Атом молекулалық ілім. Химияның негізгі түсініктері мен стехиометриялық заңдары (Зат массасының сақталу заңы, құрам тұрақтылық заңы, еселік қатынастар заңы, көлемдік қатынастар заңы, эквиваленттер заңы, Авогадро заңы)
Ежелгі атомистика теориясы Ломоносовтың атомдар туралы көзқарасынан тым алыстау екені анықталды. Химияның даму тарихының бір дәуірі алхимиямен байланысты.Алхимия өз заманына керек болды.Алхимияның негізгі міндеті-философиялық тастың көмегімен,жай заттарды алтынға айналдыру еді. Олардың негізгі мақсаты-жай металдардың құрамына асыл қасиеттерді кіргізу арқылы алтын алу.Алхимия Аристотельдің жалған теориясына негізделгенімен,зерттеу барысында көптеген химиялық заттар және сол заттарды алу әдістерін ашуға мүмкіндік жасады.Неміс ғалымы Шталь 17 ғасырда флогистон теориясын ұсынды.Бұл теория бойынша , барлық жанатын заттардың және металдардың құрамында ерекше зат-флогистон болатындығын айтты. Мысалы,металдарды қақтағанда флогистон бөлініп шығады деп санады:темір-темір қағы+флогистон.Демек,флогистон теориясы бойынша ,темір(күрделі зат) қаққа(жай зат) және флогистонға ыдырайды.Бұл қате теория химияның даму тарихында пайдалы ықпалын жасады.Ф.Энгельс былай жазды:химия флогистон теориясы арқылы,алхимиядан құтылды.2-нші кезеңі Ломоносовпен Дальтонның жұмыстары жатады.Химияның жекелей ғылым болып дамуы,17ғ-дың 40жылдары басталды.Осы кезде,Ломоносовтың «Математикалық химияның элементтері» деген жұмысында,молекулярлық-атомистикалық көзқарас бірінші рет ұсынылды.Дальтон 1808ж «Химиялық философияның жаңа жүйесі » деген жұмысында атомдық-молекулярлық көзқарасты мазмұндады.
Химиядағы стехиометриялық заңдар деп, құрам тұрақтылық ,еселі қатынастар,эквиваленттер ,газдар,Гей-Люссактың көлемдік қатынастар және Авогадро заңдарын айтады.1.Құрам тұрақтылық заңы. Прусттың 1801ж ашқан құрам тұрақтылық заңы:Әрбір таза заттың элементтік құрамы әрқашанда тұрақты,ол заттардың алу әдісіне байланысты емес.мысалы әр түрлі жолмен алынса да көміртек диоксидінде 27,29 процент көміртек және 72,71 оттек бар.19ғасырдың басында Бертолле кейбір заттардың құрамы ауыспалы болатындығын ескертіп,заңға күмән келтірді.Пруст пен Бертолле арасындағы таласты,орыс ғалымы Курнаков шешті. Курнаков құрамы тұрақты қосылыстарды дальтонидтер деп,дальтонидтерге қарсы құрамы тұрақсыз қосылыстарды бертолидтер деп атады.Эквиваленттер заңы. Эквиваленттер заңы-химиялық заңдардың ең бір негізгісі .Олар химиялық элементтер бір-бірімен өздерінің химиялық эквиваленттеріне сай ,белгілі сандық қатынаста әрекеттесетінін белгілейді.Эквивалент дегеніміз бағалары тең деген сөз.Эквивалент деп берілген қышқылдық негіздік реакцияда сутектің 1 катионына ,немесе берілген тотығу-тотықсыздану реакциясында 1 электронға сәйкес шартты немесе нақты бөлшекті айтады.Зттың эквивалентінің 1 моль мөлшерінің массасын оның эквивалентінің молярлық массасы деп атайды.оның өлшем бірлігі-г/моль.3.Еселі қатынас заңы.Дальтон 1803ж еселі қатынастар заңын өрнектеді: егер екі элемент өзара бірнеше химиялық қосылыстар түзсе,онда бір элементтің массасы осы қосылыстардағы екінші элементтің массаларына бүтін сандар ретінде қатынасады.Дальтон айтуы бойынша,атомның абсолюттік массасын анықтау мүмкін емес, сутектің атомдық массасын бірге тенестіріп,салыстырмалы атомдық масса туралы түсінік енгізді.Сутекте,оттекте изотоптар бар болғандықтан оны көміртекке өзгертті.Химиялық элементтің салыстырмалы атомдық массасы-өлшеусіз шама,олар көміртек бірлігімен өлшенетін атомдық масса болады. Атомның массасы көміртек массасы бірлігінің оның салыстырмалы массасының көбейтіндісіне тең.4.Авогадро заңы. Моль-заттың мөлшері. Көміртектің С12 изотопының 6,02*1023 атомдары бар.Мына сан 6,02*1023 Авогадро тұрақтылығы деп аталады.яғни,моль-заттың мөлшері ,ол құрылыстық бірлікке 6,02*1023 дискретті.Авогадро заңы-бірдей жағдайда алынған газдардың тең көлемінде молекулалар саны да бірдей болады. Авогадро заңынан мына салдар шығады:молекулалық сандар бірдей газдардың ,бірдей жағдайда,көлемі де бірдей болады.
Химиядағы стехиометриялық заңдар деп, құрам тұрақтылық ,еселі қатынастар,эквиваленттер ,газдар,Гей-Люссактың көлемдік қатынастар және Авогадро заңдарын айтады.1.Құрам тұрақтылық заңы. Прусттың 1801ж ашқан құрам тұрақтылық заңы:Әрбір таза заттың элементтік құрамы әрқашанда тұрақты,ол заттардың алу әдісіне байланысты емес.мысалы әр түрлі жолмен алынса да көміртек диоксидінде 27,29 процент көміртек және 72,71 оттек бар.19ғасырдың басында Бертолле кейбір заттардың құрамы ауыспалы болатындығын ескертіп,заңға күмән келтірді.Пруст пен Бертолле арасындағы таласты,орыс ғалымы Курнаков шешті. Курнаков құрамы тұрақты қосылыстарды дальтонидтер деп,дальтонидтерге қарсы құрамы тұрақсыз қосылыстарды бертолидтер деп атады.Эквиваленттер заңы. Эквиваленттер заңы-химиялық заңдардың ең бір негізгісі .Олар химиялық элементтер бір-бірімен өздерінің химиялық эквиваленттеріне сай ,белгілі сандық қатынаста әрекеттесетінін белгілейді.Эквивалент дегеніміз бағалары тең деген сөз.Эквивалент деп берілген қышқылдық негіздік реакцияда сутектің 1 катионына ,немесе берілген тотығу-тотықсыздану реакциясында 1 электронға сәйкес шартты немесе нақты бөлшекті айтады.Зттың эквивалентінің 1 моль мөлшерінің массасын оның эквивалентінің молярлық массасы деп атайды.оның өлшем бірлігі-г/моль.3.Еселі қатынас заңы.Дальтон 1803ж еселі қатынастар заңын өрнектеді: егер екі элемент өзара бірнеше химиялық қосылыстар түзсе,онда бір элементтің массасы осы қосылыстардағы екінші элементтің массаларына бүтін сандар ретінде қатынасады.Дальтон айтуы бойынша,атомның абсолюттік массасын анықтау мүмкін емес, сутектің атомдық массасын бірге тенестіріп,салыстырмалы атомдық масса туралы түсінік енгізді.Сутекте,оттекте изотоптар бар болғандықтан оны көміртекке өзгертті.Химиялық элементтің салыстырмалы атомдық массасы-өлшеусіз шама,олар көміртек бірлігімен өлшенетін атомдық масса болады. Атомның массасы көміртек массасы бірлігінің оның салыстырмалы массасының көбейтіндісіне тең.4.Авогадро заңы. Моль-заттың мөлшері. Көміртектің С12 изотопының 6,02*1023 атомдары бар.Мына сан 6,02*1023 Авогадро тұрақтылығы деп аталады.яғни,моль-заттың мөлшері ,ол құрылыстық бірлікке 6,02*1023 дискретті.Авогадро заңы-бірдей жағдайда алынған газдардың тең көлемінде молекулалар саны да бірдей болады. Авогадро заңынан мына салдар шығады:молекулалық сандар бірдей газдардың ,бірдей жағдайда,көлемі де бірдей болады.
1. Атом молекулалық ілім. Химияның негізгі түсініктері мен стехиометриялық заңдары (Зат массасының сақталу заңы, құрам тұрақтылық заңы, еселік қатынастар заңы, көлемдік қатынастар заңы, эквиваленттер заңы, Авогадро заңы).
Ежелгі атомистика теориясы Ломоносовтың атомдар туралы көзқарасынан тым алыстау екені анықталды. Химияның даму тарихының бір дәуірі алхимиямен байланысты.Алхимия өз заманына керек болды.Алхимияның негізгі міндеті-философиялық тастың көмегімен,жай заттарды алтынға айналдыру еді. Олардың негізгі мақсаты-жай металдардың құрамына асыл қасиеттерді кіргізу арқылы алтын алу.Алхимия Аристотельдің жалған теориясына негізделгенімен,зерттеу барысында көптеген химиялық заттар және сол заттарды алу әдістерін ашуға мүмкіндік жасады.Неміс ғалымы Шталь 17 ғасырда флогистон теориясын ұсынды.Бұл теория бойынша , барлық жанатын заттардың және металдардың құрамында ерекше зат-флогистон болатындығын айтты. Мысалы,металдарды қақтағанда флогистон бөлініп шығады деп санады:темір-темір қағы+флогистон.Демек,флогистон теориясы бойынша ,темір(күрделі зат) қаққа(жай зат) және флогистонға ыдырайды.Бұл қате теория химияның даму тарихында пайдалы ықпалын жасады.Ф.Энгельс былай жазды:химия флогистон теориясы арқылы,алхимиядан құтылды.2-нші кезеңі Ломоносовпен Дальтонның жұмыстары жатады.Химияның жекелей ғылым болып дамуы,17ғ-дың 40жылдары басталды.Осы кезде,Ломоносовтың Математикалық химияның элементтері деген жұмысында,молекулярлық-атомистикалы қ көзқарас бірінші рет ұсынылды.Дальтон 1808ж Химиялық философияның жаңа жүйесі деген жұмысында атомдық-молекулярлық көзқарасты мазмұндады.
Химиядағы стехиометриялық заңдар деп, құрам тұрақтылық ,еселі қатынастар,эквиваленттер ,газдар,Гей-Люссактың көлемдік қатынастар және Авогадро заңдарын айтады.1.Құрам тұрақтылық заңы. Прусттың 1801ж ашқан құрам тұрақтылық заңы:Әрбір таза заттың элементтік құрамы әрқашанда тұрақты,ол заттардың алу әдісіне байланысты емес.мысалы әр түрлі жолмен алынса да көміртек диоксидінде 27,29 процент көміртек және 72,71 оттек бар.19ғасырдың басында Бертолле кейбір заттардың құрамы ауыспалы болатындығын ескертіп,заңға күмән келтірді.Пруст пен Бертолле арасындағы таласты,орыс ғалымы Курнаков шешті. Курнаков құрамы тұрақты қосылыстарды дальтонидтер деп,дальтонидтерге қарсы құрамы тұрақсыз қосылыстарды бертолидтер деп атады.Эквиваленттер заңы. Эквиваленттер заңы-химиялық заңдардың ең бір негізгісі .Олар химиялық элементтер бір-бірімен өздерінің химиялық эквиваленттеріне сай ,белгілі сандық қатынаста әрекеттесетінін белгілейді.Эквивалент дегеніміз бағалары тең деген сөз.Эквивалент деп берілген қышқылдық негіздік реакцияда сутектің 1 катионына ,немесе берілген тотығу-тотықсыздану реакциясында 1 электронға сәйкес шартты немесе нақты бөлшекті айтады.Зттың эквивалентінің 1 моль мөлшерінің массасын оның эквивалентінің молярлық массасы деп атайды.оның өлшем бірлігі-гмоль.3.Еселі қатынас заңы.Дальтон 1803ж еселі қатынастар заңын өрнектеді: егер екі элемент өзара бірнеше химиялық қосылыстар түзсе,онда бір элементтің массасы осы қосылыстардағы екінші элементтің массаларына бүтін сандар ретінде қатынасады.Дальтон айтуы бойынша,атомның абсолюттік массасын анықтау мүмкін емес, сутектің атомдық массасын бірге тенестіріп,салыстырмалы атомдық масса туралы түсінік енгізді.Сутекте,оттекте изотоптар бар болғандықтан оны көміртекке өзгертті.Химиялық элементтің салыстырмалы атомдық массасы-өлшеусіз шама,олар көміртек бірлігімен өлшенетін атомдық масса болады. Атомның массасы көміртек массасы бірлігінің оның салыстырмалы массасының көбейтіндісіне тең.4.Авогадро заңы. Моль-заттың мөлшері. Көміртектің С12 изотопының 6,02*1023 атомдары бар.Мына сан 6,02*1023 Авогадро тұрақтылығы деп аталады.яғни,моль-заттың мөлшері ,ол құрылыстық бірлікке 6,02*1023 дискретті.Авогадро заңы-бірдей жағдайда алынған газдардың тең көлемінде молекулалар саны да бірдей болады. Авогадро заңынан мына салдар шығады:молекулалық сандар бірдей газдардың ,бірдей жағдайда,көлемі де бірдей болады.
2. Эквивалент, эквиваленттік фактор, эквиваленттің молярлық массасы. Эквивален ттер заңы. Атомдық және молекулалық массаларды анықтау әдістері.
Эквиваленттер заңы. Эквиваленттер заңы-химиялық заңдардың ең бір негізгісі .Олар химиялық элементтер бір-бірімен өздерінің химиялық эквиваленттеріне сай ,белгілі сандық қатынаста әрекеттесетінін белгілейді.Эквивалент дегеніміз бағалары тең деген сөз.Элементтің химиялық эквиваленті деп сутек массасының 1,008 бөлігі немесе оттек массасының 8,0бөлігі қосылатын осы элементтердің мөлшерін немесе қосылыстарында орнын басатын осындай мөлшерді айтады.Эквивалент деп берілген қышқылдық негіздік реакцияда сутектің 1 катионына ,немесе берілген тотығу-тотықсыздану реакциясында 1 электронға сәйкес шартты немесе нақты бөлшекті айтады.Бөлшектің берілген қышқылдық- негіздік реакцияда сутектің бір катионына сәйкес ,немесе берілген тотығу-тотықсыздану реакциясында 1 электронға сәйкес келетін үлесін эквиваленттік фактор fэкв деп атайды.Заттың эквивалентінің 1 моль мөлшерінің массасын оның эквивалентінің молярлық массасы деп атайды.оның өлшем бірлігі-гмоль.Күрделі заттың эквиваленттік массасын есептеу негізіне оның массалық бірлікпен алынған гмоль молярлық массасы алынады.Оксидтің экв.массасы массалық бірлікпен алынған оның молярлық массасының ,металдың валенттілігі мен оның атомдар саны арасындағы көбейтіндіге бөлінген теңдеуге тең.Гидроксидтің экв. Массасы оның молярық массасының металдың валенттігіне немесе гидроксил топтарының санына бөлінген теңдеуге тең.Қышықылдың экв.массасы оның молярлық массасының қышқылдың негіздік санына бөлінген теңдеуге тең. Тұздың экв.массасы оның молярлық массасының,металдың валенттігі мен атомдар саны арасындағы көбейтіндіге бөлінген теңдеуге тең.
3. Атом құрылысы. Атом құрылысының күрделілігін дәлелдейтін тәжірибелер: М. Фарадейдің тәжібилері, катод сәулелері, электронның ашылуы, Э. Резерфордтың тәжірибелері және т.б.
