Жылудинамикасының бірінші және екінші заңдары


Кіріспе ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...2
1.Жылудинамиканың бірінші заңы. 3
2.Жылудинамикасы екінші заңы 5
Қортынды 13
Пайдаланған әдебиеттер 14

«Жылудинамикасы» - грек сөзінен шыққан: «терме» - жылу, ыстық, от деген сөздерді білдіреді, «динамикос» - күш, қозғалыс, ал барлығы бірге - жылу (от) қозғалтушы күш. Сонымен, жылудинамикасы - жылу қозғалтқышының теориясы пайда болды. Техникалық жылудинамикасы - жылу мен механикалық энергиялардың өзара алмасуының заңдылығын зерттейді, ал, сонымен қатар, осыған қатынасатын алмасуындағы дененің қасиетінде зерттейді.
Денелердің жиынтықтағы, өзара әрекетте болуын, жүйелер деп атайды. Осы денелердің арасында, жұмыстық дене, ерекше бөлектенеді, ол жылу мен жұмыстың өзара алмасу процессін жүргізеді. Қалғаны - қоршаған орта көздері (немесе жылу сіңіргіштері). Жұмыстық дене есебіне газдар мен булар жатады. Сұйықтармен салыстырғанда, газдар және булар, қыздыру жэне салқындату кезінде, қысымы мен көлемін едәуір өзгертеді.
Техникалық жылудинамикасының әдістері үшін негізгі өзгешелігі жылудинамикалық процесстері мен жүйелерінің идеализацияда болуынан, процесстегі жұмыс жүйелерінің көбейуіне келтіреді. Мысалы, теңсалмақты жүйелер деп аталуын, оның уақыт аралығындағы өзгермеу қасиетін немесе оның күйін зерттейді. Мұндай жүйелер, қоршаған ортадан бөлектендіріледі және сонымен қатар, сыртқы күштің әсерінсіз, оның күйі сонша ұзақ сақталуы мүмкін. Мұндай жүйелерде, температура - барлық нүктелерінде бірдей, яғни жүйелердің жылу тепе-теңдігі орын алады. Егер, жүйенің жеке бөлшектері, бір біріне қарағандағы алмасуы болмаса, онда, ол кезде қысымы мен тығыздығы жүйенің әр нүктесінде бірдей болып механикалық тепе-теңдігі болады. Сонымен қатар, тепе-теңдік жағдайының үздіксіз кезектілігінің түсінігі арқылы, өзінің күйінің өзгеруі кезіндегі, қаралып отырған жүйенің өтуінің тепе-теңдік процессі зерттеледі. Жеке жағдайда жорамалдау жолымен дәріптелінеді.
Бахмачевский Б.И. и др. «Теплотехника». - М.: Металлургиздат, 1969. - б.177-184
Нащокин В.В. «Техническая термодинамика и теплопередача». - М.: Высшая школа, 1980. - б. 306-347
Лариков Н.Н. «Тепдлтехника» - Стройиздат., 1985. – б.209-223
Баскаков Б.В., Берг О.К., Витт и др. «Теплотехника» - М.: Энергоатомиздат., 1991. – б. 40-41

Пән: Физика
Жұмыс түрі: Реферат
Көлемі: 12 бет
Бұл жұмыстың бағасы: 300 теңге




ҚАЗАҚСТАН РЕСПУБЛИКАСЫНЫҢ БІЛІМ ЖӘНЕ ҒЫЛЫМ МИНИСТРЛІГІ
ШӘКӘРІМ АТЫНДАҒЫ СЕМЕЙ МЕМЛЕКЕТТІК УНИВЕРСИТЕТІ

ИНЖЕНЕРЛІК-ТЕХНОЛОГИЯЛЫҚ ФАКУЛЬТЕТІ
(ФАКУЛЬТЕТ АТАУЫ)

ТЕХНИКАЛЫҚ ФИЗИКА ЖӘНЕ ЖЫЛУЭНЕРГЕТИКАКАФЕДРАСЫ
(КАФЕДРА АТАУЫ)

Мамандыққа кіріспе
(ПӘН АТАУЫ)

СӨЖ
(ЖҰМЫС ТҮРІ)

Жылудинамикасының бірінші және екінші заңдары
(жұмыстың тақырыбы)

