Геотермальды энергетика


Геотермалдық энергетика — энергияны Жердің ішкі жылуынан алу. Геотермалды энергетика табиғи және жасанды болып бөлінеді. Алғашқысы табиғи жылы көздерден алынса, екіншісі жер қабатына суды және басқа сұйықсұйықтарды және газ тәріздізаттарды айдап сіңіруден альшады. Геотермалды энергетика тұрмыстық қажетте жөне жылыту қондырғыларында кең қолданьшады. Кемістігі — жылы сулардың жоғарғы улылығы және сұйықтар мен газдардың химиялық зиянды реакциялары.
Геотермалдық энергетиканың басымдылығы қоршаған орта үшін оның толық қауіпсіздігі болып табылады. Жоғары температуралы геотермалдық көздерден 1 кВт электр энергиясын өндіру кезінде бөлінетін СО2 саны 13-тен 380 г-ға дейін құрайды (мысалы, көмір үшін ол1 кВт сағ. 1042 г. тең).
Алайда, Жер жылуы тым «шашыраңқы», және де әлемнің көптеген аудандарында адам энергияның шамалы ғана бөлігін пайдамен қолдана алады. Соның ішінде пайдалану үшін жарамды геотермалдық ресурстар жер қабаты қалыңдығының жоғарғы 10 километрінің шамамен 1% жалпы жылусыйымдылығын құрайды немесе 137 трлн. ш.о.т.
Геотермалдық энергияны өндіру кезінде электр стансаларының үш түрі қолданылады: құрғақ буды, булауды және бинарлық буды іске жарататын.
 Құрғақ будағы күшті агрегаттар жер қыртысының жарылған жерлерінен буды іске жаратады және генераторды айналдыратын турбиналарды тікелей іске қосу үшін пайдаланылады;
 Булау негізіндегі электр стансалары 200°С температурада жердегі ыстық суды іске жаратады, оған үстіне көтерілгенде қайнауға мүмкіндік береді, сонан кейін булы/су сепараторларда бу фазасын турбиналар арқылы өткізеді;
 Бинарлық будағы стансаларда ыстық су жылу алмастырғыштар арқылы өтеді, турбинаны айналдыратын органикалық сұйықтықты қайнауға келтіреді. Бу конденсаты және қалған геотермалдық сұйықтық стансаның барлық үш түрінде шығарда одан әрі температураны жинау үшін ыстық жер қойнауына қайтадан қайтады.
Жер ядросының геотермалдық энергиясы кейбір жерлерде басқаларға қарағанда, жер бетіне жақын. Жер асты буына немесе суына қол жеткізуге және үстіне дренаждауға болатын жерлерде, оларды электр энергиясын өндіру үшін пайдалануға болады. Мұндай геотермалдық көздер жердің кейбір геологиялық тұрақсыз аймақтарында бар, мысалы, Чилиде, Исландияда, Жаңа Зеландияда, АҚШ-та, Филиппинда және Италияда. Мұндай жерлердің екі ең айқын өкілі АҚШ-та Йеллоустоун бассейнінде және солтүстік Калифорнияда. Исландия 170 МВ геотермалдық энергия өндіреді, ал 2000 жылы елдегі барлық тұрғын-үйлердің 86 % геотермалдық энергиямен жылытылды. Жалпы алғанда, операциялық энергияның шамамен 8 000 МВт қолда бар.
Сондай-ақ, ыстық тас түрлерінен геотермалдық энергия алудың да әлеуеті бар. Ол үшін тереңдігі 3 км. канал қазу қажет. Мұндай каналдардың кейбіреуі суды жерге ағызып тартады, кейбірі сыртқа ағызып тартады. Жылу ресурсы мынадан тұрады: жер астында ыстық, радиогендік граниттік қазба түрлері бар, олар қазба түрлері мен жер беті арасында тұнбаның жеткілікті қабаты болғанда қызады. Бүгінде кейбір компаниялар Австралияда осы технологияны зерттеуде.
1. Геотермальді энергетика
2. Жұмыс принципі
3. Қазақстандағы геотермальді ресурстар
4. Жер энергетикасы
5. Қорытынды.