Атом құрылысының күрделі екендігі туралы ұғым атом бөлшектерінің бірі болып саналатын электрондар құбылысы ашылғаннан кейін барып қалыптасты. Бірінші рет электрондар ағынын ,катод сәулесін ашқан Крукс 1879ж байқаған.Ауасыз түтікшеде ,үлкен кернеулікте электр тогы жүре бастағаны байқалады және түтікшенің ішінде сәуле пайда болды.Бұл сәулелер катодтан шыққандықтан,оны катодты сәулелер деп атады. Магнитті немесе электр өрістері болмаған жағдайда катодты сәулелер электр не магнит өрістерінде оң зарядталған электрод жағына ығысады.сол себептен оны теріс зарядталған бөдшектердің ағыны деп айтуға болады.Дж.Томсон 1897ж зарядтың электронның массасына қатынасын өлшеді және осы қатынастың катодтың табиғатына,газдың химиялық құрамына және тәжірибенің жағдайына байланысты еместігін көрсетті. Бір ғана елементарлы бөлшектен тұратын қарапайым ядро- сутек атомының ядросы болып табылады. Сутек атомының иондануы нәтижесінде Крукс түтігінде түзілетін бөлшекті 1920 жылы Э.Резерфорд протон деп атады,яғни бірінші деген мағынада. Бастапқыда басқа да элементтердің атом ядросы протоннан,ал атом электрон мен протоннан тұрады деп есептеді. Резерфордтың тәжірибелері атомның құрылысы планетарлы жүйеге ұқсас екендігін дәлелдеді: ортасында тығыз орналасқан оң зарядты ядро болады, ал ядроның айналасында, ядроның мөлшерімен шамамен 10000 есе көп,көп женіл теріс зарядталған бөлшектер - электрондар айналып жүреді.Кемшілігі: Классикалық электродинамиканың заңдары бойынша,егер электронның ядроға кулондық тартылыс күші ортадан тебісу күшіне тең болса,онда ядроның маңындағы шеңбер бойынша электронның қозғалысы тұрақты болады. Резерфордтың моделі сутек атомының тұрақтылығын да немесе оның спектірінің сызықтық қасиеттерін де түсіндіре алмайды.
1933ж Иваненко ,Гапон және олардан тәуелсіз Гейзенберг атом я дросының протонды-нейтронды құрылыс моделін құрды. Осы модель бойынша барлық элементтердің атом ядросы протон саны периодтық жүйедегі элементтердің рет номеріне сәйкес,ал нейтрон саны атомның массасынан протон санын алып тастағанға тең.
Ядролық физиканың даму тарихына көз жүгіртсек, оның қайнар көзі 1886 жылы француз ғалымы А. Беккерель ашқан табиғи радиоактивтік құбылысынан басталады. А. Беккерель уран тұзының фотопластинаға әсерін зерттеген. Тәжірибелер барысында ол мына құбылысты байқаған: уран тұздары тығыз қара қағазбен оралған фотопластинаға әсер етіп, оның қараюын туғызатын, өтімділігі жоғары белгісіз сәулелерді шығарады екен. Мұқият зерттеулер нәтижесінде Беккерель өтімділігі жоғары белгісіз сәулелерді уран атомының өзі, ешқандай сыртқы әсерсіз-ақ, өздігінен шығаратынын анықтады. Белгісіз сәулелердің заттармен әрекеттескенде:
1) фотопластинканы қарайтатыны, яғни химиялық әсерінің бары;
2) газдарды иондауы;
3) кейбір қатты денелер мен сұйықтардың люминесценциясын туғызатыны сияқты қасиеттері белгілі болды.
Бұл құбылысты зерттеу жұмыстары бірден басталды. Францияда 1898 жылы М.Склодовская-Кюри мен П. Кюри торий () элементінің өздігінен сәуле шығаруын ашты. Өздігінен сәуле шығаратын химиялық элементті радиоактивті деп, ал сәуле шығару процесін радиоактивтік деп атауды М. Кюри ұсынған еді. Радиоактивтік латынның "radio" -- сәуле шығару, "activus" -- әрекетті деген сөздерінен алынған. Осы жылы ерлі-зайыпты ғалымдар тонналаған уран кенін өңдеу арқылы, радиоактивті екі жаңа химиялық элементті бөліп алады. Радиоактивтігі ураннан миллион есе қарқынды элементті () радий, екінші элементті М. Склодовскаяның отанының құрметіне полоний () деп атаған. 1908 жылы Резерфорд спектрлік анализ әдісімен радиоактивті газ -- радонды () ашты. Ауқымды жүргізілген зерттеулер Менделеев кестесіндегі қорғасыннан кейінгі ауыр элементтердің ядроларының бәрінде табиғи радиоактивтік бар екенін көрсетті. Кейбір жеңіл элементтердің де, мысалы, калийдің изотопы ,көміртегінің изотопы және т.б. табиғи радиоактивтік қасиеттері ашылды.
4. Атом құрылысының Н. Бор теориясы. Сутек атомының спектрі. Кванттық теорияның негізгі идеялары. Квант сандары.
Сутек спектрі ең қарапайым.Көрінетін денгейде Нα,Нβ,Нγ,Нσ таңбасымен белгіленген тек 4 сызық бар.Соған жақын жатқан ультрафиолет деңгейінде тағы да бір-бірінне жақын жатқан сызықтар бар.Бұл сызықтар алдында көрсетілген 4сызықтармен бірге сызықтар құрамын құрайды ,оларды Бальмер сызықтар құрамы деп атайды.Швейцария ғалымы Больмер 1885 жылы осысерия сызықтардың толқындық санын ашты: Мұнда R=109678 см¹,-Ридберг түрақтылығы аталған,тұрақты сан,N=3,4,5,6,...Сутек спектрін қарастырғанда оны зерттеген ғалымдардың Лаймен,Пашен,Бреккет атымен аталған басқа сериялары да ашылды.Бұл сериялардағы сызықтардың толқындық сандары төмендегі келтірілген жалпы формуламен есептелінеді:
Сонымен сутек спектріндегі көптеген сызықтар тек бір ғана байланыстылықпен өрнектеледі,ал спектрдің негізінде тек бір құбылыс жатқанын болжамдауға болады.Атомдардың сәуле шығаруы электрондардың қозғалысына байланысты деген көзқарас та болуы мүмкін.Бірақ атомдардың толқын ұзындығы белгілі сәуле шығаратындығы жәнне спектрдің сериялы сызық бойынша көрінетіндігі түсініксіз болатын.Сутек спектрінің сызықтық қасиетін түсіндіретін бірінші ғалым Нильс Бор болды.Ол 1913ж.Резерфордтын болжамын және Планктың кванттық теориясын қолданып,сутек атомының құрылыс теориясын ашты.Бор теориясының негізі ретінде екі постулатты ұсынды:1постулат.Элаектрон ядроның айналасында белгілі тұрақты орбита бой ынша айналып жүреді.Бұл орбитада электрон ешқандай энергия жоғалтпайды және сіңірмейді.Бор тұрақты орбитадағы электронның қозғалыс м-лшерінің моменті n2PI шамасына қатынаста болатындығы туралы болжамдады.Мына тендік:
Орындалған жағдайда,электронның қозғалысы тұрақты болуға тиісті,мұнда
m- электронның массасы,
V- жылдамдық,
r - орбитаның радиусы,
h - Планк тұрақтысы,
n - 1,2,3,...бүтін сандар.
Сутек атомы үшін,тұрақты орбиталдардың радиустары өзара бүтін сандардың квадраттары сияқты болады:
R1:R1:...Rn=1²:2²:3² ... n²
Бордың болжамы бойынша кез келген тұрақты орбитада айналған кезде электрон энергиясы тұрақты.электронның энергиясы ядроға жақындаған сайын азая береді:
Е1E2E3 ... ..En
Бор теориясындағы энергия,қозғалыс мөлшерінің моменті сияқты,квант сандарымен анықталады.Ол мынаған тең:
2постулат.электрон бір орбитадан екіншіорбитаға ауысқагн кезде ғана энергия шығарылуы немесе сіңірілуі болады,мұнда белгілі бір жиілікпен тербелетін квант энергиясы бөлінеді немесе сіңіріледі:
атомның ядроға алыс орбитадағы энергиясы,
ядроға жақын орбитадағы энергиясы
Электрон кіші энегетикалық жағдайдан жоғары деңгейге ауысқан кездеэнергия сіңіріледі. Ал электрон жоғары деңгейден кіші энергетикалық деңгейге ауысқан кезде энергия бөлінеді.Электонның орнына байланысты,екі жағдлайдағы атомның энергиясын білу арқылы,ауысатын электронның тербеліс жиілігін есептеуге болады.Егер бір заттың атомдарына сыртқы энергия көзімен әсер етсе,онда электрон квант энергиясын сіңіріп,жоғарырақ орбитаға ауысады,демек,электрон қозған жағдайда келеді.Егер осындай ауысу жоғары орбитадан ядроға жақынырақ жатқан орбита аралығында болса,онда энергия сәулелік энергия- фотон түріде бөлінеді:
ΔE=Eж−Eа=hν
Спектрде ол белгілі сызықтар түрінде шығады.осы серияның әрбір сызықтарының толқын ұзындығы мына теңдеу бойынша,өте дәл есептелінеді:
Мұнда R- тұрақты шама,Ридберг костантасы.
Сызықтардын жиілігіфизи калық қасиеті ләі беклгісіз бүтін сандарға байланы сты.Бор бойынша,жақын және алыс орбиталдардысиппаттайтын,N- квантты сандарға жатады.Бор осы теңдеудің және атом құрылысының постулаттары негізінде,сутек атомы спектріндегі барлық сериялардың толқын ұзындығын есептейді.Жоғарыда көрсетілген теңдеулерден келесі өрнек алынады:
Сутек спектріндегі сериялардың сызықтары былай түсіндіріледі:егер электрон кез келген алыс жатқан орбитадан ядроға жақын бірінші орбитаға ауысса,онда спектрдің ультрафиолет ауданындағы жиілік толқындары бөлінеді.көп ұзамай,бұл серияны Лайман ашты .Ол Бор теориясының жақсы жетістігі еді.Егер электрондар кез келген алыс жатқан орбитадан екінші орбитаға ауысса,онда спектрдінң көрінетін сериясы алынады.Тәжірибелер Бор теориясын жақсы дәлелдеді.Есептеу арқылы алынған Ридберг тұрақтылығы,тәжірибе жүзінде алынған шамамен тура келді:
Бұл атомдарда тұрақты орбиталар болатындығын және Бор теңдеулерінің дұрыстығын дәлелдейтін үлкен жетістік еді.Бірақ Бор теориясының жетістігі тек сутек атомымен ғана шектелді.Гелий атомы үшін бул теория жарамады,ал күрделі атомдар үшін Бор теңдеулері бойынша есептеулерді мүлдем жүргізуге болмады.Көп электронды атомдардың спектріндегі сызықтар одан сайын күрделі бола бастады.спектрдің мультиплеттігі магтитті және элекр өрісінде күшейе түсті.
1925-26 жылдары неміс ғалымы Гейзенберг пен австриялық Э. Шредингер өз беттерінше жаңа механиканың екі варианттарын ұсынды. Бұл екі варианттың нәтижесі бірдей, бірақ, есептеуге қолайлы болғандықтан Шредингер теңдеуі жиірек қолданылады. Атом мен молекула құрылыстарының қазіргі теориялары да әдіске сүйенеді. Бұл теория микробөлшектердің қозғалысын және күйін сипаттайтын болғандықтан квант механикасы деп аталады. Ал Ньютон заңдарына негізделген микроденелерге арналған механика - классикалық механика д.а.
Квант сандары тек сутек атомындағы электронды сипаттап қоймайды, кез келген басқа атомдардағы электрондарды да қамтиды. Олар атомның қасиеті және химиялық байланыстың табиғатын түсіну үшін аса маңызды роль атқарады. Квант сандары электрон қозғалысын физикалық тұрғыдан сипаттайды, әрі электрон бұлтының геометриялық ерекшеліктерін бейнелеп береді. Бас квант саны Бор теориясынан шығатын санмен бір мәндес. Кванттық механикалық көзқарас бойынша бас квант саны орбитальдағы электронның энергиясын және орбитальдардың көлемін көрсетеді.
5. Көп электронды атомдардың орбитальдарының электрондармен толу принциптері: Энергияның минимум принципі, Паули принципі, Хунд ережесі. Клечковский ережелері. Элементтердің электрондық формулалары.
Элементтердің және оның қосылыстарының химиялық қасиеттері электрондық құрылысына байланысты. Атомдағы электрондардың энергетикалық орбитальдар бойынша орналасуы былай жүреді:1 энергия минимумы принципы;2Паули принципі 3 Гунд және Клечковский ережелеріне сай.
Энергияның минимум принципі бойынша, электрондар әуелі энергиясы ең кіші орбитальдарға орналасады. Ең кіші энергия n=1 энергетикалық деңгей, осы орбитальда электрон өте тұрақты жағдайда болады. Сондықтан, көп электронды атомда әуелі n=1 деңгейі, сонан кейін n=2, n=3 ... деңгейлері толтырылады. Бір бас квант саны шектігінде n орбитальдарының электронға толуы мына тәртіппен жүреді.s--p--d--f Кейбір уақытта бұл ережеден ауытқу байқалады. Кейбір жағдайда электрондар бір типті орбитальдан екінщі типті орбитальға ауысып кетуі мүмккін.
Паули принципі.Көпэлектронды атомдарда электронның жағдайы Паули ашқан квантты - механикалық заңмен өрнектеледі.Бұл заң бойынша, төрт квант сандарымен суреттелетін бір кванттық жағдайда тек бір ғана электрон болады. S-орбитальда спиндері антипараллель тек екі электрон ғана орналасады.Салдары: 1. Деңгейдегі электрондардың максимал саны негізгі кванттық санның екі еселенген квадратына тең 2. Деңгейшедегі электрондардың саны 2(2l+1) ге тең.
Гунд ережесі. Бір деңгейшелер аралығында сәйкес орбитальдарды электрондармен толтырған кезде,электрондар спиндерінің қосындысы максимал болуы керек.Барлық орбиталдарда бір электроннан орналасқаннан кейін ,келесі электрондар жұптасып орналасады.
Клечковский ережесі.Орыс ғалымы Клечковский өте қарапайым және нақты ереже ұсынды:элементтердегі атомдар электрондарының толтырылуы,квант сандары n+1 қосындысының өсуі тәртібі бойынша жүреді;егер екі деңгейдің қосындысы тең болса,онда бірінші n шамасы кіші деңгей толтырылады.
6. Периодтық заң мен периодтық жүйе. Периодтық заң. Атомдардың электрондық құрылымы және Д. И. Менделеев жасаған элементтердің периодтық жүйесі. Атомдар мен иондардың периодты түрде өзгеретін қасиеттері. Элементтердің периодтық кестесінің түрлері: олардың артықшылытары мен кемшіліктері.