Орындаған: Дүйсенбай Н
Топ: ТЭ-517
Тексерген: Сейсенбаева Маржан Касымхановна

Семей
2015
Мазмұны
Кіріспе ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .2
1.Жылудинамиканың бірінші заңы. 3
2.Жылудинамикасы екінші заңы 5
Қортынды 13
Пайдаланған әдебиеттер 14


Кіріспе

Жылудинамикасы - грек сөзінен шыққан: терме - жылу, ыстық, от деген сөздерді білдіреді, динамикос - күш, қозғалыс, ал барлығы бірге - жылу (от) қозғалтушы күш. Сонымен, жылудинамикасы - жылу қозғалтқышының теориясы пайда болды. Техникалық жылудинамикасы - жылу мен механикалық энергиялардың өзара алмасуының заңдылығын зерттейді, ал, сонымен қатар, осыған қатынасатын алмасуындағы дененің қасиетінде зерттейді.
Денелердің жиынтықтағы, өзара әрекетте болуын, жүйелер деп атайды. Осы денелердің арасында, жұмыстық дене, ерекше бөлектенеді, ол жылу мен жұмыстың өзара алмасу процессін жүргізеді. Қалғаны - қоршаған орта көздері (немесе жылу сіңіргіштері). Жұмыстық дене есебіне газдар мен булар жатады. Сұйықтармен салыстырғанда, газдар және булар, қыздыру жэне салқындату кезінде, қысымы мен көлемін едәуір өзгертеді.
Техникалық жылудинамикасының әдістері үшін негізгі өзгешелігі жылудинамикалық процесстері мен жүйелерінің идеализацияда болуынан, процесстегі жұмыс жүйелерінің көбейуіне келтіреді. Мысалы, теңсалмақты жүйелер деп аталуын, оның уақыт аралығындағы өзгермеу қасиетін немесе оның күйін зерттейді. Мұндай жүйелер, қоршаған ортадан бөлектендіріледі және сонымен қатар, сыртқы күштің әсерінсіз, оның күйі сонша ұзақ сақталуы мүмкін. Мұндай жүйелерде, температура - барлық нүктелерінде бірдей, яғни жүйелердің жылу тепе-теңдігі орын алады. Егер, жүйенің жеке бөлшектері, бір біріне қарағандағы алмасуы болмаса, онда, ол кезде қысымы мен тығыздығы жүйенің әр нүктесінде бірдей болып механикалық тепе-теңдігі болады. Сонымен қатар, тепе-теңдік жағдайының үздіксіз кезектілігінің түсінігі арқылы, өзінің күйінің өзгеруі кезіндегі, қаралып отырған жүйенің өтуінің тепе-теңдік процессі зерттеледі. Жеке жағдайда жорамалдау жолымен дәріптелінеді.
Процесстерді дәріптеу, жылудинамикасын зерттеуді оңайлатады. Сонымен бірге, идеалды процесс - үлгі ретінде есептелінеді, оған практикалық түрінде жетуге тырысу керек.
Жылудинамикасының негізін, тәжірибемен анықталған екі заңы құрайды - жылудинамикасының бірінші және екінші заңдары, олар техникалық жылудинамикасында жылу мен жұмыстық жеке күйінде қолданылады.
1.Жылудинамиканың бірінші заңы.

