Икемділік коэффициенті


Кіріспе
Негізгі бөлім
1. Икемділік коэффициентінің мәні

2. Көптік регрессия теңдеуін құра отырып, икемділік коэффицентін мысал арқылы көрсету

Қорытынды
Пайдаланылған әдебиеттер тізімі
Егер экономикалық құбылыстар арасында сызықты емес қатыстар болса, онда оларды сызықты емес функциялар көмегімен өрнектеуге болады. Екі сызықты емес регрессия теңдеуінің класы бар;
Талдауға енгізілген айнымалыға қарағанда сызықты емес, бірақ бағаланатын параметрге сызықты болатын регрессия мысалы,

• әртүрлі дәрежелі полиномдар – , ;
• тең қабырғалы гипербола – ;
• жартылай логарифмдік функция –

Бағаланатын параметрге қарағанда сызықты емес регрессия , мысалы :
• дәрежелі – ;
• көрсеткіштік – ;
• екінші ретті парбола теңдеуі , ол мынадай алмастырулар бойынша сызықты түрге келтіріледі.
Нәтижесінде, екі факторлы теңдеуге келтіреміз: . Параметрлерді бағалау ЕККӘ бойынша табылады :

Кері алмастыру арқылы мынаны табамыз:

Тура байланыс кері байланысқа, немесе кері байланыстура байланысқа өзгереді.. Гиперболалық түрін сызықты түрге келтіру үшін мынадай алмастыру жасаймыз. приводится к линейному уравнению простой заменой . ЕККӘ қолданып, мынадай жүйе аламыз :
1 Рахметова Р.У. Эконометрика Алматы. 2009. -226с.
2 Мухамедиев Б.М. Эконометрика и эконометрические прогнозирование. –Алматы: Қазақ университеті. 2007. -250с.
3 К. Доугерти Введение в эконометрику. Пер. с англ. Москва-1997.
4 Просветов Г.И. Эконометрика: задачи и решения. Уч. Методическое пособие. Москва 2004г.
5 Брейли Р. Принципы корпоративных финансов: Пер. с англ.-М.:ЗАО «Олимп-Бизнес», 1997
6 Ә.Ж. Сапарбаев, А.Т. Мақұлова. Эконометрика. Алматы: Бастау, 2007ж.
7 Бухвалов А.В. Самоучитель по финансовым расчетам.- М.: Мир,Пресс-сервис, 1997
8 Қаржы-экономика сөздігі. - Алматы: ҚР Білім және ғылым министрлігінің Экономика институты, "Зияткер" ЖШС, 2007
9 Елисеева И.И Эконометрика. –М.: Финансы и статистика, 2005. -576с.

Пән: Математика, Геометрия
Жұмыс түрі: Реферат
Көлемі: 3 бет
Бұл жұмыстың бағасы: 300 теңге




ҚАЗАҚСТАН РЕСПУБЛИКАСЫНЫҢ БІЛІМ ЖӘНЕ ҒЫЛЫМ МИНИСТРЛІГІ
СЕМЕЙ ҚАЛАСЫНЫҢ ШӘКӘРІМ АТЫНДАҒЫ МЕМЛЕКЕТТІК УНИВЕРСИТЕТІ

ОӨЖ

Икемділік коэффициенті

Орындаған: Қадырова Ж.Р.
Тобы: УА-303
Тексерген: Жаксыгулова Д.Д

Семей 2015 жыл
Жоспар
Кіріспе
Негізгі бөлім
1. Икемділік коэффициентінің мәні

2. Көптік регрессия теңдеуін құра отырып, икемділік коэффицентін мысал арқылы көрсету

Қорытынды
Пайдаланылған әдебиеттер тізімі

1. Икемділік коэффициентінің мәні

Егер экономикалық құбылыстар арасында сызықты емес қатыстар болса, онда оларды сызықты емес функциялар көмегімен өрнектеуге болады. Екі сызықты емес регрессия теңдеуінің класы бар;
Талдауға енгізілген айнымалыға қарағанда сызықты емес, бірақ бағаланатын параметрге сызықты болатын регрессия мысалы,

* әртүрлі дәрежелі полиномдар - , ;
* тең қабырғалы гипербола - ;
* жартылай логарифмдік функция -

Бағаланатын параметрге қарағанда сызықты емес регрессия , мысалы :
* дәрежелі - ;
* көрсеткіштік - ;
* екінші ретті парбола теңдеуі , ол мынадай алмастырулар бойынша сызықты түрге келтіріледі.
Нәтижесінде, екі факторлы теңдеуге келтіреміз: . Параметрлерді бағалау ЕККӘ бойынша табылады :