Атом-молекулалық теориядан кейінгі химия тарихындағы ерекше маңызды ірі табыс Д.И.Менделеев ашқан периодтық заң болды.Осы заң негізінде элементтердің периодтық жүйесі жасалы. Периодтық заң-жаратылыстың негізгі заңдарының бірі,оның ашылуы химияда жаңа дәуір туғызды.Периодтық заң химиялық элементтерді,олардың қосылыстарын зерттеуге,заттың құрылысының қалай екенін іздеуге теориялық негіз болды. Осымен бірге атом құрылысының күрделілігін теория жүзінде жәнетәжірибе арқылызерттеу процесіндегіашылған жаңалықтар периодтылықтың мазмұның терең түсінуге мүмкіншілік туғызды.Химия тарихында ерекше табысты ғасыр,химияның теориялық негіздері атом-молекулалықтеория жәнеэлементтердің периодтық жүйесі ашылған - XIXғ-да химияда элемент жайындағы білім аса көбейді.Осы кезде белгілі болған элементтер саны 28 болса,Д .И.Менделеевтің заманыңда 63,ғасырдың аяғында 83
Болды.Осы кезде 109 элемент белгілі.Период ішіндегі элементтердің қасиеттерікүшті сілтілік металдан басталып,бірте-бірте металдық қасиеті кеміп,амфотерлі қасиеті артып,ақыры,бейметалдардың ең күштілерігалогендерге келіп.яғни инертті газбен бітеді.Горизонталь бағыт,период бойымен солдан оңға қарай.Бұл бағытта атомдық салмақ, ядро заряды, э лектрон саны біртіндеп өседі,осы ған сай металдық қасиет әлсіреп,бейметалдық қасиет күшейеді.Мундай өзгеру алғашқы периодтарда айқынырақ, кей інгі периодтарда баяуырақ болады.Мысалы,C мен Nқарағанда Sn менSb айырмашылығы аз.Вертикаль бағыт,негізгі және қосымша топшалар бойымен жоғарыдан төмен қарай.Бұл бағытта атомдық салмақ,ядро заряды,электрон саны сылыстырмалы түрде өзгереді,бірақ электрондық кұрылымының ұқсастығына байланысты және квант қабаттары санының артуына сай элементтердің қасиеті өте баяу өзгереді,айырмашылықтан ұқсастық көп.Гортизонталь жәнне вертикаль бағыттағы өзгерушілікті ұластыра қарасақ,кестенің сол жақ төменгі бұрышында негізгі топшаларда нағыз күшті металдар,оң жақ бұрышындағы негізгі топшаларды нағыз бейметалдар орналасқан.
7. Химиялық байланыс және зат құрылысы. Льюис пен Коссель теориялары. Коваленттік байланыс. Гайтлер мен Лондонның жұмыстары. Валенттік байланыс әдісі.
Химиялық байланыс -- атомдардың химиялық қосылыс түзіп әрекеттесуі.
19 ғасырдың басында К.Бертолле Химиялық байланыс түзілуінің гравитациялық,
1810 жылы Й.Я Берцелиус электрхимиялық,
1861 жылы орыс ғалымы А.Н Бутлеров заттардың химиялық құрылыс теориясын,
1915 жылы неміс физигі Кассель,
1916 жылы ағылшын ғалымы Г.Льюис электрондық теорияларын ұсынды.
Кванттық механика көзқарасы тұрғысынан Хиялық байланыс валенттілік сұлба және молекулалық орбиталдар әдісімен түсіндіріледі. Химиялық байланыс түзілуіне қарай төртке бөлінеді: иондық ковалентті металдық сутектік
Иондық Химиялық байланыс электр терістілігі бойынша айырмашылығы үлкен металл мен бейметалл атомдары арасында түзіледі. Химиялық әрекеттескенде валенттік электрондарын беріп, оң зарядты иондарға (катиондарға): К־ - е - К+ бейметалл атомдары электрондар қосып алып, теріс зарядты иондарға (аниондарға) айналады: Cl+е - Cl־. Әр аттас зарядты иондар бірін-бірі тартып молекула құрайды: K+ + Cl ־= KCl. Иондық Химиялық байланыс қарама-қарсы зарядталған иондардың электрстатикалық тартылысы нәтижесінде жүзеге асады. Иондар түзілу арқылы жүзеге асатын байланыстарды иондық байланыс, қосылыстың өзін иондық қосылыс деп атайды. Иондық қосылыстардың қайнау, балқу темп-расы жоғары, қызуға тұрақты, олар полюстік еріткіштерде тез ериді, ерітінділері электр тогын жақсы өткізеді.
Ковалентті Химиялық байланыста -- әрекеттесуші атомдарға ортақ электрондар жұбы пайда болып, олардың санына қарай бір немесе бірнеше еселенген байланыстар түзіледі. Мысалы, сутек молекуласы атомдары арасында бір (Н:Н), оттек молекуласында қос (:О::О:), азот молекуласында үш (:N:::N:) еселенген ковалентті Химиялық байланыс бар. Ковалентті Химиялық байланыстар электрон жұбының атомдардың арасында орналасуына қарай полюсті және полюссіз деп екіге бөлінеді.
Полюсті молекулада Химиялық байланыс түзетін ортақ электрондар электр терістілігі күшті атомға ығыса орналасады. Молекуланың полюстілігі диполь моменті арқылы көрсетіледі. Полюстік молекулалардың қайнау және балқу температурасы төмен, полюсті еріткіштерде үйектеліп иондарға ыдырайды.
Полюссіз ковалентті Химиялық байланысты молекулада электрон жұбы атомға ауыспай, симметриялы түрде ортада орналасқан. Полюссіз Химиялық байланыстағы қосылыстардың қайнау және балқу температуралары төмен, полюсті еріткіштерде иондар түзбейді, электр тоғын өткізбейді. Ортақтаспаған электрон қосағынан және электронсыз бос орбитасы бар атомдардан (донар-акцепторлы) түзілетін сутектік және металдық Химиялық байланыстар координациялық байланыс деп аталады. Сутекті Химиялық байланыс -- екі не бір молекуладағы атомдар арасында сутек атомының оң заряды арқылы түзіледі.
Металдық Химиялық байланыс -- металл атомдарының сыртқы қабатындағы бос электрондар қатысуымен түзілетін байланыс. Химиялық байланыс валенттік электрондар арқылы жүзеге асады.
Химиялық байланысының негізгі сипаттамалары: байланыс энергиясы, байланыс ұзындығы, валенттік бұрыш.
Байланыс энергиясы -- өзара байланысқан атомдарды не иондарды бір-бірінен ажырату үшін жұмсалатын энергия. Байланыс ұзындығы -- Химиялық байланыстағы атомдар ядроларының арасындағы қашықтық, валенттік бұрыш -- байланысқан атомдар ядролары арқылы жүргізілетін жорамал сызықтар арасындағы бұрыш. Бұл көрсеткіштер зат молекуласының құрылысын, пішінін және беріктігін сипаттайды.
Ковалентті байланыстың табиғатын қарастыруда қазіргі уақытта екі әдіс қолданылады-валенттік байланыс әдісі және молекулалық орбитальдар әдісі
Н.Бордың электрондық құрылыс теориясының негiзiнде химиялық байланыстың жаңа теориясын - коваленттiк байланыc теориясын ұсынды.. Бұл теория бойынша молекулаға бiрiккен eкi атомның арасында электрон жұптары түзiлу негiзiнде 6айланыс пайда болады.
Гайтлер мен Лондон бұл теорияны ары қарай дамытты. Олар Шредингер теңдеуiн қолдану аркылы сутек молекуласының энергиясын квантты-механика әдiсiмен есептеп, мынаны анықтады:
1. Химиялық коваленттi байланыс әртүрлi атомдарга тиiстi карама-карсы спиндi электрондардың жұптасуы арқылы пайда болады, түзiлген байланыс eкi орталықты eкi электронды байланыс болып табылады.
2. Молекула түзiлгенде оны құрайтын атомдардың электрондық құрылысы негiзiнен сақталады, ал молекуладағы барлық химиялық байланыстар тұрақты eкi орталықты eкi электронды (шоғырланған) байланыстар жиынтығынан тұpaды.
Лондон мен Гайтлердiң есептеулерi негiзiнде химиялық 6айланыстың түзілу механизмi мынадай екендiгi керсетiлдi: атомдардың ядро аралығында және олардың үздiксiз қозғалыстағы электрондарында электрлiк күштердің пайда болуы - негiзгi себеп. Ертедегi деректер бойынша, атомдар бір-бірімен қосылып, молекула түзгенде өздерiнiң сыртқы электрондық деңгейлерiн инерттi газдардың электрондық деңгейлерiне ұқсастыруға тырысады деп есептелді.
Осылай пайда болған куштi кооваленттi байланыс деп атайды. Ядро аралығында электрон ТЫFЫЗДЫFЫ артады, жұптаскан eкi электрон eкi атомга ортақ болады. әр жакка қарай багытгалған eкi электрондық eкi ядро өрiсiндегi қозгалыстың энергетикалық жағдайы әлдеқайда тиiмдi. дұл жагдайда электрондық тыгыздық артады және ядролар бiр-бiрiне тартылады. Ядролар өзара жақындасқандықтан, электрон бұлттары Жaқсы бүркеседi.
Ковалентті байланыс-бір немесе бірнеше электрон жұптары арқылы түзілетін химиялық байланыс.
Ковалентті байланыстың қанықтырғыштығы- атомдардың шектілік байланыс түзетінін сипаттайды,байланыс сандары негізгі және қозған күйдегі жұптаспаған электрондар санына тең болатындығын көрсетеді.Бағыттылығы-ковалентті байланысты түзетін электрон бұлттарының бағыты болады,соның салдарынан АО кез келген бағытта емес ,тек өздерінің пішіндеріне сай бағытта бүркеседі де кеңістікте белгілі құрылысқа ие болады.Полюсті ковалентті байланыс-байланыстырушы электрон бұлты қосылысқан екі атомның біреуіне қарай ығыскан жағдайды айтады.Полюссіз- байланыстырушы электрон бұлты қосылысқан екі атомға ортақ болған жағдайды айтады.
8. Атомдық орбитальдардың гибридтенуі туралы түсінік. Гибридтену типтері. Гиллепси бойынша молекулалардың кеңістіктегі пішіндерін болжау.
Гибридтеліну дегеніміз әр түрлі атомдық орбитальдардың арласып,энергиялық ждағынан тиімді біркелкі АО-ң түзілуі. Мұндай гибридті орбиталдар басқа атомдармен хим-қ байланыс түзуге өте бейім.Гибридті орбиталдардың саны гибридтенуге қатынасқан орбиталдардың санына тең.Гибридті орбиталдар электрон бұлттарының пішіні мен энергиясы жағынан бірдей болып келеді.Олар атомдық орбиталдарға қарағанда хим-қ байланыс түзу сызықтың бойында жатады,сондықтан электрон бұлттарының бүркесуіне қолайлы жағдай туады.АО гибредтену түрлері көп. Олардың ең маңыздыларын қарастырайық: .sp-гибридтену.Периоодтық жүйедегі екінші топша элеиенттерінің галогендерімен қосылыстарында sp-гибридтену түрі іске асды Берилийдің сутекпен және галогендермен қосылыстарын қарастырайық.Берилий негізгі жағдайда жұптаспаған электрондары жоқ.Бірақ оның барлық қосылыстарының құрылысы түзу сызықты болып келеді.Осындай құрылысты ВБ теориясыментүсіндіру үшін,Ве электрондарының қозған жағдайын қарастырады,осының нәтижесінде екі жұптаспаған электрондар пайда болады.Ве-ң әртүрлі екі орбиталі бірігіп жаңа жәнне ұқсас екі гибридті электрондар пайда болады.sp-гибридтену.Бір s-орбитальдарымен және екі р-орбиталдарымен қосылып,жаңа үш sp-гибридтелу дейді.Олардың валенттік бұрыштары
120ºжәне бір жазықтықта орналасқан ең қолайлы жағдай орналасады.Осындай гибридтену периодтық жүйедегі үшінші топша элементтерінің молекулаларына тән.Әр түрлі гибридті орбитальдардың кеңістіктегі құрылысы да әр түрлі болады:сызықты,үшбұрышты,тетраэдрлі .Валенттік жұп электрондардың тебелісу теориясы толық гибридтелу бойынша байланысқа қатыспайтын электрон жұптарының тебісу әсері байланыстырушы жұп электрондарға қарағанда көбірек.Сонымен ВБ әдісін қолданып қорытынды жасауға болады :
1.ВБ әдісі көптеген молекулалардың геометриялық құрылысын түсіндіруге мүмкіндік береді.
2.Гибридті орбиталдардың кеңістікте орналасуы өзара электрон бұлттарының приципіне бағынады.
3.Гибридтеліну коволентті баланыстың ерекше қасиеті,байланыстың бағытталынуын сипаттайды.Ковалентті байланыстың иондық байланыстан басты айырмашылығы,иондық байланысқа бағытталу қасиеті тән емес.
9. Молекулалық орбитальдар әдісі. Екінші период элементтерінің гомо- және гетеронуклеарлық молекулаларының энергетикалық диаграммалары.
Молекулалық орбиталдар әдiсi бойынша молекуладағы электронды бiрнеше орталықты қамтитын (атомдардың ядроларын) толқындық функция арқылы өрнектеуге болады. Оның негiзгi қaғидасы мынадай: молекулада бастапқы атомдарды байқамайды, тек ядроларды бөлiп қарайды. әрбiр электрон барлық ядролар жэне молекуладағы барлық электрондар өрiсiнде қарастырылады. Ең қарапайым жақындасуда молекулалық орбиталдар Шредингер теңдеуiнен шығатын атомдық орбиталдардың сызықтық комбинациясы болып табылады. қазiргi уақытта молекулалық орбиталдар теориясы бiрте-бiрте кеңiнен қолданыла бастады.
Молекулалық орбиталдар теориясы (МО) - молекуланың электрондық құрылысын анықтайтын әдiс. Бұл теорияның негiзгi принципi - молекула бутiн бiр тұтac жүйе. Молекулаға барлық электрондар мен ядролар ортақ. Химиялық байланыстың түзiлуiнiң себебi - барлық электрондардың барлық ядролар мен электрондарға ортақ өpicтe қозғалуы.
МО ерекшелiктерi. Валенттiк байланыс әдiсi АО (атомдьық орбитал) жеке бiр атомның электронының козғалысын сипаттайды. Молекулалық орбиталдар (МО) бүкiл молекуладағы ядроларға ортақ МО - көп центрлi орбиталдар. МО әдiсi молекуладағы әр электронға сәйкес молекулалық орбиталды сипаттайды.
Молекулалық орбитал атомдық орбиталды сызықты комбинациялау нәтижесiнде түзiледi деп саналады. Бастапқы әрiптерiн алып қысқартқанда былай жазылады: АОСК=МО, молекулалық орбитал ол атомдық орбиталдардың сызықты комбинациясы.
Бiрақ, молекулалық орбиталдар түзiлу үшiн АО - орбиталдар кесімді шарттарға сай болу қажет:
_ атомдық орбиталдар энергияларының шамасы жақын болуы;
_ атомдық орбиталдағы бүркескен электрон бұлттары тығыздығының шамасы улкен болуы;
- атомдық орбиталдардың байланыс орталығы бiр симметрияда болуы. молекулалық орбиталдар әдiсiнiң принципi - молекуладағы әp электронды сипаттайтын толқындық функция молекула құрамындағы барлық ядролар өpiciне қатынасты болуы қажет. Ең қарапайым турiнде: молекулалық орбитал дегенiмiз атомдык орбиталдардың өзара сызықты комбинациясын құру нәтижесiнде түзiлген жаңа орбитал.
Молекулалық орбиталдар әдісi молекуладағы электрондар бiрнеше орталықгарға ие болған (атомдардың ядролары) толқындық функциялармен сипатталады. Атомдық орбиталдарды өзара қосып не алып тастаса молекулалық орбиталдар тузiледi.
10.Иондық байланыс. Металдық байланыс. Сутектік байланыс. Молекулааралық әсерлесулер. Ван-дер Вальс күштері.