Термодинамиканың бірінші бастамасы -- термодинамикалық жүйелер үшін энергияның сақталу заңы; бұл заң бойынша жүйеге берілетін жылу оның ішкі энергиясын өзгертуге және жүйенің сыртқы күштерге қарсы жұмысына жұмсалады.
Дене күйінің барлық энергиясы - микроскопиялық қозғалысының толық түріндегі сыртқы кинетикалық энергиясы Ек және салмақ күші өрісі, электрлі немесе магнит өрісі жағдайындағы потенциалды энергия Еn, сонымен қатар, дене бөлшектерінің құрамдық әрекеттері мен қозғалу энергиясын жасаушы ішкі энергия U қосындыларынан тұрады.
Қаралып отырған жылу динамикалық жүйе шамаланса, онда дененің орталық салмақтық алмасу жылдамдығы өте аз (С=0), яғни қозғалыссыз жұмыстық дене көлемінің өзгеруі туралы сөз болады, сондықтан Ек=0. Айталық, Ер=0 сонымен, бұл жерде толық энергия ішкімен бірдей (E=U), ал жүйе энергиясының өзгеруі - жұмыстық дененің, ішкі энергиясының өзгеруіне келтіреді.
Жылу динамикасының бірінші заңына сәйкес, жұмыстық дененің энергиясы кезінде, қабылданған жағдайға тиісті кезіндегі жүйенің өтуі 1 бастапқы күйінен 2 соңғы мәндеріне артуы, денеге берілген жылулық dQ және мәніне келуі dL істелінген жүйежұмысына тең: dU=dQ-dL немесе әдетте былай жазу қабылданған.
Тіршілікте бізді қоршаған құбылыстар мен қозғалыстар үлкен үш топқа бөлінеді. Бірінші топтағы жұмыстарды жүргізу үшін сырттан күш жұмсалады және ол күштің мөлшері осы жұмысқа ту-ра пропорционалды. Мысалы, бір жүкті жоғары көтеру, тұрақты токты пайдаланып суды ыдырату, жер жырту, бір орнынан екінші орынға берілген затты тасымалдау сияқты жұмыстар осы топтағы жұмыстар мен қозғалыстарға дәлел. Оларды жүргізу үшін күш жүмсау қажет.
бұл топтағы жұмыстар өздігінен жүрмейді және оларды еріксіз жүргізілетін жұмыстар дейді екен. Екінші топқа өздігінен жүретін жұмыстар жатады. Мұндағы жұмыс нәти-жесінде сыртқы күшке қарсы жұмыс алынбайды. Оларға ешбір кедергісіздік жағдайларындағы горизонталь жазықтықтың үстін-де кішкене шардың дөңгелей қозғалуы, сағат маятнигінің тербел-мелі қозғалуы мысал. Ал үшінші топтағы жұмыстарға өздігінен, емін-еркін жүретін процестер жатады немесе мұндағы жұмыс нә-тижесінде пайда болатын өзгеріске, оған пропорционалды түрде сырттан күш жүмсалмайды. Оған көтерілген жүктің төмен түсуі, тастың құлауы, күшті қышқыл мен күшті негіздің өзара бірін-бірі нейтралдауы, жұмыс істеп түрған гальваникалық злементтегі кез келген химиялық реакциялар^ көмір, жанар май, газ сияқты отын-дардың жануы, қопарылғыш заттардың жарылуы, ылғалды атмос-ферадағы металдың (темірдің) тотықтануы сияқты өмір мен өнді-рісте жиі кездесетін құбылыстар мен процестер мысал.
Үшінші топтағылар оң, ал бірінші топтағы, өздерінің жүруі үшін тыстан күш қажет ететіндер теріс жұмыс делінеді, екінші топтағыда жұ-мыс жоқ.Сонымен табиғатта кездесетін процестер ешбір күш жұмсамаса да жүретін болса, оны табиғи немесе өздігінен жүретін процестер дейді. Ал сырттан күш жұмсап жұмыс жүргізу нәтижесінде пайда болатын процесті еріксіз немесе табиғи кері ағымдағы процестер дейді екен. Оқшауланған системалардағы процестер өздігінен жү-реді. Олай болса, оқшауланған системадағы процестер әркез тепе-теңдікте болады және сырттан күш жұмсап, системадагы энергия-ны өзгертпейінше, ол осы тепе-теңдік қалпын сақтайды. Система-дағы тепе-теңдік жағдайын анықтаудың теориялық та, қолданбалы да маңызы зор. Термодинамиканың бірінші заңы процестердің бағыты мен теңдік күйі жайлы мағлұмат бермейді. Мұны түсін-діру үшін термодинамиканың екінші заңы колданылады.
Термодинамиканың екінші заңы да бірінші заң сияқты адамзат өміріндегі тәжірибелер негізінде туған. Оның қалыптасуына жылу машина-ларының пайдалы әсер коэффициентін анықтау, есептеу кезіндегі зерттеулер көп әсер етті.
Термодинамиканың екінші заңы саналатын қорытынды Қарно-ның 1824 жылы "Оттың (жылудың) қозғаушы куші және сол күш-ті үдететін машина туралы ойлану" деген еңбегінде алғаш ғылы-ми тұрғыдан көрсетілді. Осы ойды 1850 жылы Клаузиус математи-калық өрнекпен дәлелдей келіп, жылу салқын денеден өздігінен ыстық денеге ауыспайды деген пікір айтты. Ал, 1854 жылы Кель-вин кез келген денедегі жылуды басқа қосымша эрекет етпестен, тек салқындату салдарынан ғана жұмысқа айналдыруға болмайды десе, Оствальд екінші тектегі мэңгілік двигательді жасау мүмкін емес деді.
Жоғарыда келтірілген тұжырымдардың әрқайсысының термо-динамиканың екінші заңына пара-пар екенін дәлелдеу қиын емес. Егер олардың біреуін негізгі постулат ретінде алса, қалғандары соньщ салдары болып шығады.
Әрбір макроскопиялық система көптеген бөлшектерден тұрады. Ал мұндай системаларға ықтималдық теориясының заңдары қол-данылады. Егер табиғи процестердің бәріне де нақ осы тұрғыдан қарасақ, кез келген процестін, өзгерістің ықтималдығы аз жағдай-дан ықтималдығы көбірек жаққа ұмтылатыны анық. Мұндай пікір де термодинамиканың екінші зааына анықтама бола алады. Дәл осы секілді, диффузия салдарынан екі не онан да көп газдардың өзара еркін араласуы, жылу алмасу (жылжу, қозғалу) нәтижесін-де ыстық денедегі жылудың салқын денеге ауысуы, тағы да басқа процестер зерттелетін система күйінің ықтималдығымен тығыз байланысқан. Термодинамикада ықтималдық теориямен қатар ста-тистика да қолданылады, XIX ғасырдын, екінші жартысында ста-тистикалық сипатты пайдаланып, термодинамика екінші заңының мәні толық ашылып, дәлелденді.
Термодинамиканың бірінші заңы берілген процестің оң немесе теріс болатыны туралы мағлұмат бермейді. Сондай-ақ бірінші заң салқын денедегі жылудың ыстық денеге ауысуын терістемейді және ерітіндінің өздігінен құрамдас заттарға бөлінуі немесе көмір қышқыл газы мен судьщ қалыпты жағдайда өздігінен ыдырауы сиякты процестерге қайшы болмайды.
Берілген системадағы процесс өздігінен жүре ме, мысалы, хи-миялық реакция және онда термодинамикалық тепе-теңдік орна-ғанда система күйі қандай параметрлермен сипатталады деген сүрақтарға бірінші заң жауап бермейді, ал екінші толық және нақтылы жауап береді.

