Термодинамиканың үшінші заңы


Пән: Физика
Жұмыс түрі:  Реферат
Тегін:  Антиплагиат
Көлемі: 9 бет
Таңдаулыға:   

ҚАЗАҚСТАН РЕСПУБЛИКАСЫ БІЛІМ ЖӘНЕ ҒЫЛЫМ МИНИСТРЛІГІ

СЕМЕЙ ҚАЛАСЫНЫҢ ШӘКӘРІМ АТЫНДАҒЫ МЕМЛЕКЕТТІК УНИВЕРСИТЕТІ

СӨЖ

Тақырыбы: Термодинамиканың үшінші заңы

Орындаған: Шарипова А. А. ТЭ-417

Тексерген: Шалаганова А. Н.

Семей 2015

Мазмұны

1 Кіріспе3

2 Термодинамика4

2. 1 Термодинамиканың бірінші бастамасы5

2. 2 Термодинамиканың екінші бастамасы7

2. 3 Термодинамиканың үшінші бастамасы7

3 Қорытынды9

4 Пайдаланған әдебиеттер:10

1 Кіріспе

«Жылудинамикасы» - грек сөзінен шыққан: «терме» - жылу, ыстық, от деген сөздерді білдіреді, «динамикос» - күш, қозғалыс, ал барлығы бірге - жылу (от) қозғалтушы күш. Сонымен, жылудинамикасы - жылу қозғалтқышының теориясы пайда болды. Техникалық жылудинамикасы - жылу мен механикалық энергиялардың өзара алмасуының заңдылығын зерттейді, ал, сонымен қатар, осыған қатынасатын алмасуындағы дененің қасиетінде зерттейді. Жылу алмасу теориясымен бірге, ол жылутехникасының теориялық негізі болады.

Денелердің жиынтықтағы, өзара әрекетте болуын, жүйелер деп атайды. Осы денелердің арасында, жұмыстық дене, ерекше бөлектенеді, ол жылу мен жұмыстың өзара алмасу процессін жүргізеді. Қалғаны - қоршаған орта көздері (немесе жылу сіңіргіштері) . Жұмыстық дене есебіне газдар мен булар жатады. Сұйықтармен салыстырғанда, газдар және булар, қыздыру жэне салқындату кезінде, қысымы мен көлемін едәуір өзгертеді. Техникалық жылудинамикасының әдістері үшін негізгі өзгешелігі жылудинамикалық процесстері мен жүйелерінің идеализацияда болуынан, процесстегі жұмыс жүйелерінің көбейуіне келтіреді. Мысалы, теңсалмақты жүйелер деп аталуын, оның уақыт аралығындағы өзгермеу қасиетін немесе оның күйін зерттейді. Мұндай жүйелер, қоршаған ортадан бөлектендіріледі және сонымен қатар, сыртқы күштің әсерінсіз, оның күйі сонша ұзақ сақталуы мүмкін. Мұндай жүйелерде, температура - барлық нүктелерінде бірдей, яғни жүйелердің жылу тепе-теңдігі орын алады. Егер, жүйенің жеке бөлшектері, бір біріне қарағандағы алмасуы болмаса, онда, ол кезде қысымы мен тығыздығы жүйенің әр нүктесінде бірдей болып механикалық тепе-теңдігі болады. Сонымен қатар, тепе-теңдік жағдайының үздіксіз кезектілігінің түсінігі арқылы, өзінің күйінің өзгеруі кезіндегі, қаралып отырған жүйенің өтуінің тепе-теңдік процессі зерттеледі. Жеке жағдайда жорамалдау жолымен дәріптелінеді. Процесстерді дәріптеу, жылудинамикасын зерттеуді оңайлатады. Сонымен бірге, идеалды процесс - үлгі ретінде есептелінеді, оған практикалық түрінде жетуге тырысу керек. Нақтылы процессте жүргізілетін жұмыстың істелуін, идеалды процесске сәйкес, жұмысты салыстырумен, сол процесстің жылудинамикалық бағалануының мүлтіксіздігіне мүмкіндік береді. Техникалық жылудинамикасына, нақтылы жағдайында, негізгі процесстерінің өтуінің қаралуы енгізіледі де, жылу техникасы курсының теориялық және практикалық бөлігі арасын байланыстырушы звеносы, шешуші рөл атқарады. [1]

2 Термодинамика

Термодинамика XIX ғасырдың ортасында, энергияның сақталу заңы ашылғаннан кейін жасалды. Онын негізінде ішкі энергия ұғымы жатыр. Біз осыдан бастаймыз. Алдын ала термодинамика мен молекула - кинетикалық теория арасында қандай байланыс барлығы туралы біраз айта кетейік.