Иондық байланыстың бірінші теориясын 1916ж.немісғалымы Коссель ұсынды.Оның теориясы бойынша иондық байланыс қарама-қарсы зарядталған иондардың электростатикалық тартылысуынан болады.Иондық байланыс қарама-қарсы зарядталған иондардың кулон күштері арқылы тартылысу ы нәттижесінде түзіледі.Ал кулондық күштер қанықпайтын күштер,демек иондық байланыс қанықпаған байланыс.Иондық байланыстың кесімді бағыты жоқ,бағыттылық көрсетпейді.иондық байланыс қарама-қарсы зарядталған иондардың электростатикалық күштер арқылы тартылысуынан болады.Металдардың сыртқы валенттік электрондары барлық металдарға бірдей тең таралған,яғни ұжымдық боп саналады.Металдардың оң зарядты иондары ортақ электрон бұлттарымен қоршалған және байланысқан,байланыстың мұндай түрі металдық деп аталады.металдардың электрөткізгіштігін осымен түсіндіруге болады.ол тек біртекті атомдар арасында ғана пайда болып қоймайды,құймаларда,металдардың бір-бірімеен қосылыстарында және басқа заттармен қосылысында болады.Металдық байланыстың таби ғатын квант механикалық көзқараспен қарағанда валенттік байланыс әдісі де,молекулалық орбиталь әдісі де тусіндіре алады.Молекулалық орбмталь әдісі бойынша,екі атом әрекеттескенде,атомдық орбитальдар бүркесіп,байланыстыратын және босаң молекулалық орбитальдар пайда болады.Сонымен қатар жүйеде неғұлым атомдар көп болса соғұрлым молекулалық күйлер де көп болады. Металдық байланыс қатты және сұйық күдегі металдардың бәріне тән, ол жекелеген бөлшектердің қасиеті емес,олардың агрегаттарының қасиеті.Металдардың буы жекелегген молекулалардан тұратындықтан,газ тәрізді заттардай қасиет көрсетеді.Металдық байланыс металдардың барлық қасиеттерін:физикалық, механикалық, оптикалық, магниттік,т.б. түсіндіре алады.
Химиялық заттар үш агрегаттық күйде болады: газ,сұйық,қатты.Тіпті,инертті газдар атомдарының валенттік АО толық электрондармен толсада,өте төмен температурада әуелі сұйықталып,әрі қарай қатты затқа айналады. Инертті газдардың ковалентті байланыс түзе алмайтындығы жақсы белгілі. Инертті газдардың әуелі сұйықталып ,сонан кейін кристаллға айналуы,олардың атомдарының арасында тартылыс күштері бар екендігін дәлелдейді. Газдар,сұйық,қатты заттардың молекула арасындағы тартылыс күштерді молекула арасындағы күштердеп атайды.Молекулалар арасындағы тартылыс күштері бар екендігін бірінші рет 1873ж Ван-дер-Ваальс түсіндірген.Идеал газдарға мына теңдеу PV=nRT орындалуы керек.Бірақ іс жүзінде реальды газдарға мұндай заңдылық көп жағдайда орындала қоймайды.Ван-дер - Ваальс осы заңдылықтың орындалмайтын себебін газ молекулаларының арасында өздеріне тән тартылыс күштері арқылы түсіндіреді. Қазіргі кезде молекулалар аралық күштер бірнеше құбылыстардың негізінде пайда болады деп есептейді. Молекулаларды байланыстыратын күштердің табиғатын Ван-дер-Ваальс зерттеген,кейін Дебай,Кезон,Лондон өзінің үлесін қосты.Бүгінгі күні Ван-дер-Ваальс күштері (Ев) бірнеше күштерден тұратындығы айқындалды:Ев= Ек + Ед + Ел + Ет Ек-Кезюм,Ед- Дебай Ел-Лондон Ет-тебісу күштері.Молекулалар арасындағы әрекеттесулер:ориентациялық әрекеттесу,индукциялық әрекеттесу,дисперсиялық әрекеттесу.Полюсті молекулалар біріне-бірі жақындасып,қарсы зарядтармен тартылысып,бағдарласады,ориентациял анады. Осы күштерді оринтациялық күштер деп атайды.Лездік дипольдар бірімен-бірі әрекеттесуі-дисперсиялық әрекеттесу деп аталады.
Молекулалардың өзара әрекеттесуінің тағы да бір түрі - сутекті байланыс. Қайнау температурасы өте биік молекулалар арасында сутекті байланыс түзілетіндігімен түсіндіруге болады. Жалпы сутектік байланыс күші Ван-дер-Ваальс байланыстарына қарағанда күштірек,бірақ ковалентті байланысқа қарағанда төмен. Сутектік байланыстың күші сутекті байланысты тудыратын атомдардың табиғатына тәуелді.Неғұрлым сутек атомымен байланысқан атомның электртерістілігі көбірек болса,соғұрлым сутекті байланыстың энергиясы көбірек,молекула тұрақтылау болады.Жалпы топ бойынша сутектік байланыстың энергиясы кемиді. Электростатикалық әрекеттесу негізінде сутекті байланыс түзіледі.
11. Химиялық реакциялардың жүру заңдылықтары. Термодинамиканың негізгі түсініктері мен заңдары. Термохимиялық теңдеулер. Гесс заңы және одан шығатын салдарлар. Бертло-Томсен принципі.
Ішкі энергия- берілгенжүйенің толық энергисы,яғни энергия мөлшеріни заттың бір моліне жатқызады және олДж,кДж немесе кал,ккал бойынша анықталады.Снымен жүенің толық энергиясы үш санның қосындысына тең: Жүйенің ішікі энергиясы өз кезегінде бірнеше құрамдарды біріктіреді.Ішкі энергия - бұл осы жүйеге кіретін барлық бөлшектердің өзара әрекетесуі және қозғалысы.Ішкі энергия молекулааралық энергия жүйесін құрайтын бөлшектердің алға жүрүші,айналмалы және тербелмелі қозғалысының кинетикалық энергиясының қосындысы. Ішкі энергия ядроның ядромен, электронның электронмен,ядроның электронмен әрекеттесуінің потенциалдық энергиясы,ядролық энергия,ядроның тебілуіне сай энергия.Сонымен бөлшектердің өзара тартылысу және тебілісу энергиясы,ішкі молекулярлық немесе атомдар арасындағы әрекеттесу энергиясы,сонымен қатар, ішкі ядролық процестер энергиясының барлықтары ішкі энергияға жатады.Жүйенің энергиясыз күйге әкелуге мүмкіншілік болмағандықтан,заттардың ішкі энергиясының абсолюттік мәні белгісіз.Әдетте,процестегі жүйенің ішкі энергиясының өзгерісін анықтайды:
Ішкі энергия жүйе күйінің функциясы болып табылады,яғни оның өзгерісі жүенің бастапқы және соңғы күйімен анықталады және процестің жүру жолына тәуелді емес. Ішкі нергияның,жұлудың, жұмыстың өзара байланыстылығы термодинамиканың бірінші заңымен-энергияның сақталу және өзгеру заңымен анықталады:Клаузиус тұжырымы әлем энергиясы тұрақты, Энергия өзінен өзі пайда болмайды және жоғалмайды,ол тек бір түрден екінші бір түрге ауысады.термодинамиканың бірінші заңы былай аталады:кез келген процесте жүйенің сіңірген жылуы жүйенің іішкі энергиясының өзгеруіне және белгілі жұмыс жасауға жұмсалады.
Бұл теңдеудің метематикалық түрі мынадай:
Термодинамикада реакцияның жылу эффектінің бұрынғы мектепте берілген таңбаға қарама-қарсы етіп алынады.Оның себебі термодинамикада жылу эффектілерінің бәрі бір жүйе тұрғысынан қаралады.Реакция нәтижесінде жылу жүеден сыртқа шығып жатқанда,жүйенің жылуы кері кемиді,сол себептен теріс таңбалы етіп алынады.Ал,керісінше жылу сырттан жүйеге сіңіріліп жатса,оның энергиясы артатындықтан жылу эффектісінің тваңбасы оң етіп алынады.Энетальпия да ішкі энергия сияқты жүенің негізгі қасиеттерінің бірі:
Болғандықтан,энтальпияны жүйенің ұлғаю энергиясы немесе P,T=const жағдайдағы ішкі және сыртқы энергияларының қомындысы деп қарастыруға болады.Әдетте энтальпияның өзгеруін заттың моліне қатынасты қарастырады және Джмоль немесе калмольөлшем бірліктерімен белгілейді,
1кал=4,187Дж. әрбір химиялық реакция энергияны сіңіру немесе бөліп шығару арқылы жүреді. Химиялық реакцияның жылу эффектісі деп тұрақты қысымда немесе көлемде шығарылған немесе сіңірілген энергия мөлшерін айтадыЖылу эффектісі 1 моль затқа қатысты болады.Заттардың химиялық формуласымен бірге жылу эффектілері көрсетілетін химиялық реакцияларды термохимиялық реакциялар деп атайды.Әртүрлі процесстердің жылу эффектілерін салыстыру және термодинамикалық есептеулерін жүргізу үшін оларды анықтайтын стандартты жағдайларды таңдап алу қажет.Стандартты жағдайда 1 моль таза зат Р-101,325кПа қысымда 298,15К температурада есептеледі.Термохимиялық теңдеуді жазудың екі түрі бар: термохимиялық және термодинамикалық.Термодинамикалық әдіс бойынша реакцияның жылу эффектісін химиялық теңдеуден кейін бөлек жазады. 1840 жылы Гесс атты химик тамаша заң ашты, кейіннен осы заңға оның аты беріліп, бұл заң реакцияның жылу эффектісін, заттардың түзілу жылулығын немесе олардың жануын есептеуге мүмкіндік береді. Сонымен қатар тузілуі қиын, ал кейде мүлде мүмкін емес реакцияның жылу эффектісін табуға жол ашты. Есептеуге қажетті стандартты жылу түзілулер Нтүзо фундаменталды термохимиялық анықтамаларда жиылған.Гесс заңы: реакцияның жылу эффектісі заттың тек бастапқы және соңғы күйінің түріне(ТАБИҒАТЫНА) ТӘУЕЛДІ БОЛАДЫ,БІРАҚ РЕАКЦИЯ ЖҮРУ БАҒЫТЫНА ,яғни аралық сатылардың сипатына және санына тәуелді емес.∆Нхим.реак=Qp=∑∆Hреак.өнімдері -∑∆Нбастапқы реагенттер. Салдары:1Реакция жылу эффектісі ,өнімнің түзілу жылуларының қосындысынан бастапқы заттардың түзілу жылуларының қосындысын алып тастағандағы айырымына тең.2. Реакцияның жылу эффектісі бастапқы заттардың жанужылуларының қосындысынан реакция өнімдерінің жану жылуларының қосындысын алып тастағандағы айырымына тең.
12. Химиялық реакциялардың бағытын анықтайтын факторлар. Энтропия туралы түсінік. Термодинамиканың екінщі заңының статискалық сипаты. Больцман формуласы. Ең маңызды термодинамикалық функциялар. Гиббс энергиясы.
Табиғатта өз бетінше сыртқы әсерсіз жүретін процесстер қатары бар. Олар,мысалы: қолдан лақтырылған тас жерге қарай өздігінен қозғалады. Тас құлағанда потенциалдық энергиясын жоғалтады.Осы процесте тастың потенциалдық энергиясы кинетикалық энергияға айналады. Ретсіздік дәрежесі энтропия деп аталатын,физикалық ұғыммен өрнектеледі және ∆S таңбасымен белгіленеді. ∆S=∆QT Энтропия - бөлшектің қозғалысын сипаттайтын заттың қасиеті-ол берілген жүйенің ықтималдық сипаты болуы мүмкін.Термодинамиканың 2 заңының бірнеше түсініктемелері бар. Олардың біреуі аса қарапайым: жылу өздігінен суық денеден ыстыққа беріле алмайды. Термодинамиканың 2 заңы тікелей энтропиямен байланысты. Химиялық термодинамиканың негізгі теңдеуі Гиббс энергиясы болып табылады. ДельтаG=дельта H-TдельтаS. Мұндағы делтаН және делтаS күй функциялары: дельтаН-энтальпия, дельтаS-энтропия,Т-температура. Дельта G- Гиббстің еркін энергиясы, оны алғаш рет ұсынған американдық ғалым математик және термодинамик Д.У.Гиббстің атымен аталады. Дельта G- Гиббстің еркін энергиясы - энтальпия мен энтропияның дельта S арасындағы өзара байланысты көрсетеді. Энтальпия кез келген химиялық реакцияны энергиясы төмен күйде жүруіне жағдай жасайды, бөлшектерді мейлінше күрделі қосындыға біріктіруге бағыт береді.энтропия жүйеде ретсіздіктің максимальды өсу бағытына ұмтылатын, яғни бөлшектер мейлінше ретсіз орналасатын күй функциясы. Н және S функциялары бір бірімен тәуелсіз болса да, көптеген хим-қ процестер осы екі функцияның өзгерісімен жүреді. Хим-қ реакцияларда бөлшектер құрылысы күрделі бөлшектерге бірігуге ұмтылып, энтальпияны төмендетеді. Екінші жағынан бөлшектер жекеленіп, энтропияны үлкейтеді. Бұл функцияны изобара-изотермиялық потенциал д.а., кейде оны жай ғана термодинамикалық потенциал д.а. гиббс энергиясы,энтальпия Н және энртопия S тәрізді физ-қ шамалар күй функциясы д.а. кейбір заттар мен иондардың стандартты түзілу Гиббс энергиясы G298 (кДжмоль). Стандартты түзілу энергиясының көмегімен кез келген хим-қ процестің стандартты бос энергиясының өзгерісін есептеу ыңғайлы. Стандартты бос энегрияның өзгерісі былайша өрнектеледі:
Келтірілген теңдеуден мынадай қорытынды шығады: хим-қ реакцияның бос энергиясы жеке реакция өнімдерінің түзілу бос энергияларының қосындысынан бастапқы реагентттердің мәндерінің қосындысын алып тастағандағы айырымға тең. Дельта Gº шамасы бойынша процестің мүмкнідігін және мүмкін еместігін анықтауға болады. барлық өздігінен жүретін хим-қ процестер жүйеде Гиббс энергиясы төмендейтін бағытта жүреді. Процестің жүру мүмкіндігі дельта G0 орындалуына байланысты болады, яғни дельта G өзгерісі теріс таңбалы шама болуға тиіс. Егер G~=40 кДжмоль град немесе бұдан да төмен болса, онда реакция өздігінен жүреді.
Энтропиялық фактор- Т дельта S реакцияның өздігінен жүру қабілетіне белгілі бір дәрежеде әсер етеді. 0ºК жақын температурада, Т дельта S шамасы 0-ге жақын болады, сондықтан дельтаG шамасы мен таңбасына ең алдымен энтальпиялық фактор әсер етеді. Гиббс энергиясының шамасына әсер ететін энтропиялық фактор температураның жоғарылауымен үлкейеді. өте жоғары температурада энтропиялық фактор Тдельта S энтальпиялық факторды бүркелемейді. Жоғары да емес, төмен де емес температурада дельта G- ге екі фактор да әсер етеді. Энтальпия, энтропия және Гиббс энергиясының өзара және температурамен байланысты. Гиббс энергиясының өзгерісі реакция өнімдері мен бастапқы заттардың табиғатына және физ-қ күйіне тәуелді болады, процестің жүру жолына тәуелді емес.
13. Химиялық кинетика. Химиялық реакциялардың жылдамдығы және оған әсер ететін факторлар. Концентрацияның әсері. Әрекеттесуші массалар заңы.