2.Жылудинамикасы екінші заңы

Термодинамиканың екінші бастамасы) -- статистикалық нысандардың (мысалы, атомбеидардың, молекулалардың) үлкен санынан тұратын жүйелердің өз бетінше ықтималдығы аздау күйден ықтималдығы молырақ күйге ауысу процесін сипаттайтын табиғаттың түбегейлі заңы. Термодинамиканың екiншi заңы.Термодинамиканың екiншi заңы энергетикалық түрленулердiң бар болу мүмкiндiгiнiң бағытын көрсетедi. Салқынырақ денеден ыстығырақ денеге жылуды тасымалдау, екi жүйеде де немесе қоршаған ортада бiр мезгiлде басқа өзгерiстер жасамайынша, мүмкiн емес.
Жылу двигателi. Iс-әрекетi жұмыс атқарушы дененiң механикалық энергиясын iшкi энергияға түрлендiруге негiзделген двигательдер жылу двигателдерi деп аталады.
Кез-келген дененiң (қыздырғыштың) iшкi энергиясын, қыздырғыштың жылуын басқа температурасы төменiрек денеге(тоңазтқышқа) бергенде ғана, яғни тек жылу алмасу процесi кезiнде ғана, iшiнара механикалық энергияға айналдыруға болады.

1-сурет

Ең алғаш рет бұл мәселенi, идеалды жылу машинасын ойлап тапқан француз ғалымы С.Карно зерттедi. Ондай машинаны құрастыру үшiн жоғарғы температурадағы қыздырғыш, мейлiнше төмен температурадағы тоңазтқыш және жұмыс атқарушы дене болуы керек (2- сурет). Барлық жылу машиналарындағы жұмыс атқаратын дене, өзi ұлғайған кезде жұмыс жасайтын, газ болып табылады. Тоңазтқыш ретiнде атмосфера, не болмаса конденсатор деп аталатын салқындатуға арналған арнайы қондырғылар алынады.
Карно циклi. Жұмыс атқарушы дене қыздырғыштан QҚ жылу мөлшерiн алады да, тоңазытқышқа QT жылу мөлшерiн бередi, ал (QҚ - QT) айырымын Aұ жұмысқа айналдырады. Жұмыс атқарушы дене ұлғайған кезде өзiнiң барлық iшкi энергиясын жұмыс жасауға берiп жiбере алмайды. Жылудың едәуiр бөлiгi мiндеттi түрде жұмысын атқарған газбен бiрге тоңазытқышқа берiледi. Iшкi энергияның бұл бөлiгi қайтарылмай, бiржола жоғалады.
Карно машинасындағы жұмыс атқарушы дене, өз күйiнiң өзгеру циклiн периодты түрде қайталап тұратын, идеалды газ болып табылады. Бұл цикл Карно циклi деген атақ алды, осыған ұқсас процесстер айналмалы немесе циклдық процесстер деп аталады.
Карно машинасында үйкелiске және қоршаған ортамен жылу алмасуға кеткен энергиялардың шығындары ескерiлмейдi, сондықтан бұл машинаны Карноның идеалды жылу машинасы деп атайды (3- сурет).