Термодинамика және статистикалық механика. Жылулық процестердің бірінші ғылыми теориясы молекула кинетикалық теория емес, термодинамика болды. Ол жұмыс жасау үшін жылуды пайдаланудың тиімді шарттарын зерттеу барысында пайда болады. Бұл молекула-кинетикалық теория калың көпшілік қабылдап күш алғанға дейін, одан көп бұрын, XIX ғасырдың орта шенінде болған еді.

Қазірде ғылымда және техникада жылулық құбылыстарды зерттеуде молекула-кинетикалық теориямен қатар термодинамнка да пайдаланылады. Теориялық физикада молекула - кинетикалық теорияны статистикалық механика деп атайды. Термодинамика мен статистикалық механика бірдей құбылыстарды әртүрлі әдістермен зерттейді және бір-бірін өзара толықтырып отырады.

Термодинамиканың ең басты мазмұны энергияның өзгерісіне қатысты екі негізгі заңнан тұрады. Бұл заңдар тәжірибе жүзінде тағайындалады. Олар барлық заттар үшін, олардың ішкі құрылымына тәуелсіз, тура орындалады.

Термодинамика - энергияның түрленуiне қатысты жалпы заңдарға негiзделген жылулық процесстер туралы ғылым. Бұл заңдар молекулалық құрылымдарына байланыссыз барлық денелер үшiн орындалады. [2]

«Термодинамика» - грек сөзінен шыққан: «терме» - жылу, ыстық, от деген сөздерді білдіреді, «динамикос» - күш, қозғалыс, ал барлығы бірге - жылу (от) қозғалтушы күш. Сонымен, жылудинамикасы - жылу қозғалтқышының теориясы пайда болды. Техникалық жылудинамикасы - жылу менмеханикалық энергиялардың өзара алмасуының заңдылығын зерттейді, ал, сонымен қатар, осыған қатынасатын алмасуындағы дененің қасиетінде зерттейді. Жылу алмасу теориясымен бірге, ол жылу техникасының теориялық негізі болады.

Денелердің жиынтықтағы, өзара әрекетте болуын, жүйелер деп атайды. Осы денелердің арасында, жұмыстық дене, ерекше бөлектенеді, ол жылу мен жұмыстың өзара алмасу процессін жүргізеді. Қалғаны - қоршаған орта көздері (немесе жылу сіңіргіштері) . Жұмыстық дене есебіне газдар мен булар жатады. Сұйықтармен салыстырғанда, газдар және булар, қыздыру және салқындату кезінде, қысымы мен көлемін едәуір өзгертеді. Техникалық жылудинамикасының әдістері үшін негізгі өзгешелігі жылудинамикалық процесстері мен жүйелерінің идеализацияда болуынан, процесстегі жұмыс жүйелерінің көбейуіне келтіреді. Мысалы, теңсалмақты жүйелер деп аталуын, оның уақыт аралығындағы өзгермеу қасиетін немесе оның күйін зерттейді. Мұндай жүйелер, қоршаған ортадан бөлектендіріледі және сонымен қатар, сыртқы күштіңәсерінсіз, оның күйі сонша ұзақ сақталуы мүмкін. Мұндай жүйелерде, температура - барлық нүктелерінде бірдей, яғни жүйелердің жылу тепе-теңдігі орын алады. Егер, жүйенің жеке бөлшектері, бір-біріне қарағандағы алмасуы болмаса, онда, ол кезде қысымы мен тығыздығы жүйенің әр нүктесінде бірдей болыпмеханикалық тепе-теңдігіболады. Сонымен қатар, тепе-теңдік жағдайының үздіксіз кезектілігінің түсінігі арқылы, өзінің күйінің өзгеруі кезіндегі, қаралып отырған жүйенің өтуінің тепе-теңдік процессі зерттеледі. Жеке жағдайда жорамалдау жолымен дәріптелінеді. Процесстерді дәріптеу, жылудинамикасын зерттеуді оңайлатады. Сонымен бірге, идеалды процесс - үлгі ретінде есептелінеді, оған практикалық түрінде жетуге тырысу керек. Нақтылы процессте жүргізілетін жұмыстың істелуін, идеалды процесске сәйкес, жұмысты салыстырумен, сол процесстің жылудинамикалық бағалануының мүлтіксіздігіне мүмкіндік береді. Техникалық жылудинамикасына, нақтылы жағдайында, негізгі процесстерінің өтуінің қаралуы енгізіледі де, жылу техникасы курсының теориялық және практикалық бөлігі арасын байланыстырушы звеносы, шешуші рөл атқарады.
Жылудинамикасының негізін, тәжірибемен анықталған екі заңы құрайды - жылудинамикасының бірінші және екінші заңдары, олар техникалық жылудинамикасында жылу мен жұмыстық жеке күйінде қолданылады.