Химиялық кинетика - химиялық реакцияның жылдамдығы мен механизмі туралы ілім. Хиимиялық кинетика - химиялық технология процестерінің жаңа түрлерін құру мен оларды жетілдірудің ғылыми негіздері.Химиялық кинетика әдістерін биологияда және жаратылыстану ғылымының басқа салаларында қолданады.Химиялық реакцияның молекулалығы- химиялық реакцияның бірлік актісіне қатынасатын молекула сандарымен анықталады.Реакция молекулалығы бойынша мынандай айырмашылықтар байқалады;а)мономолекулярлы реакциялар-бірлік актіде бір молекула қатысады.б) бимолекулярлы реакциялар- реакцияның елементарлы актісінде екі молекула қатынасады.в) үшмолекулярлы реакциялар- элементарлы актісінде үш молекула қатынасады.Төртмолекулярлы және одан да көп реакциялардың болу мүмкіншілігі нольге тең.Реакцияның реті деп реакцияның жылдамдық теңдеуіндегі концентрацияның стехиометриялық көрсеткішінің қосындысын айтады.Реакцияның реттігі мен молекулалығы тек қарапайым реакцияларға ғана сәйкес келеді. Реакцияның реттігін эксперимент әдісімен анықтайды,ол үшін реакция жылдамдығының концентрацияға тәуелділігін зерттейді.Реакция реті тәжірибе бойынша анықтаған реакцияның реттігін химиялық реакция бойынша табылған шамаға сәйкес келмесе ,онда реакция күрделі бірнеше сатымен жүреді деп күмәнсіз айтуға болады. Химиялық реакцияның жылдамдығы әр түрлі болады. Кейбіреулері өте тез, біреулері баяу болады. Оның жылдамдығы басқа процесстердің жылдамдығы сияқты уақытпен өлшенеді.химиялық реакция жылдамдығына : әрекеттесуші заттардың табиғаты, қысым, температура, әрекеттесуші заттардың концентарциясы және катализатор әсер етеді. Әрекеттесуші заттардың табиғатының әсері. Заттың табиғатының хим.реакцияның жылдамдығына әсері үлкен. Кейбір реакциялар өте тез, біреулері баяу жүреді. Мыс: а) 2Rb
2H2O=2RbOH+H2(қопарылыс болады). б) Ag+H2O=реакция өте баяу жүреді,айлап, жылдап өтеді.
реакция жылдамдығына концентарцияның әсері. Хим-қ реакцияның тез жүруі үшін әрекеттесуші заттардың молекулалары жиі түйісулері қажет екендігі анықталды. Түйісуді жиілендіру үшін алдымен әрекеттесуші молекулалардың санын, демек концентрациясын өсіру керек. Реакцияның жылдамдығына әрекеттесуші заттардың концентарциясының әсерін Норвегия ғалымдары Гульдберг және Вааге 1867 жылы мынадай қорытындыға келді: Хим-қ реакцияның жылдамдығы реакцияласушы заттардың концентарцияларының көбейтіндісіне тура пропорционал. Мұны әрекеттесуші массалар заңы деп атайды. Катализатордың әсері. Хим-қ реакцияның жүру жылдамдығына бөгде заттардың әсері болатындығы XVIII-ғасырда белгілі болды. 1812 жылы орыс химигі Кирхгоф крахмалға күкірт қышықылын араластырып қыздырса оның қантқа айналатынын, бірақ реакция нәтижесінде күкірт қышықылы өзгермей қалатынын байқаған. Сөйтіп реакцияның жылдамдығына катализатор заттардың үлкен әсері болатындығы анықталды.Катализатор- реакцияның жылдамдығын өзгертіп, бірақ реакция нәтижесінде өздері хим-қ өзгермей қалатын заттарды айтамыз.Қалыпты жағдайда әрекеттеспейтін кейбір заттар катализатор қатысында реакцияласа бастайды. Катализаторлар реакцияның жылдамдығын млн есеге дейін өсіре алады. Катализатор қатысуымен жүретін процестер табиғатта және өнеркәсіпте өте көп. Тірі организмдегі толып жатқан процестерде, мысалы ас сіңіруде, органикалық катализаторлар- ферменттер, өсімдіктердің қоректенуіне топырақта болатын ... жалғасы
Ежелгі атомистика теориясы Ломоносовтың атомдар туралы көзқарасынан тым алыстау екені анықталды. Химияның даму тарихының бір дәуірі алхимиямен байланысты.Алхимия өз заманына керек болды.Алхимияның негізгі міндеті-философиялық тастың көмегімен,жай заттарды алтынға айналдыру еді. Олардың негізгі мақсаты-жай металдардың құрамына асыл қасиеттерді кіргізу арқылы алтын алу.Алхимия Аристотельдің жалған теориясына негізделгенімен,зерттеу барысында көптеген химиялық заттар және сол заттарды алу әдістерін ашуға мүмкіндік жасады.Неміс ғалымы Шталь 17 ғасырда флогистон теориясын ұсынды.Бұл теория бойынша , барлық жанатын заттардың және металдардың құрамында ерекше зат-флогистон болатындығын айтты. Мысалы,металдарды қақтағанда флогистон бөлініп шығады деп санады:темір-темір қағы+флогистон.Демек,флогистон теориясы бойынша ,темір(күрделі зат) қаққа(жай зат) және флогистонға ыдырайды.Бұл қате теория химияның даму тарихында пайдалы ықпалын жасады.Ф.Энгельс былай жазды:химия флогистон теориясы арқылы,алхимиядан құтылды.2-нші кезеңі Ломоносовпен Дальтонның жұмыстары жатады.Химияның жекелей ғылым болып дамуы,17ғ-дың 40жылдары басталды.Осы кезде,Ломоносовтың Математикалық химияның элементтері деген жұмысында,молекулярлық-атомистикалы қ көзқарас бірінші рет ұсынылды.Дальтон 1808ж Химиялық философияның жаңа жүйесі деген жұмысында атомдық-молекулярлық көзқарасты мазмұндады.
Химиядағы стехиометриялық заңдар деп, құрам тұрақтылық ,еселі қатынастар,эквиваленттер ,газдар,Гей-Люссактың көлемдік қатынастар және Авогадро заңдарын айтады.1.Құрам тұрақтылық заңы. Прусттың 1801ж ашқан құрам тұрақтылық заңы:Әрбір таза заттың элементтік құрамы әрқашанда тұрақты,ол заттардың алу әдісіне байланысты емес.мысалы әр түрлі жолмен алынса да көміртек диоксидінде 27,29 процент көміртек және 72,71 оттек бар.19ғасырдың басында Бертолле кейбір заттардың құрамы ауыспалы болатындығын ескертіп,заңға күмән келтірді.Пруст пен Бертолле арасындағы таласты,орыс ғалымы Курнаков шешті. Курнаков құрамы тұрақты қосылыстарды дальтонидтер деп,дальтонидтерге қарсы құрамы тұрақсыз қосылыстарды бертолидтер деп атады.Эквиваленттер заңы. Эквиваленттер заңы-химиялық заңдардың ең бір негізгісі .Олар химиялық элементтер бір-бірімен өздерінің химиялық эквиваленттеріне сай ,белгілі сандық қатынаста әрекеттесетінін белгілейді.Эквивалент дегеніміз бағалары тең деген сөз.Эквивалент деп берілген қышқылдық негіздік реакцияда сутектің 1 катионына ,немесе берілген тотығу-тотықсыздану реакциясында 1 электронға сәйкес шартты немесе нақты бөлшекті айтады.Зттың эквивалентінің 1 моль мөлшерінің массасын оның эквивалентінің молярлық массасы деп атайды.оның өлшем бірлігі-гмоль.3.Еселі қатынас заңы.Дальтон 1803ж еселі қатынастар заңын өрнектеді: егер екі элемент өзара бірнеше химиялық қосылыстар түзсе,онда бір элементтің массасы осы қосылыстардағы екінші элементтің массаларына бүтін сандар ретінде қатынасады.Дальтон айтуы бойынша,атомның абсолюттік массасын анықтау мүмкін емес, сутектің атомдық массасын бірге тенестіріп,салыстырмалы атомдық масса туралы түсінік енгізді.Сутекте,оттекте изотоптар бар болғандықтан оны көміртекке өзгертті.Химиялық элементтің салыстырмалы атомдық массасы-өлшеусіз шама,олар көміртек бірлігімен өлшенетін атомдық масса болады. Атомның массасы көміртек массасы бірлігінің оның салыстырмалы массасының көбейтіндісіне тең.4.Авогадро заңы. Моль-заттың мөлшері. Көміртектің С12 изотопының 6,02*1023 атомдары бар.Мына сан 6,02*1023 Авогадро тұрақтылығы деп аталады.яғни,моль-заттың мөлшері ,ол құрылыстық бірлікке 6,02*1023 дискретті.Авогадро заңы-бірдей жағдайда алынған газдардың тең көлемінде молекулалар саны да бірдей болады. Авогадро заңынан мына салдар шығады:молекулалық сандар бірдей газдардың ,бірдей жағдайда,көлемі де бірдей болады.
2. Эквивалент, эквиваленттік фактор, эквиваленттің молярлық массасы. Эквивален ттер заңы. Атомдық және молекулалық массаларды анықтау әдістері.
Эквиваленттер заңы. Эквиваленттер заңы-химиялық заңдардың ең бір негізгісі .Олар химиялық элементтер бір-бірімен өздерінің химиялық эквиваленттеріне сай ,белгілі сандық қатынаста әрекеттесетінін белгілейді.Эквивалент дегеніміз бағалары тең деген сөз.Элементтің химиялық эквиваленті деп сутек массасының 1,008 бөлігі немесе оттек массасының 8,0бөлігі қосылатын осы элементтердің мөлшерін немесе қосылыстарында орнын басатын осындай мөлшерді айтады.Эквивалент деп берілген қышқылдық негіздік реакцияда сутектің 1 катионына ,немесе берілген тотығу-тотықсыздану реакциясында 1 электронға сәйкес шартты немесе нақты бөлшекті айтады.Бөлшектің берілген қышқылдық- негіздік реакцияда сутектің бір катионына сәйкес ,немесе берілген тотығу-тотықсыздану реакциясында 1 электронға сәйкес келетін үлесін эквиваленттік фактор fэкв деп атайды.Заттың эквивалентінің 1 моль мөлшерінің массасын оның эквивалентінің молярлық массасы деп атайды.оның өлшем бірлігі-гмоль.Күрделі заттың эквиваленттік массасын есептеу негізіне оның массалық бірлікпен алынған гмоль молярлық массасы алынады.Оксидтің экв.массасы массалық бірлікпен алынған оның молярлық массасының ,металдың валенттілігі мен оның атомдар саны арасындағы көбейтіндіге бөлінген теңдеуге тең.Гидроксидтің экв. Массасы оның молярық массасының металдың валенттігіне немесе гидроксил топтарының санына бөлінген теңдеуге тең.Қышықылдың экв.массасы оның молярлық массасының қышқылдың негіздік санына бөлінген теңдеуге тең. Тұздың экв.массасы оның молярлық массасының,металдың валенттігі мен атомдар саны арасындағы көбейтіндіге бөлінген теңдеуге тең.
3. Атом құрылысы. Атом құрылысының күрделілігін дәлелдейтін тәжірибелер: М. Фарадейдің тәжібилері, катод сәулелері, электронның ашылуы, Э. Резерфордтың тәжірибелері және т.б.
Атом құрылысының күрделі екендігі туралы ұғым атом бөлшектерінің бірі болып саналатын электрондар құбылысы ашылғаннан кейін барып қалыптасты. Бірінші рет электрондар ағынын ,катод сәулесін ашқан Крукс 1879ж байқаған.Ауасыз түтікшеде ,үлкен кернеулікте электр тогы жүре бастағаны байқалады және түтікшенің ішінде сәуле пайда болды.Бұл сәулелер катодтан шыққандықтан,оны катодты сәулелер деп атады. Магнитті немесе электр өрістері болмаған жағдайда катодты сәулелер электр не магнит өрістерінде оң зарядталған электрод жағына ығысады.сол себептен оны теріс зарядталған бөдшектердің ағыны деп айтуға болады.Дж.Томсон 1897ж зарядтың электронның массасына қатынасын өлшеді және осы қатынастың катодтың табиғатына,газдың химиялық құрамына және тәжірибенің жағдайына байланысты еместігін көрсетті. Бір ғана елементарлы бөлшектен тұратын қарапайым ядро- сутек атомының ядросы болып табылады. Сутек атомының иондануы нәтижесінде Крукс түтігінде түзілетін бөлшекті 1920 жылы Э.Резерфорд протон деп атады,яғни бірінші деген мағынада. Бастапқыда басқа да элементтердің атом ядросы протоннан,ал атом электрон мен протоннан тұрады деп есептеді. Резерфордтың тәжірибелері атомның құрылысы планетарлы жүйеге ұқсас екендігін дәлелдеді: ортасында тығыз орналасқан оң зарядты ядро болады, ал ядроның айналасында, ядроның мөлшерімен шамамен 10000 есе көп,көп женіл теріс зарядталған бөлшектер - электрондар айналып жүреді.Кемшілігі: Классикалық электродинамиканың заңдары бойынша,егер электронның ядроға кулондық тартылыс күші ортадан тебісу күшіне тең болса,онда ядроның маңындағы шеңбер бойынша электронның қозғалысы тұрақты болады. Резерфордтың моделі сутек атомының тұрақтылығын да немесе оның спектірінің сызықтық қасиеттерін де түсіндіре алмайды.
1933ж Иваненко ,Гапон және олардан тәуелсіз Гейзенберг атом я дросының протонды-нейтронды құрылыс моделін құрды. Осы модель бойынша барлық элементтердің атом ядросы протон саны периодтық жүйедегі элементтердің рет номеріне сәйкес,ал нейтрон саны атомның массасынан протон санын алып тастағанға тең.
Ядролық физиканың даму тарихына көз жүгіртсек, оның қайнар көзі 1886 жылы француз ғалымы А. Беккерель ашқан табиғи радиоактивтік құбылысынан басталады. А. Беккерель уран тұзының фотопластинаға әсерін зерттеген. Тәжірибелер барысында ол мына құбылысты байқаған: уран тұздары тығыз қара қағазбен оралған фотопластинаға әсер етіп, оның қараюын туғызатын, өтімділігі жоғары белгісіз сәулелерді шығарады екен. Мұқият зерттеулер нәтижесінде Беккерель өтімділігі жоғары белгісіз сәулелерді уран атомының өзі, ешқандай сыртқы әсерсіз-ақ, өздігінен шығаратынын анықтады. Белгісіз сәулелердің заттармен әрекеттескенде:
1) фотопластинканы қарайтатыны, яғни химиялық әсерінің бары;
2) газдарды иондауы;
3) кейбір қатты денелер мен сұйықтардың люминесценциясын туғызатыны сияқты қасиеттері белгілі болды.
Бұл құбылысты зерттеу жұмыстары бірден басталды. Францияда 1898 жылы М.Склодовская-Кюри мен П. Кюри торий () элементінің өздігінен сәуле шығаруын ашты. Өздігінен сәуле шығаратын химиялық элементті радиоактивті деп, ал сәуле шығару процесін радиоактивтік деп атауды М. Кюри ұсынған еді. Радиоактивтік латынның "radio" -- сәуле шығару, "activus" -- әрекетті деген сөздерінен алынған. Осы жылы ерлі-зайыпты ғалымдар тонналаған уран кенін өңдеу арқылы, радиоактивті екі жаңа химиялық элементті бөліп алады. Радиоактивтігі ураннан миллион есе қарқынды элементті () радий, екінші элементті М. Склодовскаяның отанының құрметіне полоний () деп атаған. 1908 жылы Резерфорд спектрлік анализ әдісімен радиоактивті газ -- радонды () ашты. Ауқымды жүргізілген зерттеулер Менделеев кестесіндегі қорғасыннан кейінгі ауыр элементтердің ядроларының бәрінде табиғи радиоактивтік бар екенін көрсетті. Кейбір жеңіл элементтердің де, мысалы, калийдің изотопы ,көміртегінің изотопы және т.б. табиғи радиоактивтік қасиеттері ашылды.
4. Атом құрылысының Н. Бор теориясы. Сутек атомының спектрі. Кванттық теорияның негізгі идеялары. Квант сандары.