Кері алмастыру арқылы мынаны табамыз:

Тура байланыс кері байланысқа, немесе кері байланыстура байланысқа өзгереді.. Гиперболалық түрін сызықты түрге келтіру үшін мынадай алмастыру жасаймыз. приводится к линейному уравнению простой заменой . ЕККӘ қолданып, мынадай жүйе аламыз :

Осы тәртіппен , теңдеуінің түрлері де сызықты түрге келтіріледі. ие. Сызықты емес моделдерде дәрежелік функция жиі қолданылады ,яғни , ол сызықты түру келтірілу үшін логарифмделеді:

Мұндағы . Яғни, ЕККӘ қолданылады және мынадай жүйе шығады:

Содан кейін потенцирлейміз де ізделінді теңдеуді табамыз.
Дәрежелік функцияны кеңінен қолданатын себебіміз, b параметрі нақты экономикалық мәні болып табылады, яғни ол икемділік коэффициенті . Икемділік коэффициенті- егер фактор 1% ке өзгерсе онда нәтиже шамамен қаншаға өзгеретіндігін көрсететін коэффициент.
.
Қалған функциялар үшін, икемділік коэффициенті тұрақты шамабола алмайды. Ол тек х фактрының мәндеріне байланысты болады. Сонда ,
.
Кесте №1. Икемділік коэффициентін есептеуге арналған формулалар

Функция түрі, y

Икемділікиің орташа коэффициенті

b

b

Сызықты емес теңдеуде сызықты теңдеудегі сияқты байланыс тығыздығын есептеуге болады. Бұл жағадйжа корреляция индексі есептеледі:

мұндағы - у шешуші белгінің жалпы дисперсиясы., - қалдық дисперсия . Егер нәтиже 1- ге жуықтаса, онда байланыс жақсы, теңдеу дұрыс құрылған деп есептеледі.
Детерминация коэффициентінің индексін есептейді:

детерминация индексін детерминация коэффициентімен салыстырамыз: регрессия сызығының қисығы үлкен болса , онда соғұрлым шамасы нан кіші . Бұл алынған функцияның күрделілігін білдіреді. Сондықтан сызықты регрессия теңдеуін алу қажет.
Детерминация индексі регрессия теңдеуін Фишер критерийі бойынша тексеру үшін қолданылады.

Мұндағы - детерминации индексі , n - бақылау саны , m - х айнымалысы бойынша параметр саны, F - критерийінің нақты мәні кестелік мәнімен салыстырылады, егер α және еркін түсу көрсеткіші саны қалдық квадраттар қосындысы үшін) және (факторлық квадратының қосындысы үшін ).

2. Көптік регрессия теңдеуін құра отырып, икемділік коэффицентін мысал арқылы көрсету

Егер фактордың айнымалыға тәуелділігін сызықтық теңдеу түрінде сипаттау мүмкін болмаса, онда сызықтық емес функция көмегімен сипаттауға болады. Сызықтық емес регрессияның парметрлерін қосылған параметрлері бойынша бағалау, сызықтық регрессия сияқты ең кіші квадраттар әдісі (ЕКӘ) арқылы анықталады, яғни ... жалғасы
Ұқсас жұмыстар
Икемділік коэффициенті туралы
Жылуөткізгіштік. Жылуөткізгіштік коэффициенті
Тепе-теңдік баға және икемділік ұғымы
Меншік. Сұраныс пен ұсыныс. Икемділік ұғымы. Тұтынушылық мінез-құлық. Бәсеке
Портландцемент құрамының сипаттамалары: силикатты, глиноземді модульдері және тойым коэффициенті
Сұраныс
Сұраныс және ұсыныс икемділігі
Сұраныс пен ұсыныс теориясының негіздері жайында
Сұраныстың бағалық икемдiлiгi
Сұраныс пен ұсыныс жайлы мәлімет
Пәндер

Қазақ тілінде жазылған рефераттар, курстық жұмыстар, дипломдық жұмыстар бойынша біздің қор №1 болып табылады.

Байланыс

Qazaqstan
Phone: 777 614 50 20
WhatsApp: 777 614 50 20
Email: info@stud.kz
Көмек / Помощь
Арайлым
Біз міндетті түрде жауап береміз!
Мы обязательно ответим!
Жіберу / Отправить

Рахмет!
Хабарлама жіберілді. / Сообщение отправлено.

Email: info@stud.kz

Phone: 777 614 50 20
Жабу / Закрыть

Көмек / Помощь