2. 1 Термодинамиканың бірінші бастамасы

Термодинамиканың бірінші бастамасы - термодинамикалық жүйелер үшін керек энергияның сақталу заңы; бұл заң бойынша жүйеге берілетін жылу оның ішкі энергиясын өзгертуге және жүйенің сыртқы күштерге қарсы жұмысына жұмсалады. [2]

Дене күйінің барлық энергиясы - микроскопиялық қозғалысының толық түріндегі сыртқы кинетикалық энергиясы Е к және салмақ күші өрісі, электрлі немесе магнит өрісі жағдайындағы потенциалды энергия Е n , сонымен қатар, дене бөлшектерінің құрамдық әрекеттері мен қозғалу энергиясын жасаушы ішкі энергия U қосындыларынан тұрады:

E = E k + E п + U E = E_{k} + E_{п} + U

Thermodynamics navigation image.svg

Қаралып отырған жылу динамикалық жүйе шамаланса, онда дененің орталық салмақтық алмасу жылдамдығы өте аз (С=0), яғни қозғалыссыз жұмыстық дене көлемінің өзгеруі туралы сөз болады, сондықтан Е к =0. Айталық, Е р =0 сонымен, бұл жерде толық энергия ішкімен бірдей (E=U), ал жүйе энергиясының өзгеруі - жұмыстық дененің, ішкі энергиясының өзгеруіне келтіреді.
Жылу динамикасының бірінші заңына сәйкес, жұмыстық дененің энергиясы кезінде, қабылданған жағдайға тиісті кезіндегі жүйенің өтуі 1 бастапқы күйінен 2 соңғы мәндеріне артуы, денеге берілген жылулық dQ және мәніне келуі dL істелінген жүйе жұмысына тең: d U = d Q d L dU = dQ - dL немесе әдетте былай жазу қабылданған -

Q = d U + d L Q = dU + dL

Сыртқы ортамен әрекеттестігі жоқ болғандағы кезінде (dQ=0 және dL=0), формуладағы dU=0, яғни жүйе энергиясы өзгеріссіз сақталады. Жүйелер қатнасының жекеленген жылулығы үшін, ондағы dQ=0 екені белгілі. d U + d L = 0 dU + dL = 0

Теңдеу жұмыстық дененің еркінше алынған санды массасы m арналып жазылған, ал меншікті мәндері үшін былай жазылады: d q = d u + d L dq = du + dL

мұндағы q - меншікті жылулық саны; l - меншікті жұмыс; u - меншікті ішкі энергия, q, u, l - өлшем бірлігі - [Дж/кг] .

Бұл теңдеу үшін, жылудинамикасының бірінші заңының талдаушы тұжырымдалуын көрсетеді, осыған сәйкес жүйеге жеткізілген жылу, жүйелердің ішкі энергиясына жұмсалады және жұмыстың атқарылуына қарсы денеге түскен сыртқы күш. Олар, қайтымдыға да және сыртқы қайтымсыз процесстер үшін де әділетті. Себебі, қабылданған жағдайдағы жылу алмасуы кезінде, дене мен орта арасының соңғы температура айырмашылығы кезінде, қайтымсыз жылуалмасуына сәйкес келеді.