Сутек спектрі ең қарапайым.Көрінетін денгейде Нα,Нβ,Нγ,Нσ таңбасымен белгіленген тек 4 сызық бар.Соған жақын жатқан ультрафиолет деңгейінде тағы да бір-бірінне жақын жатқан сызықтар бар.Бұл сызықтар алдында көрсетілген 4сызықтармен бірге сызықтар құрамын құрайды ,оларды Бальмер сызықтар құрамы деп атайды.Швейцария ғалымы Больмер 1885 жылы осысерия сызықтардың толқындық санын ашты: Мұнда R=109678 см¹,-Ридберг түрақтылығы аталған,тұрақты сан,N=3,4,5,6,...Сутек спектрін қарастырғанда оны зерттеген ғалымдардың Лаймен,Пашен,Бреккет атымен аталған басқа сериялары да ашылды.Бұл сериялардағы сызықтардың толқындық сандары төмендегі келтірілген жалпы формуламен есептелінеді:
Сонымен сутек спектріндегі көптеген сызықтар тек бір ғана байланыстылықпен өрнектеледі,ал спектрдің негізінде тек бір құбылыс жатқанын болжамдауға болады.Атомдардың сәуле шығаруы электрондардың қозғалысына байланысты деген көзқарас та болуы мүмкін.Бірақ атомдардың толқын ұзындығы белгілі сәуле шығаратындығы жәнне спектрдің сериялы сызық бойынша көрінетіндігі түсініксіз болатын.Сутек спектрінің сызықтық қасиетін түсіндіретін бірінші ғалым Нильс Бор болды.Ол 1913ж.Резерфордтын болжамын және Планктың кванттық теориясын қолданып,сутек атомының құрылыс теориясын ашты.Бор теориясының негізі ретінде екі постулатты ұсынды:1постулат.Элаектрон ядроның айналасында белгілі тұрақты орбита бой ынша айналып жүреді.Бұл орбитада электрон ешқандай энергия жоғалтпайды және сіңірмейді.Бор тұрақты орбитадағы электронның қозғалыс м-лшерінің моменті n2PI шамасына қатынаста болатындығы туралы болжамдады.Мына тендік:
Орындалған жағдайда,электронның қозғалысы тұрақты болуға тиісті,мұнда
m- электронның массасы,
V- жылдамдық,
r - орбитаның радиусы,
h - Планк тұрақтысы,
n - 1,2,3,...бүтін сандар.
Сутек атомы үшін,тұрақты орбиталдардың радиустары өзара бүтін сандардың квадраттары сияқты болады:
R1:R1:...Rn=1²:2²:3² ... n²
Бордың болжамы бойынша кез келген тұрақты орбитада айналған кезде электрон энергиясы тұрақты.электронның энергиясы ядроға жақындаған сайын азая береді:
Е1E2E3 ... ..En
Бор теориясындағы энергия,қозғалыс мөлшерінің моменті сияқты,квант сандарымен анықталады.Ол мынаған тең:
2постулат.электрон бір орбитадан екіншіорбитаға ауысқагн кезде ғана энергия шығарылуы немесе сіңірілуі болады,мұнда белгілі бір жиілікпен тербелетін квант энергиясы бөлінеді немесе сіңіріледі:
атомның ядроға алыс орбитадағы энергиясы,
ядроға жақын орбитадағы энергиясы
Электрон кіші энегетикалық жағдайдан жоғары деңгейге ауысқан кездеэнергия сіңіріледі. Ал электрон жоғары деңгейден кіші энергетикалық деңгейге ауысқан кезде энергия бөлінеді.Электонның орнына байланысты,екі жағдлайдағы атомның энергиясын білу арқылы,ауысатын электронның тербеліс жиілігін есептеуге болады.Егер бір заттың атомдарына сыртқы энергия көзімен әсер етсе,онда электрон квант энергиясын сіңіріп,жоғарырақ орбитаға ауысады,демек,электрон қозған жағдайда келеді.Егер осындай ауысу жоғары орбитадан ядроға жақынырақ жатқан орбита аралығында болса,онда энергия сәулелік энергия- фотон түріде бөлінеді:
ΔE=Eж−Eа=hν
Спектрде ол белгілі сызықтар түрінде шығады.осы серияның әрбір сызықтарының толқын ұзындығы мына теңдеу бойынша,өте дәл есептелінеді:
Мұнда R- тұрақты шама,Ридберг костантасы.
Сызықтардын жиілігіфизи калық қасиеті ләі беклгісіз бүтін сандарға байланы сты.Бор бойынша,жақын және алыс орбиталдардысиппаттайтын,N- квантты сандарға жатады.Бор осы теңдеудің және атом құрылысының постулаттары негізінде,сутек атомы спектріндегі барлық сериялардың толқын ұзындығын есептейді.Жоғарыда көрсетілген теңдеулерден келесі өрнек алынады:
Сутек спектріндегі сериялардың сызықтары былай түсіндіріледі:егер электрон кез келген алыс жатқан орбитадан ядроға жақын бірінші орбитаға ауысса,онда спектрдің ультрафиолет ауданындағы жиілік толқындары бөлінеді.көп ұзамай,бұл серияны Лайман ашты .Ол Бор теориясының жақсы жетістігі еді.Егер электрондар кез келген алыс жатқан орбитадан екінші орбитаға ауысса,онда спектрдінң көрінетін сериясы алынады.Тәжірибелер Бор теориясын жақсы дәлелдеді.Есептеу арқылы алынған Ридберг тұрақтылығы,тәжірибе жүзінде алынған шамамен тура келді:
Бұл атомдарда тұрақты орбиталар болатындығын және Бор теңдеулерінің дұрыстығын дәлелдейтін үлкен жетістік еді.Бірақ Бор теориясының жетістігі тек сутек атомымен ғана шектелді.Гелий атомы үшін бул теория жарамады,ал күрделі атомдар үшін Бор теңдеулері бойынша есептеулерді мүлдем жүргізуге болмады.Көп электронды атомдардың спектріндегі сызықтар одан сайын күрделі бола бастады.спектрдің мультиплеттігі магтитті және элекр өрісінде күшейе түсті.
1925-26 жылдары неміс ғалымы Гейзенберг пен австриялық Э. Шредингер өз беттерінше жаңа механиканың екі варианттарын ұсынды. Бұл екі варианттың нәтижесі бірдей, бірақ, есептеуге қолайлы болғандықтан Шредингер теңдеуі жиірек қолданылады. Атом мен молекула құрылыстарының қазіргі теориялары да әдіске сүйенеді. Бұл теория микробөлшектердің қозғалысын және күйін сипаттайтын болғандықтан квант механикасы деп аталады. Ал Ньютон заңдарына негізделген микроденелерге арналған механика - классикалық механика д.а.
Квант сандары тек сутек атомындағы электронды сипаттап қоймайды, кез келген басқа атомдардағы электрондарды да қамтиды. Олар атомның қасиеті және химиялық байланыстың табиғатын түсіну үшін аса маңызды роль атқарады. Квант сандары электрон қозғалысын физикалық тұрғыдан сипаттайды, әрі электрон бұлтының геометриялық ерекшеліктерін бейнелеп береді. Бас квант саны Бор теориясынан шығатын санмен бір мәндес. Кванттық механикалық көзқарас бойынша бас квант саны орбитальдағы электронның энергиясын және орбитальдардың көлемін көрсетеді.
5. Көп электронды атомдардың орбитальдарының электрондармен толу принциптері: Энергияның минимум принципі, Паули принципі, Хунд ережесі. Клечковский ережелері. Элементтердің электрондық формулалары.
Элементтердің және оның қосылыстарының химиялық қасиеттері электрондық құрылысына байланысты. Атомдағы электрондардың энергетикалық орбитальдар бойынша орналасуы былай жүреді:1 энергия минимумы принципы;2Паули принципі 3 Гунд және Клечковский ережелеріне сай.
Энергияның минимум принципі бойынша, электрондар әуелі энергиясы ең кіші орбитальдарға орналасады. Ең кіші энергия n=1 энергетикалық деңгей, осы орбитальда электрон өте тұрақты жағдайда болады. Сондықтан, көп электронды атомда әуелі n=1 деңгейі, сонан кейін n=2, n=3 ... деңгейлері толтырылады. Бір бас квант саны шектігінде n орбитальдарының электронға толуы мына тәртіппен жүреді.s--p--d--f Кейбір уақытта бұл ережеден ауытқу байқалады. Кейбір жағдайда электрондар бір типті орбитальдан екінщі типті орбитальға ауысып кетуі мүмккін.
Паули принципі.Көпэлектронды атомдарда электронның жағдайы Паули ашқан квантты - механикалық заңмен өрнектеледі.Бұл заң бойынша, төрт квант сандарымен суреттелетін бір кванттық жағдайда тек бір ғана электрон болады. S-орбитальда спиндері антипараллель тек екі электрон ғана орналасады.Салдары: 1. Деңгейдегі электрондардың максимал саны негізгі кванттық санның екі еселенген квадратына тең 2. Деңгейшедегі электрондардың саны 2(2l+1) ге тең.
Гунд ережесі. Бір деңгейшелер аралығында сәйкес орбитальдарды электрондармен толтырған кезде,электрондар спиндерінің қосындысы максимал болуы керек.Барлық орбиталдарда бір электроннан орналасқаннан кейін ,келесі электрондар жұптасып орналасады.
Клечковский ережесі.Орыс ғалымы Клечковский өте қарапайым және нақты ереже ұсынды:элементтердегі атомдар электрондарының толтырылуы,квант сандары n+1 қосындысының өсуі тәртібі бойынша жүреді;егер екі деңгейдің қосындысы тең болса,онда бірінші n шамасы кіші деңгей толтырылады.
6. Периодтық заң мен периодтық жүйе. Периодтық заң. Атомдардың электрондық құрылымы және Д. И. Менделеев жасаған элементтердің периодтық жүйесі. Атомдар мен иондардың периодты түрде өзгеретін қасиеттері. Элементтердің периодтық кестесінің түрлері: олардың артықшылытары мен кемшіліктері.
Атом-молекулалық теориядан кейінгі химия тарихындағы ерекше маңызды ірі табыс Д.И.Менделеев ашқан периодтық заң болды.Осы заң негізінде элементтердің периодтық жүйесі жасалы. Периодтық заң-жаратылыстың негізгі заңдарының бірі,оның ашылуы химияда жаңа дәуір туғызды.Периодтық заң химиялық элементтерді,олардың қосылыстарын зерттеуге,заттың құрылысының қалай екенін іздеуге теориялық негіз болды. Осымен бірге атом құрылысының күрделілігін теория жүзінде жәнетәжірибе арқылызерттеу процесіндегіашылған жаңалықтар периодтылықтың мазмұның терең түсінуге мүмкіншілік туғызды.Химия тарихында ерекше табысты ғасыр,химияның теориялық негіздері атом-молекулалықтеория жәнеэлементтердің периодтық жүйесі ашылған - XIXғ-да химияда элемент жайындағы білім аса көбейді.Осы кезде белгілі болған элементтер саны 28 болса,Д .И.Менделеевтің заманыңда 63,ғасырдың аяғында 83
Болды.Осы кезде 109 элемент белгілі.Период ішіндегі элементтердің қасиеттерікүшті сілтілік металдан басталып,бірте-бірте металдық қасиеті кеміп,амфотерлі қасиеті артып,ақыры,бейметалдардың ең күштілерігалогендерге келіп.яғни инертті газбен бітеді.Горизонталь бағыт,период бойымен солдан оңға қарай.Бұл бағытта атомдық салмақ, ядро заряды, э лектрон саны біртіндеп өседі,осы ған сай металдық қасиет әлсіреп,бейметалдық қасиет күшейеді.Мундай өзгеру алғашқы периодтарда айқынырақ, кей інгі периодтарда баяуырақ болады.Мысалы,C мен Nқарағанда Sn менSb айырмашылығы аз.Вертикаль бағыт,негізгі және қосымша топшалар бойымен жоғарыдан төмен қарай.Бұл бағытта атомдық салмақ,ядро заряды,электрон саны сылыстырмалы түрде өзгереді,бірақ электрондық кұрылымының ұқсастығына байланысты және квант қабаттары санының артуына сай элементтердің қасиеті өте баяу өзгереді,айырмашылықтан ұқсастық көп.Гортизонталь жәнне вертикаль бағыттағы өзгерушілікті ұластыра қарасақ,кестенің сол жақ төменгі бұрышында негізгі топшаларда нағыз күшті металдар,оң жақ бұрышындағы негізгі топшаларды нағыз бейметалдар орналасқан.
7. Химиялық байланыс және зат құрылысы. Льюис пен Коссель теориялары. Коваленттік байланыс. Гайтлер мен Лондонның жұмыстары. Валенттік байланыс әдісі.
Химиялық байланыс -- атомдардың химиялық қосылыс түзіп әрекеттесуі.
19 ғасырдың басында К.Бертолле Химиялық байланыс түзілуінің гравитациялық,
1810 жылы Й.Я Берцелиус электрхимиялық,
1861 жылы орыс ғалымы А.Н Бутлеров заттардың химиялық құрылыс теориясын,
1915 жылы неміс физигі Кассель,
1916 жылы ағылшын ғалымы Г.Льюис электрондық теорияларын ұсынды.
Кванттық механика көзқарасы тұрғысынан Хиялық байланыс валенттілік сұлба және молекулалық орбиталдар әдісімен түсіндіріледі. Химиялық байланыс түзілуіне қарай төртке бөлінеді: иондық ковалентті металдық сутектік
Иондық Химиялық байланыс электр терістілігі бойынша айырмашылығы үлкен металл мен бейметалл атомдары арасында түзіледі. Химиялық әрекеттескенде валенттік электрондарын беріп, оң зарядты иондарға (катиондарға): К־ - е - К+ бейметалл атомдары электрондар қосып алып, теріс зарядты иондарға (аниондарға) айналады: Cl+е - Cl־. Әр аттас зарядты иондар бірін-бірі тартып молекула құрайды: K+ + Cl ־= KCl. Иондық Химиялық байланыс қарама-қарсы зарядталған иондардың электрстатикалық тартылысы нәтижесінде жүзеге асады. Иондар түзілу арқылы жүзеге асатын байланыстарды иондық байланыс, қосылыстың өзін иондық қосылыс деп атайды. Иондық қосылыстардың қайнау, балқу темп-расы жоғары, қызуға тұрақты, олар полюстік еріткіштерде тез ериді, ерітінділері электр тогын жақсы өткізеді.
Ковалентті Химиялық байланыста -- әрекеттесуші атомдарға ортақ электрондар жұбы пайда болып, олардың санына қарай бір немесе бірнеше еселенген байланыстар түзіледі. Мысалы, сутек молекуласы атомдары арасында бір (Н:Н), оттек молекуласында қос (:О::О:), азот молекуласында үш (:N:::N:) еселенген ковалентті Химиялық байланыс бар. Ковалентті Химиялық байланыстар электрон жұбының атомдардың арасында орналасуына қарай полюсті және полюссіз деп екіге бөлінеді.
Полюсті молекулада Химиялық байланыс түзетін ортақ электрондар электр терістілігі күшті атомға ығыса орналасады. Молекуланың полюстілігі диполь моменті арқылы көрсетіледі. Полюстік молекулалардың қайнау және балқу температурасы төмен, полюсті еріткіштерде үйектеліп иондарға ыдырайды.
Полюссіз ковалентті Химиялық байланысты молекулада электрон жұбы атомға ауыспай, симметриялы түрде ортада орналасқан. Полюссіз Химиялық байланыстағы қосылыстардың қайнау және балқу температуралары төмен, полюсті еріткіштерде иондар түзбейді, электр тоғын өткізбейді. Ортақтаспаған электрон қосағынан және электронсыз бос орбитасы бар атомдардан (донар-акцепторлы) түзілетін сутектік және металдық Химиялық байланыстар координациялық байланыс деп аталады. Сутекті Химиялық байланыс -- екі не бір молекуладағы атомдар арасында сутек атомының оң заряды арқылы түзіледі.