2- сурет

3- сурет

Айналмалы процесс немесе цикл деп бiрнеше күйлер қкатарынан өтiп өзiнiң бастапқы күйiне қайтып келетiн жүйе процесiн айтады.Егер айналмалы процесс сағат тiлi бойынша жүретiн болса (4-сурет), онда жұмыс оң болады және цикл- тура цикл деп аталады.
Егер айналмалы процесс сағат тiлiне қарсы жүретiн болса (5-сурет), онда жұмыс терiс болады , ал цикл- керi цикл деп аталады.
Жылу двигателiнiң пайдалы әсер коэффициентi (ПӘК)- η деп тура циклдық процесс кезiндегi жұмыс атқарушы дененiң жасаған жұмысы Aұ-тың қыздырғыштан алынған жылу мөлшерiне қатынасын айтады:

(1)

4-сурет

5-сурет

Барлық двигательдердегi жылудың кейбiр мөлшерi тоңазтқышқа берiлетiн болғандықтан, η1.
Жылу двигателiнiң ПӘК-i қыздырғыштың Т1 және тоңазтқыштың Т2 температураларының айырымына тура пропорционал.Карноның идеалды жылу машинасының ПӘК - i мынадай мәнге ие:

(2)

Карно дәлелдеп бергенiндей, осы формуланың мәнi мынада: кез келген нақты жылу машинасының ПӘК-i, идеалды жылу машинасының ПӘК - iнен артық болмайды.
Термодинамиканың екінші заңы система күйлерін сипаттайтын параметрлерді үйлесімді жүйеге келтіреді, оны ұтымды пайдалану берілген сауалға жауап тауып қана қоймай, физикалық химияда маңызды орын алатын, түбегейлі нәтиже және басқа құнды дерек-ер алуға көмектеседі.
Бұл нәтижелерді алу үшін әр түрлі жұмыс түрі секілді (13) тендеудеп элементар жылуды гепе-теңдіктегі система күйінің па-раметрлері арқылы өрнектеуге болады:
Қез келген жұмысты алу үшін күш берілген жүкті әйтеуір бір координатаға өзгертуі қажет (А = F.Ах), мұндағы күштін. ролін абсолюттік температура, ал энтропия деп аталатын система күйі-нің жаңа функциясы координата орнына жүреді. Энтропия деген сөзді 1865 жылы Қлаузиус гректің "эн" -- ... жалғасы
Ұқсас жұмыстар
Жылудинамикасының бірінші заңын талдау формулалары
Жылудинамиканың бірінші және екінші заңы
Жылудинамиканың бірінші және екінші заңы жайлы ақпарат
Жылудинамиканың бірінші және екінші заңы туралы ақпарат
Жылудинамиканың бірінші және екінші заңы туралы мәлімет
Жылудинамиканың бірінші және екінші заңы туралы
Жылу динамиканың бірінші және екінші заңы
Бірінші және екінші қосымша топтардағы металдар
Жүктіліктің бірінші және екінші жартысындағы гестоздар
Жылудинамиканың бірінші және екінші заңы жайлы мәлімет
Пәндер

Қазақ тілінде жазылған рефераттар, курстық жұмыстар, дипломдық жұмыстар бойынша біздің қор №1 болып табылады.

Байланыс

Qazaqstan
Phone: 777 614 50 20
WhatsApp: 777 614 50 20
Email: info@stud.kz
Көмек / Помощь
Арайлым
Біз міндетті түрде жауап береміз!
Мы обязательно ответим!
Жіберу / Отправить

Рахмет!
Хабарлама жіберілді. / Сообщение отправлено.

Email: info@stud.kz

Phone: 777 614 50 20
Жабу / Закрыть

Көмек / Помощь