Пән: География
Жұмыс түрі: Материал
Көлемі: 7 бет
Бұл жұмыстың бағасы: 300 теңге




Әл-Фараби атындағы Қазақ Ұлттық Университеті
География және табиғатты пайдалану факультеті

Пәннің аты: АЛЬТЕРНАТИВТІ ЭНЕРГИЯ КӨЗДЕРІ

СӨЖ 2
Тақырыбы: Геотермальды энергетика


Жұмыстың орындалу сапасы
Бағалау сипаттамасы
Баға
1
Орындалған жоқ

2
Орындалған

3
Материалды өз бетімен жүйелеу

4
Жұмысты орындау талабына сай уақытты мен көлемі

5
Қосымша әдебиеттерді пайдалану

6
Орындалған тапсырманың дәйектілігі

7
Қорғау

Оқытушы:Каримов А.Н.
Орындаған: Мағазова А.

Алматы 2013
Геотермалдық энергетика -- энергияны Жердің ішкі жылуынан алу. Геотермалды энергетика табиғи және жасанды болып бөлінеді. Алғашқысы табиғи жылы көздерден алынса, екіншісі жер қабатына суды және басқа сұйықсұйықтарды және газ тәріздізаттарды айдап сіңіруден альшады. Геотермалды энергетика тұрмыстық қажетте жөне жылыту қондырғыларында кең қолданьшады. Кемістігі -- жылы сулардың жоғарғы улылығы және сұйықтар мен газдардың химиялық зиянды реакциялары.
Геотермалдық энергетиканың басымдылығы қоршаған орта үшін оның толық қауіпсіздігі болып табылады. Жоғары температуралы геотермалдық көздерден 1 кВт электр энергиясын өндіру кезінде бөлінетін СО2 саны 13-тен 380 г-ға дейін құрайды (мысалы, көмір үшін ол1 кВт сағ. 1042 г. тең).
Алайда, Жер жылуы тым шашыраңқы, және де әлемнің көптеген аудандарында адам энергияның шамалы ғана бөлігін пайдамен қолдана алады. Соның ішінде пайдалану үшін жарамды геотермалдық ресурстар жер қабаты қалыңдығының жоғарғы 10 километрінің шамамен 1% жалпы жылусыйымдылығын құрайды немесе 137 трлн. ш.о.т.
Геотермалдық энергияны өндіру кезінде электр стансаларының үш түрі қолданылады: құрғақ буды, булауды және бинарлық буды іске жарататын.
# Құрғақ будағы күшті агрегаттар жер қыртысының жарылған жерлерінен буды іске жаратады және генераторды айналдыратын турбиналарды тікелей іске қосу үшін пайдаланылады;
# Булау негізіндегі электр стансалары 200°С температурада жердегі ыстық суды іске жаратады, оған үстіне көтерілгенде қайнауға мүмкіндік береді, сонан кейін булысу сепараторларда бу фазасын турбиналар арқылы өткізеді;
# Бинарлық будағы стансаларда ыстық су жылу алмастырғыштар арқылы өтеді, турбинаны айналдыратын органикалық сұйықтықты қайнауға келтіреді. Бу конденсаты және қалған геотермалдық сұйықтық стансаның барлық үш түрінде шығарда одан әрі температураны жинау үшін ыстық жер қойнауына қайтадан қайтады.
Жер ядросының геотермалдық энергиясы кейбір жерлерде басқаларға қарағанда, жер бетіне жақын. Жер асты буына немесе суына қол жеткізуге және үстіне дренаждауға болатын жерлерде, оларды электр энергиясын өндіру үшін пайдалануға болады. Мұндай геотермалдық көздер жердің кейбір геологиялық тұрақсыз аймақтарында бар, мысалы, Чилиде, Исландияда, Жаңа Зеландияда, АҚШ-та, Филиппинда және Италияда. Мұндай жерлердің екі ең айқын өкілі АҚШ-та Йеллоустоун бассейнінде және солтүстік Калифорнияда. Исландия 170 МВ геотермалдық энергия өндіреді, ал 2000 жылы елдегі барлық тұрғын-үйлердің 86 % геотермалдық энергиямен жылытылды. Жалпы алғанда, операциялық энергияның шамамен 8 000 МВт қолда бар.
Сондай-ақ, ыстық тас түрлерінен геотермалдық энергия алудың да әлеуеті бар. Ол үшін тереңдігі 3 км. канал қазу қажет. Мұндай каналдардың кейбіреуі суды жерге ағызып тартады, кейбірі сыртқа ағызып тартады. Жылу ресурсы мынадан тұрады: жер астында ыстық, радиогендік граниттік қазба түрлері бар, олар қазба түрлері мен жер беті арасында тұнбаның жеткілікті қабаты болғанда қызады. Бүгінде кейбір компаниялар Австралияда осы технологияны зерттеуде.