Металдық Химиялық байланыс -- металл атомдарының сыртқы қабатындағы бос электрондар қатысуымен түзілетін байланыс. Химиялық байланыс валенттік электрондар арқылы жүзеге асады.
Химиялық байланысының негізгі сипаттамалары: байланыс энергиясы, байланыс ұзындығы, валенттік бұрыш.
Байланыс энергиясы -- өзара байланысқан атомдарды не иондарды бір-бірінен ажырату үшін жұмсалатын энергия. Байланыс ұзындығы -- Химиялық байланыстағы атомдар ядроларының арасындағы қашықтық, валенттік бұрыш -- байланысқан атомдар ядролары арқылы жүргізілетін жорамал сызықтар арасындағы бұрыш. Бұл көрсеткіштер зат молекуласының құрылысын, пішінін және беріктігін сипаттайды.
Ковалентті байланыстың табиғатын қарастыруда қазіргі уақытта екі әдіс қолданылады-валенттік байланыс әдісі және молекулалық орбитальдар әдісі
Н.Бордың электрондық құрылыс теориясының негiзiнде химиялық байланыстың жаңа теориясын - коваленттiк байланыc теориясын ұсынды.. Бұл теория бойынша молекулаға бiрiккен eкi атомның арасында электрон жұптары түзiлу негiзiнде 6айланыс пайда болады.
Гайтлер мен Лондон бұл теорияны ары қарай дамытты. Олар Шредингер теңдеуiн қолдану аркылы сутек молекуласының энергиясын квантты-механика әдiсiмен есептеп, мынаны анықтады:
1. Химиялық коваленттi байланыс әртүрлi атомдарга тиiстi карама-карсы спиндi электрондардың жұптасуы арқылы пайда болады, түзiлген байланыс eкi орталықты eкi электронды байланыс болып табылады.
2. Молекула түзiлгенде оны құрайтын атомдардың электрондық құрылысы негiзiнен сақталады, ал молекуладағы барлық химиялық байланыстар тұрақты eкi орталықты eкi электронды (шоғырланған) байланыстар жиынтығынан тұpaды.
Лондон мен Гайтлердiң есептеулерi негiзiнде химиялық 6айланыстың түзілу механизмi мынадай екендiгi керсетiлдi: атомдардың ядро аралығында және олардың үздiксiз қозғалыстағы электрондарында электрлiк күштердің пайда болуы - негiзгi себеп. Ертедегi деректер бойынша, атомдар бір-бірімен қосылып, молекула түзгенде өздерiнiң сыртқы электрондық деңгейлерiн инерттi газдардың электрондық деңгейлерiне ұқсастыруға тырысады деп есептелді.
Осылай пайда болған куштi кооваленттi байланыс деп атайды. Ядро аралығында электрон ТЫFЫЗДЫFЫ артады, жұптаскан eкi электрон eкi атомга ортақ болады. әр жакка қарай багытгалған eкi электрондық eкi ядро өрiсiндегi қозгалыстың энергетикалық жағдайы әлдеқайда тиiмдi. дұл жагдайда электрондық тыгыздық артады және ядролар бiр-бiрiне тартылады. Ядролар өзара жақындасқандықтан, электрон бұлттары Жaқсы бүркеседi.
Ковалентті байланыс-бір немесе бірнеше электрон жұптары арқылы түзілетін химиялық байланыс.
Ковалентті байланыстың қанықтырғыштығы- атомдардың шектілік байланыс түзетінін сипаттайды,байланыс сандары негізгі және қозған күйдегі жұптаспаған электрондар санына тең болатындығын көрсетеді.Бағыттылығы-ковалентті байланысты түзетін электрон бұлттарының бағыты болады,соның салдарынан АО кез келген бағытта емес ,тек өздерінің пішіндеріне сай бағытта бүркеседі де кеңістікте белгілі құрылысқа ие болады.Полюсті ковалентті байланыс-байланыстырушы электрон бұлты қосылысқан екі атомның біреуіне қарай ығыскан жағдайды айтады.Полюссіз- байланыстырушы электрон бұлты қосылысқан екі атомға ортақ болған жағдайды айтады.
8. Атомдық орбитальдардың гибридтенуі туралы түсінік. Гибридтену типтері. Гиллепси бойынша молекулалардың кеңістіктегі пішіндерін болжау.
Гибридтеліну дегеніміз әр түрлі атомдық орбитальдардың арласып,энергиялық ждағынан тиімді біркелкі АО-ң түзілуі. Мұндай гибридті орбиталдар басқа атомдармен хим-қ байланыс түзуге өте бейім.Гибридті орбиталдардың саны гибридтенуге қатынасқан орбиталдардың санына тең.Гибридті орбиталдар электрон бұлттарының пішіні мен энергиясы жағынан бірдей болып келеді.Олар атомдық орбиталдарға қарағанда хим-қ байланыс түзу сызықтың бойында жатады,сондықтан электрон бұлттарының бүркесуіне қолайлы жағдай туады.АО гибредтену түрлері көп. Олардың ең маңыздыларын қарастырайық: .sp-гибридтену.Периоодтық жүйедегі екінші топша элеиенттерінің галогендерімен қосылыстарында sp-гибридтену түрі іске асды Берилийдің сутекпен және галогендермен қосылыстарын қарастырайық.Берилий негізгі жағдайда жұптаспаған электрондары жоқ.Бірақ оның барлық қосылыстарының құрылысы түзу сызықты болып келеді.Осындай құрылысты ВБ теориясыментүсіндіру үшін,Ве электрондарының қозған жағдайын қарастырады,осының нәтижесінде екі жұптаспаған электрондар пайда болады.Ве-ң әртүрлі екі орбиталі бірігіп жаңа жәнне ұқсас екі гибридті электрондар пайда болады.sp-гибридтену.Бір s-орбитальдарымен және екі р-орбиталдарымен қосылып,жаңа үш sp-гибридтелу дейді.Олардың валенттік бұрыштары
120ºжәне бір жазықтықта орналасқан ең қолайлы жағдай орналасады.Осындай гибридтену периодтық жүйедегі үшінші топша элементтерінің молекулаларына тән.Әр түрлі гибридті орбитальдардың кеңістіктегі құрылысы да әр түрлі болады:сызықты,үшбұрышты,тетраэдрлі .Валенттік жұп электрондардың тебелісу теориясы толық гибридтелу бойынша байланысқа қатыспайтын электрон жұптарының тебісу әсері байланыстырушы жұп электрондарға қарағанда көбірек.Сонымен ВБ әдісін қолданып қорытынды жасауға болады :
1.ВБ әдісі көптеген молекулалардың геометриялық құрылысын түсіндіруге мүмкіндік береді.
2.Гибридті орбиталдардың кеңістікте орналасуы өзара электрон бұлттарының приципіне бағынады.
3.Гибридтеліну коволентті баланыстың ерекше қасиеті,байланыстың бағытталынуын сипаттайды.Ковалентті байланыстың иондық байланыстан басты айырмашылығы,иондық байланысқа бағытталу қасиеті тән емес.
9. Молекулалық орбитальдар әдісі. Екінші период элементтерінің гомо- және гетеронуклеарлық молекулаларының энергетикалық диаграммалары.
Молекулалық орбиталдар әдiсi бойынша молекуладағы электронды бiрнеше орталықты қамтитын (атомдардың ядроларын) толқындық функция арқылы өрнектеуге болады. Оның негiзгi қaғидасы мынадай: молекулада бастапқы атомдарды байқамайды, тек ядроларды бөлiп қарайды. әрбiр электрон барлық ядролар жэне молекуладағы барлық электрондар өрiсiнде қарастырылады. Ең қарапайым жақындасуда молекулалық орбиталдар Шредингер теңдеуiнен шығатын атомдық орбиталдардың сызықтық комбинациясы болып табылады. қазiргi уақытта молекулалық орбиталдар теориясы бiрте-бiрте кеңiнен қолданыла бастады.
Молекулалық орбиталдар теориясы (МО) - молекуланың электрондық құрылысын анықтайтын әдiс. Бұл теорияның негiзгi принципi - молекула бутiн бiр тұтac жүйе. Молекулаға барлық электрондар мен ядролар ортақ. Химиялық байланыстың түзiлуiнiң себебi - барлық электрондардың барлық ядролар мен электрондарға ортақ өpicтe қозғалуы.
МО ерекшелiктерi. Валенттiк байланыс әдiсi АО (атомдьық орбитал) жеке бiр атомның электронының козғалысын сипаттайды. Молекулалық орбиталдар (МО) бүкiл молекуладағы ядроларға ортақ МО - көп центрлi орбиталдар. МО әдiсi молекуладағы әр электронға сәйкес молекулалық орбиталды сипаттайды.
Молекулалық орбитал атомдық орбиталды сызықты комбинациялау нәтижесiнде түзiледi деп саналады. Бастапқы әрiптерiн алып қысқартқанда былай жазылады: АОСК=МО, молекулалық орбитал ол атомдық орбиталдардың сызықты комбинациясы.
Бiрақ, молекулалық орбиталдар түзiлу үшiн АО - орбиталдар кесімді шарттарға сай болу қажет:
_ атомдық орбиталдар энергияларының шамасы жақын болуы;
_ атомдық орбиталдағы бүркескен электрон бұлттары тығыздығының шамасы улкен болуы;
- атомдық орбиталдардың байланыс орталығы бiр симметрияда болуы. молекулалық орбиталдар әдiсiнiң принципi - молекуладағы әp электронды сипаттайтын толқындық функция молекула құрамындағы барлық ядролар өpiciне қатынасты болуы қажет. Ең қарапайым турiнде: молекулалық орбитал дегенiмiз атомдык орбиталдардың өзара сызықты комбинациясын құру нәтижесiнде түзiлген жаңа орбитал.
Молекулалық орбиталдар әдісi молекуладағы электрондар бiрнеше орталықгарға ие болған (атомдардың ядролары) толқындық функциялармен сипатталады. Атомдық орбиталдарды өзара қосып не алып тастаса молекулалық орбиталдар тузiледi.
10.Иондық байланыс. Металдық байланыс. Сутектік байланыс. Молекулааралық әсерлесулер. Ван-дер Вальс күштері.
Иондық байланыстың бірінші теориясын 1916ж.немісғалымы Коссель ұсынды.Оның теориясы бойынша иондық байланыс қарама-қарсы зарядталған иондардың электростатикалық тартылысуынан болады.Иондық байланыс қарама-қарсы зарядталған иондардың кулон күштері арқылы тартылысу ы нәттижесінде түзіледі.Ал кулондық күштер қанықпайтын күштер,демек иондық байланыс қанықпаған байланыс.Иондық байланыстың кесімді бағыты жоқ,бағыттылық көрсетпейді.иондық байланыс қарама-қарсы зарядталған иондардың электростатикалық күштер арқылы тартылысуынан болады.Металдардың сыртқы валенттік электрондары барлық металдарға бірдей тең таралған,яғни ұжымдық боп саналады.Металдардың оң зарядты иондары ортақ электрон бұлттарымен қоршалған және байланысқан,байланыстың мұндай түрі металдық деп аталады.металдардың электрөткізгіштігін осымен түсіндіруге болады.ол тек біртекті атомдар арасында ғана пайда болып қоймайды,құймаларда,металдардың бір-бірімеен қосылыстарында және басқа заттармен қосылысында болады.Металдық байланыстың таби ғатын квант механикалық көзқараспен қарағанда валенттік байланыс әдісі де,молекулалық орбиталь әдісі де тусіндіре алады.Молекулалық орбмталь әдісі бойынша,екі атом әрекеттескенде,атомдық орбитальдар бүркесіп,байланыстыратын және босаң молекулалық орбитальдар пайда болады.Сонымен қатар жүйеде неғұлым атомдар көп болса соғұрлым молекулалық күйлер де көп болады. Металдық байланыс қатты және сұйық күдегі металдардың бәріне тән, ол жекелеген бөлшектердің қасиеті емес,олардың агрегаттарының қасиеті.Металдардың буы жекелегген молекулалардан тұратындықтан,газ тәрізді заттардай қасиет көрсетеді.Металдық байланыс металдардың барлық қасиеттерін:физикалық, механикалық, оптикалық, магниттік,т.б. түсіндіре алады.
Химиялық заттар үш агрегаттық күйде болады: газ,сұйық,қатты.Тіпті,инертті газдар атомдарының валенттік АО толық электрондармен толсада,өте төмен температурада әуелі сұйықталып,әрі қарай қатты затқа айналады. Инертті газдардың ковалентті байланыс түзе алмайтындығы жақсы белгілі. Инертті газдардың әуелі сұйықталып ,сонан кейін кристаллға айналуы,олардың атомдарының арасында тартылыс күштері бар екендігін дәлелдейді. Газдар,сұйық,қатты заттардың молекула арасындағы тартылыс күштерді молекула арасындағы күштердеп атайды.Молекулалар арасындағы тартылыс күштері бар екендігін бірінші рет 1873ж Ван-дер-Ваальс түсіндірген.Идеал газдарға мына теңдеу PV=nRT орындалуы керек.Бірақ іс жүзінде реальды газдарға мұндай заңдылық көп жағдайда орындала қоймайды.Ван-дер - Ваальс осы заңдылықтың орындалмайтын себебін газ молекулаларының арасында өздеріне тән тартылыс күштері арқылы түсіндіреді. Қазіргі кезде молекулалар аралық күштер бірнеше құбылыстардың негізінде пайда болады деп есептейді. Молекулаларды байланыстыратын күштердің табиғатын Ван-дер-Ваальс зерттеген,кейін Дебай,Кезон,Лондон өзінің үлесін қосты.Бүгінгі күні Ван-дер-Ваальс күштері (Ев) бірнеше күштерден тұратындығы айқындалды:Ев= Ек + Ед + Ел + Ет Ек-Кезюм,Ед- Дебай Ел-Лондон Ет-тебісу күштері.Молекулалар арасындағы әрекеттесулер:ориентациялық әрекеттесу,индукциялық әрекеттесу,дисперсиялық әрекеттесу.Полюсті молекулалар біріне-бірі жақындасып,қарсы зарядтармен тартылысып,бағдарласады,ориентациял анады. Осы күштерді оринтациялық күштер деп атайды.Лездік дипольдар бірімен-бірі әрекеттесуі-дисперсиялық әрекеттесу деп аталады.
Молекулалардың өзара әрекеттесуінің тағы да бір түрі - сутекті байланыс. Қайнау температурасы өте биік молекулалар арасында сутекті байланыс түзілетіндігімен түсіндіруге болады. Жалпы сутектік байланыс күші Ван-дер-Ваальс байланыстарына қарағанда күштірек,бірақ ковалентті байланысқа қарағанда төмен. Сутектік байланыстың күші сутекті байланысты тудыратын атомдардың табиғатына тәуелді.Неғұрлым сутек атомымен байланысқан атомның электртерістілігі көбірек болса,соғұрлым сутекті байланыстың энергиясы көбірек,молекула тұрақтылау болады.Жалпы топ бойынша сутектік байланыстың энергиясы кемиді. Электростатикалық әрекеттесу негізінде сутекті байланыс түзіледі.
11. Химиялық реакциялардың жүру заңдылықтары. Термодинамиканың негізгі түсініктері мен заңдары. Термохимиялық теңдеулер. Гесс заңы және одан шығатын салдарлар. Бертло-Томсен принципі.