Қоршаған ортаның жұмыс жүйесін қарастыралық, сыртқы күштердің әрекетінен дене көлемінің өзгеруі жүреді. Механиканың жалпы ережесі бойынша, бұл жұмыс денеге түскен күш көбейтіндісімен, оның жылжуын анықтайды. Егер күш, бет ауданының элементіне әрекет етсе, ол элемент, қысым болады, ал осы элементтің ауданының көбейтіндісінің жылжуы, нормалы бағытпен бетке жатып, сол элементтің беттік көлемі болса, онда элементарлы жұмыс, қоршаған орта жүйесімен жасалу кезіндегі, дене көлемінің шексіз аз өзгеруінің көбейтіндісі ретінде анықталады:

d L = p d V dL = pdV

V 1 ден V 2 дейінгі көлемнің соңғы өзгеруі кезінде:

L 1 2 = V 2 V 1 p d ϑ L_{1 - 2} = \int_{V_{2}}^{V_{1}}{pd\vartheta}

мұндағы, V - көлем, [м 3 ] .

https://upload.wikimedia.org/wikipedia/kk/3/35/%D0%94%D0%B5%D0%BD%D0%B5_%D0%BA%D3%A9%D0%BB%D0%B5%D0%BC%D1%96%D0%BD%D1%96%D2%A3_%D3%A9%D0%B7%D0%B3%D0%B5%D1%80%D1%83_%D0%B6%D2%B1%D0%BC%D1%8B%D1%81%D1%8B.jpg Газ жағдайының өзгеру процессін зерттеуде, графикалық әдістер (кеңінен пайдаланады) негізінің PV - диаграммасы деп, аталуын кеңінен қолданады.

Дене көлемінің, жұмыстан өзгеруін анықтау жағдайында абцисс өсі бойынша, V шамаларын қояды. Мұндай бейнелерді қолдану, әдетте піспекті қозғалтқыштардың процессін зерттеу кезінде қолданады, мұндағы цилиндр ішіндегі дене көлемінің, піспек жолының жүріп өтуіне, пропорционалды болады. [3]

2. 2 Термодинамиканың екінші бастамасы

Термодинамиканың бірінші бастамасы термодинамикалық процессті толық сипаттай алмайды. Айталық термодинамиканың бірінші бастамасы энергияның сақталу және түрлену заңын сапалық түрде сипаттағанмен, ол процестің өту бағытын анықтай алмайды.

Екінші бастаманы түсіну үшін жылу двигательдерінің жұмысын қарастырайық. Толық бір цикл ішінде температурасы (Т 1 ) жоғары қыздырғыштан Q 1 жылу алынса, осы цикл ішінде температурасы (Т 2 ) тоңазытқышта Q 2 жылу беріледі де, соның салдарынан жұмыс істеледі:

A = Q 1 Q 2 A = Q_{1} - Q_{2}

Жылу двигателінің термиялық пайдалы әрекет коэффициенті n=1 болу үшін, Q2=0 шарты орындалу керек, яғни жылу двигателінің бір ғана жылу көзі болу қажет, ал бұл мүмкін емес. Шынында да француз инженері С. Карноның зерттеуі бойынша жылу двигателі қалыпты жұмыс істеуі үшін температурасы әртүрлі екі жылу көзі қажет. Термодинамиканың екінші бастамасының мәні бір ғана жылу көзі арқылы жұмыс істейтін жылу двигателін жасауға болмайтындығын, яғни мәңгілік двигательдің екінші түрі болмайтындығын түсіндірді.

Кельвиннің анықтамасы бойынша:

  1. Мәңгілік двигательдің екінші түрін жасау мүмкін емес;
  2. Жылытқыштан алынған жылуды толықтай жұмысқа айналдыратын процесс болмайды.

Жылу двигателінің жұмысына керісінше процесс тңазытқыштың

машинада қолданылады.

... жалғасы

Сіз бұл жұмысты біздің қосымшамыз арқылы толығымен тегін көре аласыз.
Ұқсас жұмыстар
Термодинамиканың заңдары
Термодинамиканың заңдылықтары
Нернст теоремасы
Изотермиялық процесс
Термодинамика. Термодинамиканың бірінші заңы табиғаттың жалпы заңдарының бірі
Жылудинамикасының бірінші және екінші заңдары
Термодинамика – биофизикалық ілім
Жылудинамиканың бірінші мен екінші заңы жайлы мәлімет
Термодинамика бастамаларының дүниетанымдық мәні
Термодинамиканың екінші бастамасы
Пәндер



Реферат Курстық жұмыс Диплом Материал Диссертация Практика Презентация Сабақ жоспары Мақал-мәтелдер 1‑10 бет 11‑20 бет 21‑30 бет 31‑60 бет 61+ бет Негізгі Бет саны Қосымша Іздеу Ештеңе табылмады :( Соңғы қаралған жұмыстар Қаралған жұмыстар табылмады Тапсырыс Антиплагиат Қаралған жұмыстар kz