Жылу сорғылары
Жылу сорғылары - ыстық сумен қамтамасыз ету және жылыту үшін жеке меншік коттедждерден, көппәтерлі тұрғын үйлерден, әлеуеті төмен көздің жылуын пайдалану есебінен, одан да жоғары температуралы жылу тасығышқа оны тасымалдау арқылы жылу алуға мүмкіндік беретін тиімді және экологиялық таза жылу жүйелер болып табылады.

Жұмыс принципі
Кез келген жылу сорғысы үш негізгі агрегаттан: жылу алмастырғыштан (буландырғыш), компрессордан (қысымды көтеретін) және конденсатордан тұрады. Бұл агрегаттар бір-бірімен тұйықталған құбырмен байланысқан. Құбыр жүйесінде хладагент циркуляцияға түседі, ол циклдің бір бөлігінде сұйықтық, басқасында - газ. Әр жылу сорғысында жылу көзі болуы қажет, оның температурасының төмендігі соншалық (0-25°С), оны тікелей пайдалану мүмкін емес. Жылу көзі ретінде таулы-тас түрі, жер (грунт) немесе су болуы мүмкін. Жылу сорғысының жұмыс істеу принципі келесідей. Салқындалған жылу тасығыш жерге немесе көлдің түбінде төселген құбырдан өткенде бірнеше градусқа қызады. Сонан кейін жылу сорғысының ішінде жылу тасығыш, жылу алмастырғыш (буландырғыш) арқылы қоршаған ортадан жиналған жылуды хладагентпен толтырылған жылу сорғысының ішкі контурына береді. Хладагентте қайнаудың өте төмен температурасы бар. Буландырғыш арқылы өтіп, ол сұйықтық күйінен газ тәріздес күйге түседі. Бұл төмен қысымда және -5°С температурасында болады. Буландырғыштан газ тәріздес хладагент компрессорға түседі, сол жерде жоғары қысым мен жоғары температура күйіне дейін сығылады. Одан кейін ыстық газ екінші жылу алмастырғышқа, конденсаторға түседі. Конденсаторда үйді жылыту жүйесінің кері құбырынан ыстық газ бен жылу тасығыш арасында жылу алмасу болады. Хладагент өз жылуын жылыту жүйесіне береді, салқындайды да, ... жалғасы
Ұқсас жұмыстар
Энергетика
Атомдық энергетика
"Қазақстанның энергетика жүйесі."
Қоршаған орта және энергетика
Қазақстанның энергетика жүйесі
Энергетика саласындағы жоспарлау мәселелері
Өнеркәсіп және энергетика туралы
Атом энергетика мәселесі
Өнеркәсіп және энергетика
Қазақстан аумағындағы электр энергетика саласы
Пәндер

Қазақ тілінде жазылған рефераттар, курстық жұмыстар, дипломдық жұмыстар бойынша біздің қор №1 болып табылады.

Байланыс

Qazaqstan
Phone: 777 614 50 20
WhatsApp: 777 614 50 20
Email: info@stud.kz
Көмек / Помощь
Арайлым
Біз міндетті түрде жауап береміз!
Мы обязательно ответим!
Жіберу / Отправить

Рахмет!
Хабарлама жіберілді. / Сообщение отправлено.

Email: info@stud.kz

Phone: 777 614 50 20
Жабу / Закрыть

Көмек / Помощь