Ішкі энергия- берілгенжүйенің толық энергисы,яғни энергия мөлшеріни заттың бір моліне жатқызады және олДж,кДж немесе кал,ккал бойынша анықталады.Снымен жүенің толық энергиясы үш санның қосындысына тең: Жүйенің ішікі энергиясы өз кезегінде бірнеше құрамдарды біріктіреді.Ішкі энергия - бұл осы жүйеге кіретін барлық бөлшектердің өзара әрекетесуі және қозғалысы.Ішкі энергия молекулааралық энергия жүйесін құрайтын бөлшектердің алға жүрүші,айналмалы және тербелмелі қозғалысының кинетикалық энергиясының қосындысы. Ішкі энергия ядроның ядромен, электронның электронмен,ядроның электронмен әрекеттесуінің потенциалдық энергиясы,ядролық энергия,ядроның тебілуіне сай энергия.Сонымен бөлшектердің өзара тартылысу және тебілісу энергиясы,ішкі молекулярлық немесе атомдар арасындағы әрекеттесу энергиясы,сонымен қатар, ішкі ядролық процестер энергиясының барлықтары ішкі энергияға жатады.Жүйенің энергиясыз күйге әкелуге мүмкіншілік болмағандықтан,заттардың ішкі энергиясының абсолюттік мәні белгісіз.Әдетте,процестегі жүйенің ішкі энергиясының өзгерісін анықтайды:
Ішкі энергия жүйе күйінің функциясы болып табылады,яғни оның өзгерісі жүенің бастапқы және соңғы күйімен анықталады және процестің жүру жолына тәуелді емес. Ішкі нергияның,жұлудың, жұмыстың өзара байланыстылығы термодинамиканың бірінші заңымен-энергияның сақталу және өзгеру заңымен анықталады:Клаузиус тұжырымы әлем энергиясы тұрақты, Энергия өзінен өзі пайда болмайды және жоғалмайды,ол тек бір түрден екінші бір түрге ауысады.термодинамиканың бірінші заңы былай аталады:кез келген процесте жүйенің сіңірген жылуы жүйенің іішкі энергиясының өзгеруіне және белгілі жұмыс жасауға жұмсалады.
Бұл теңдеудің метематикалық түрі мынадай:
Термодинамикада реакцияның жылу эффектінің бұрынғы мектепте берілген таңбаға қарама-қарсы етіп алынады.Оның себебі термодинамикада жылу эффектілерінің бәрі бір жүйе тұрғысынан қаралады.Реакция нәтижесінде жылу жүеден сыртқа шығып жатқанда,жүйенің жылуы кері кемиді,сол себептен теріс таңбалы етіп алынады.Ал,керісінше жылу сырттан жүйеге сіңіріліп жатса,оның энергиясы артатындықтан жылу эффектісінің тваңбасы оң етіп алынады.Энетальпия да ішкі энергия сияқты жүенің негізгі қасиеттерінің бірі:
Болғандықтан,энтальпияны жүйенің ұлғаю энергиясы немесе P,T=const жағдайдағы ішкі және сыртқы энергияларының қомындысы деп қарастыруға болады.Әдетте энтальпияның өзгеруін заттың моліне қатынасты қарастырады және Джмоль немесе калмольөлшем бірліктерімен белгілейді,
1кал=4,187Дж. әрбір химиялық реакция энергияны сіңіру немесе бөліп шығару арқылы жүреді. Химиялық реакцияның жылу эффектісі деп тұрақты қысымда немесе көлемде шығарылған немесе сіңірілген энергия мөлшерін айтадыЖылу эффектісі 1 моль затқа қатысты болады.Заттардың химиялық формуласымен бірге жылу эффектілері көрсетілетін химиялық реакцияларды термохимиялық реакциялар деп атайды.Әртүрлі процесстердің жылу эффектілерін салыстыру және термодинамикалық есептеулерін жүргізу үшін оларды анықтайтын стандартты жағдайларды таңдап алу қажет.Стандартты жағдайда 1 моль таза зат Р-101,325кПа қысымда 298,15К температурада есептеледі.Термохимиялық теңдеуді жазудың екі түрі бар: термохимиялық және термодинамикалық.Термодинамикалық әдіс бойынша реакцияның жылу эффектісін химиялық теңдеуден кейін бөлек жазады. 1840 жылы Гесс атты химик тамаша заң ашты, кейіннен осы заңға оның аты беріліп, бұл заң реакцияның жылу эффектісін, заттардың түзілу жылулығын немесе олардың жануын есептеуге мүмкіндік береді. Сонымен қатар тузілуі қиын, ал кейде мүлде мүмкін емес реакцияның жылу эффектісін табуға жол ашты. Есептеуге қажетті стандартты жылу түзілулер Нтүзо фундаменталды термохимиялық анықтамаларда жиылған.Гесс заңы: реакцияның жылу эффектісі заттың тек бастапқы және соңғы күйінің түріне(ТАБИҒАТЫНА) ТӘУЕЛДІ БОЛАДЫ,БІРАҚ РЕАКЦИЯ ЖҮРУ БАҒЫТЫНА ,яғни аралық сатылардың сипатына және санына тәуелді емес.∆Нхим.реак=Qp=∑∆Hреак.өнімдері -∑∆Нбастапқы реагенттер. Салдары:1Реакция жылу эффектісі ,өнімнің түзілу жылуларының қосындысынан бастапқы заттардың түзілу жылуларының қосындысын алып тастағандағы айырымына тең.2. Реакцияның жылу эффектісі бастапқы заттардың жанужылуларының қосындысынан реакция өнімдерінің жану жылуларының қосындысын алып тастағандағы айырымына тең.
12. Химиялық реакциялардың бағытын анықтайтын факторлар. Энтропия туралы түсінік. Термодинамиканың екінщі заңының статискалық сипаты. Больцман формуласы. Ең маңызды термодинамикалық функциялар. Гиббс энергиясы.
Табиғатта өз бетінше сыртқы әсерсіз жүретін процесстер қатары бар. Олар,мысалы: қолдан лақтырылған тас жерге қарай өздігінен қозғалады. Тас құлағанда потенциалдық энергиясын жоғалтады.Осы процесте тастың потенциалдық энергиясы кинетикалық энергияға айналады. Ретсіздік дәрежесі энтропия деп аталатын,физикалық ұғыммен өрнектеледі және ∆S таңбасымен белгіленеді. ∆S=∆QT Энтропия - бөлшектің қозғалысын сипаттайтын заттың қасиеті-ол берілген жүйенің ықтималдық сипаты болуы мүмкін.Термодинамиканың 2 заңының бірнеше түсініктемелері бар. Олардың біреуі аса қарапайым: жылу өздігінен суық денеден ыстыққа беріле алмайды. Термодинамиканың 2 заңы тікелей энтропиямен байланысты. Химиялық термодинамиканың негізгі теңдеуі Гиббс энергиясы болып табылады. ДельтаG=дельта H-TдельтаS. Мұндағы делтаН және делтаS күй функциялары: дельтаН-энтальпия, дельтаS-энтропия,Т-температура. Дельта G- Гиббстің еркін энергиясы, оны алғаш рет ұсынған американдық ғалым математик және термодинамик Д.У.Гиббстің атымен аталады. Дельта G- Гиббстің еркін энергиясы - энтальпия мен энтропияның дельта S арасындағы өзара байланысты көрсетеді. Энтальпия кез келген химиялық реакцияны энергиясы төмен күйде жүруіне жағдай жасайды, бөлшектерді мейлінше күрделі қосындыға біріктіруге бағыт береді.энтропия жүйеде ретсіздіктің максимальды өсу бағытына ұмтылатын, яғни бөлшектер мейлінше ретсіз орналасатын күй функциясы. Н және S функциялары бір бірімен тәуелсіз болса да, көптеген хим-қ процестер осы екі функцияның өзгерісімен жүреді. Хим-қ реакцияларда бөлшектер құрылысы күрделі бөлшектерге бірігуге ұмтылып, энтальпияны төмендетеді. Екінші жағынан бөлшектер жекеленіп, энтропияны үлкейтеді. Бұл функцияны изобара-изотермиялық потенциал д.а., кейде оны жай ғана термодинамикалық потенциал д.а. гиббс энергиясы,энтальпия Н және энртопия S тәрізді физ-қ шамалар күй функциясы д.а. кейбір заттар мен иондардың стандартты түзілу Гиббс энергиясы G298 (кДжмоль). Стандартты түзілу энергиясының көмегімен кез келген хим-қ процестің стандартты бос энергиясының өзгерісін есептеу ыңғайлы. Стандартты бос энегрияның өзгерісі былайша өрнектеледі:
Келтірілген теңдеуден мынадай қорытынды шығады: хим-қ реакцияның бос энергиясы жеке реакция өнімдерінің түзілу бос энергияларының қосындысынан бастапқы реагентттердің мәндерінің қосындысын алып тастағандағы айырымға тең. Дельта Gº шамасы бойынша процестің мүмкнідігін және мүмкін еместігін анықтауға болады. барлық өздігінен жүретін хим-қ процестер жүйеде Гиббс энергиясы төмендейтін бағытта жүреді. Процестің жүру мүмкіндігі дельта G0 орындалуына байланысты болады, яғни дельта G өзгерісі теріс таңбалы шама болуға тиіс. Егер G~=40 кДжмоль град немесе бұдан да төмен болса, онда реакция өздігінен жүреді.
Энтропиялық фактор- Т дельта S реакцияның өздігінен жүру қабілетіне белгілі бір дәрежеде әсер етеді. 0ºК жақын температурада, Т дельта S шамасы 0-ге жақын болады, сондықтан дельтаG шамасы мен таңбасына ең алдымен энтальпиялық фактор әсер етеді. Гиббс энергиясының шамасына әсер ететін энтропиялық фактор температураның жоғарылауымен үлкейеді. өте жоғары температурада энтропиялық фактор Тдельта S энтальпиялық факторды бүркелемейді. Жоғары да емес, төмен де емес температурада дельта G- ге екі фактор да әсер етеді. Энтальпия, энтропия және Гиббс энергиясының өзара және температурамен байланысты. Гиббс энергиясының өзгерісі реакция өнімдері мен бастапқы заттардың табиғатына және физ-қ күйіне тәуелді болады, процестің жүру жолына тәуелді емес.
13. Химиялық кинетика. Химиялық реакциялардың жылдамдығы және оған әсер ететін факторлар. Концентрацияның әсері. Әрекеттесуші массалар заңы.
Химиялық кинетика - химиялық реакцияның жылдамдығы мен механизмі туралы ілім. Хиимиялық кинетика - химиялық технология процестерінің жаңа түрлерін құру мен оларды жетілдірудің ғылыми негіздері.Химиялық кинетика әдістерін биологияда және жаратылыстану ғылымының басқа салаларында қолданады.Химиялық реакцияның молекулалығы- химиялық реакцияның бірлік актісіне қатынасатын молекула сандарымен анықталады.Реакция молекулалығы бойынша мынандай айырмашылықтар байқалады;а)мономолекулярлы реакциялар-бірлік актіде бір молекула қатысады.б) бимолекулярлы реакциялар- реакцияның елементарлы актісінде екі молекула қатынасады.в) үшмолекулярлы реакциялар- элементарлы актісінде үш молекула қатынасады.Төртмолекулярлы және одан да көп реакциялардың болу мүмкіншілігі нольге тең.Реакцияның реті деп реакцияның жылдамдық теңдеуіндегі концентрацияның стехиометриялық көрсеткішінің қосындысын айтады.Реакцияның реттігі мен молекулалығы тек қарапайым реакцияларға ғана сәйкес келеді. Реакцияның реттігін эксперимент әдісімен анықтайды,ол үшін реакция жылдамдығының концентрацияға тәуелділігін зерттейді.Реакция реті тәжірибе бойынша анықтаған реакцияның реттігін химиялық реакция бойынша табылған шамаға сәйкес келмесе ,онда реакция күрделі бірнеше сатымен жүреді деп күмәнсіз айтуға болады. Химиялық реакцияның жылдамдығы әр түрлі болады. Кейбіреулері өте тез, біреулері баяу болады. Оның жылдамдығы басқа процесстердің жылдамдығы сияқты уақытпен өлшенеді.химиялық реакция жылдамдығына : әрекеттесуші заттардың табиғаты, қысым, температура, әрекеттесуші заттардың концентарциясы және катализатор әсер етеді. Әрекеттесуші заттардың табиғатының әсері. Заттың табиғатының хим.реакцияның жылдамдығына әсері үлкен. Кейбір реакциялар өте тез, біреулері баяу жүреді. Мыс: а) 2Rb
2H2O=2RbOH+H2(қопарылыс болады). б) Ag+H2O=реакция өте баяу жүреді,айлап, жылдап өтеді.
реакция жылдамдығына концентарцияның әсері. Хим-қ реакцияның тез жүруі үшін әрекеттесуші заттардың молекулалары жиі түйісулері қажет екендігі анықталды. Түйісуді жиілендіру үшін алдымен әрекеттесуші молекулалардың санын, демек концентрациясын өсіру керек. Реакцияның жылдамдығына әрекеттесуші заттардың концентарциясының әсерін Норвегия ғалымдары Гульдберг және Вааге 1867 жылы мынадай қорытындыға келді: Хим-қ реакцияның жылдамдығы реакцияласушы заттардың концентарцияларының көбейтіндісіне тура пропорционал. Мұны әрекеттесуші массалар заңы деп атайды. Катализатордың әсері. Хим-қ реакцияның жүру жылдамдығына бөгде заттардың әсері болатындығы XVIII-ғасырда белгілі болды. 1812 жылы орыс химигі Кирхгоф крахмалға күкірт қышықылын араластырып қыздырса оның қантқа айналатынын, бірақ реакция нәтижесінде күкірт қышықылы өзгермей қалатынын байқаған. Сөйтіп реакцияның жылдамдығына катализатор заттардың үлкен әсері болатындығы анықталды.Катализатор- реакцияның жылдамдығын өзгертіп, бірақ реакция нәтижесінде өздері хим-қ өзгермей қалатын заттарды айтамыз.Қалыпты жағдайда әрекеттеспейтін кейбір заттар катализатор қатысында реакцияласа бастайды. Катализаторлар реакцияның жылдамдығын млн есеге дейін өсіре алады. Катализатор қатысуымен жүретін процестер табиғатта және өнеркәсіпте өте көп. Тірі организмдегі толып жатқан процестерде, мысалы ас сіңіруде, органикалық катализаторлар- ферменттер, өсімдіктердің қоректенуіне топырақта болатын ... жалғасы
Ұқсас жұмыстар
Пәндер
- Іс жүргізу
- Автоматтандыру, Техника
- Алғашқы әскери дайындық
- Астрономия
- Ауыл шаруашылығы
- Банк ісі
- Бизнесті бағалау
- Биология
- Бухгалтерлік іс
- Валеология
- Ветеринария
- География
- Геология, Геофизика, Геодезия
- Дін
- Ет, сүт, шарап өнімдері
- Жалпы тарих
- Жер кадастрі, Жылжымайтын мүлік
- Журналистика
- Информатика
- Кеден ісі
- Маркетинг
- Математика, Геометрия
- Медицина
- Мемлекеттік басқару
- Менеджмент
- Мұнай, Газ
- Мұрағат ісі
- Мәдениеттану
- ОБЖ (Основы безопасности жизнедеятельности)
- Педагогика
- Полиграфия
- Психология
- Салық
- Саясаттану
- Сақтандыру
- Сертификаттау, стандарттау
- Социология, Демография
- Спорт
- Статистика
- Тілтану, Филология
- Тарихи тұлғалар
- Тау-кен ісі
- Транспорт
- Туризм
- Физика
- Философия
- Халықаралық қатынастар
- Химия
- Экология, Қоршаған ортаны қорғау
- Экономика
- Экономикалық география
- Электротехника
- Қазақстан тарихы
- Қаржы
- Құрылыс
- Құқық, Криминалистика
- Әдебиет
- Өнер, музыка
- Өнеркәсіп, Өндіріс
Қазақ тілінде жазылған рефераттар, курстық жұмыстар, дипломдық жұмыстар бойынша біздің қор #1 болып табылады.
Ақпарат
Қосымша
Email: info@stud.kz