біраз азаяды. Бұған, су қосылмайды, оның шамамен 120°С температура кезінде, жылу жүргізгіштігі максимумда болады, ал одан ары температурасын көбейткен сайын, судың X кемиді. Көп металлдар үшін, температура ұлғайған сайын, X кемиді. құрылыс материалдары үшін, кеуектілігі мен ылғалдығы ерекше шамасында болады. Кеуектілігі көбейген сайын, X азаяды, себебі материалдардың кеуегі газбен толып, аз жылу өткізгішті болады
2.Стационар теңдеу.
Стационарлық процестер үшін xU x,t, Ux F x,tF болғандықтан, толқындық та, жылуөткізгіштік теңдеулері де101 0 2 1 1 2 f U a , a f (5.4.1) f f U түрінде беріледі. теңдеуін Пуассон теңдеуі деп атайды. Егер теңдеуіндегі 0f болса, яғни 0U , онда оны Лаплас теңдеуі деп атайды.
Стационарлық процестер үшін xU x,t, Ux F x,tF болғандықтан, толқындық та, жылуөткізгіштік теңдеулері де101 0 2 1 1 2 f U a , a f f -f U түрінде беріледі. теңдеуін Пуассон теңдеуі деп атайды. Егер теңдеуіндегі 0f болса, яғни 0U , онда оны Лаплас теңдеуі деп атайды.
Жылулықтың таралу процессін жалпы алғанда және жылу өткізгіштік сондай-ақ, дененің температурасының таралуымен тығыз байланысты. Сондықтан, алдымен температуралық өріс және температура градиенті ұғымдарымен байланыстығын анықтау керек. Температуралық өріс деп, сол моменттегі қаралып отырған дененің барлық нүктелеріндегі температураларының лездегі, сол момент уақыттағы, шамаларының жиынтығын айтады.
3.Стационар емес теңдеулер үшін шекаралық есептер.
Толқындық теңдеу үшін Коши есебі: ( , ), {( , ) ; , 0} 2 1 U a U f x t Q x t R x R t n n tt теңдеуін ( , ) ( ) 0 U x t x t , ( , ) ( ) 0 x t x t U t , n R x бастапқы шарттарын қанағаттандыратын ( ) ( ) C Q2,2 0,1 C Q класына жататын x,tU функциясын табуды толқындық теңдеуіне қойылған Коши есебі деп атайды. Мұндағы x - n координатадан тұратын вектор, ал C(Q),f (x,t) ( ) ( ) R , ( ) ( )C x n RC x n көрсетілген кеңістіктерде жататын белгілі функциялар. Жылуөткізгіштік теңдеуі үшін Коши есебі: Ut Q f (x,t), (x,t)U a 2 теңдеуін ( , ) ( ) 0 U x t x t , n R (6.1.4)x бастапқы шартын қанағаттандыратын ( ) ( ) C Q2,1 C Q класында жататын x,tU функциясын табуды жылуөткізгіштік теңдеуіне қойылған Коши есебі деп атайды. Мұндағы C(Q) , ( ) ( )f (x,t) RC x n белгілі функциялар. Екінші ретті дифференциалдық теңдеулер үшін жалпыланған Коши есебі: n i n j n i i n i i j ij t U x U x U x t U x t U a x x U a t U 1 1 1 1 2 0 2 2 2 , , , ,..., , (6.1.5)108 екінші ретті дифференциалдық теңдеу және бөлік - тегіс (x) t теңдеуімен анықталатын беті берсін. Q - деп (x) t теңсіздігімен анықталатын және бетімен шенелген облысты белгілейік. (6.1.5) теңдеуін және (x,t)U(x,t) , ( , ) ( , ) __ x t x t n U (6.1.6), x шекаралық шарттарын қанағаттандыратын ( ) ( ) C Q2,2 1,1 C Q класына жататын x,tU функциясын табу екінші ретті теңдеуге қойылған жалпыланған Коши есебі деп аталады. Мұндағы n - бетіне t аргументінің өсу бағытына қарай бағытталған нормаль вектор. Енді шекаралық шартқа бастапқы да, шектік те шарттар қатысатын болсын. Мұндай шекаралық есептерді бастапқы - шекаралық есептер деп атайды. Олар есепке қатысатын шекаралық шарттардың түріне байланысты бастапқы - бірінші шекаралық, бастапқы - екінші шекаралық және бастапқы - үшінші шекаралық болып үш класқа бөлінеді. Мысалы, жылуөткізгіштік теңдеуі үшін қойылатын бастапқы - бірінші шекаралық есеп бір бастапқы шартты және бірінші шекаралық шарттарды қамтиды. Толқындық теңдеу үшін қойылатын бастапқы - бірінші шекаралық есеп екі бастапқы және бірінші шекаралық шарттарды қамтиды. Жылуөткізгіштік теңдеуі үшін бастапқы - бірінші шекаралық есеп: R n кеңістігінде жататын шенелген D облысын қарастырамыз. QT деп D облысымен (0,Т] жартылай кесіндісінің бірігуінен шыққан цилиндрді белгілейік, яғни {( , ) ; , 0 } 1 Q x t R x D t T n T . - деп QT цилиндрінің бүйір бетін, яғни {( , ) ; , 0 } 1 x t R x D t T n жиынын, ал {( , ) ; ... жалғасы
Ұқсас жұмыстар
Пәндер
- Іс жүргізу
- Автоматтандыру, Техника
- Алғашқы әскери дайындық
- Астрономия
- Ауыл шаруашылығы
- Банк ісі
- Бизнесті бағалау
- Биология
- Бухгалтерлік іс
- Валеология
- Ветеринария
- География
- Геология, Геофизика, Геодезия
- Дін
- Ет, сүт, шарап өнімдері
- Жалпы тарих
- Жер кадастрі, Жылжымайтын мүлік
- Журналистика
- Информатика
- Кеден ісі
- Маркетинг
- Математика, Геометрия
- Медицина
- Мемлекеттік басқару
- Менеджмент
- Мұнай, Газ
- Мұрағат ісі
- Мәдениеттану
- ОБЖ (Основы безопасности жизнедеятельности)
- Педагогика
- Полиграфия
- Психология
- Салық
- Саясаттану
- Сақтандыру
- Сертификаттау, стандарттау
- Социология, Демография
- Спорт
- Статистика
- Тілтану, Филология
- Тарихи тұлғалар
- Тау-кен ісі
- Транспорт
- Туризм
- Физика
- Философия
- Халықаралық қатынастар
- Химия
- Экология, Қоршаған ортаны қорғау
- Экономика
- Экономикалық география
- Электротехника
- Қазақстан тарихы
- Қаржы
- Құрылыс
- Құқық, Криминалистика
- Әдебиет
- Өнер, музыка
- Өнеркәсіп, Өндіріс
Қазақ тілінде жазылған рефераттар, курстық жұмыстар, дипломдық жұмыстар бойынша біздің қор #1 болып табылады.
Ақпарат
Қосымша
Email: info@stud.kz