Фракталдар


Табиғатта кездесетін өлшемдері атомдық масштабтан әлемдік кеңістікке дейін созылып жатқан обьектілердің (нысандардың) геометриясы біздің оны зерттеп түсіну үшін құратын, идеалдандырылған модельдерімізде басты орын алады. Бірақ дәстүр бойынша табиғат геометриясын индуктивті түсінудің негізі ретінде осы уақытқа дейін евклидтік геометрияның түсініктері: сызықтар, шеңберлер, сфералар мен тетраэдрлар қолданылады.
Күрделі жүйелерде болатын процестерді, құрылымды – стохастикалық құбылыстарды барынша қарапайым түрде сипаттауға, түсіну мен түсіндіруге мүмкіндік беретін ғылым – фракталдар теориясы.
Фрактал түсінігі алғаш математикалық түрде күрделі геометриялық формаларды сипаттау үшін енгізіледі. Ғылымның дамуы және компьютерлік техниканы қолданудың алуан түрлі мүмкіндіктері фрактал түсінігінің табиғаттың ең жалпы, түбегейлі заңдылықтарымен байланысты екенін көрсетті. Физика – математика ғылымдарының бұл жаңа бағытының күрт дамуына француз ғалымы Б. Мандельброттың 1982 жылы жарық көрген "Табиғаттың фракталдық геометриясы" атты кітабының шығуы тікелей себеп болды.
Б. Мандельброт бұл кітабында табиғатта кездесетін фракталдық нысандардың көптеген мысалдарын келтірді және оған ғылыми көпшіліктің жаппай назарын аударды. Оның дамытқан геометриясы сан түрлі обьектілердің формасын сипаттауға қолданылуымен қатар, заңдылығы бар, масштабты – инварианты құрылымдарның моделін салуға мүмкіндік береді. Осы үлгілерді қолдану ретсіз құрылымдарды зерттеп білудің жаңа жолдары болып табылды.
Аспандағы бұлттар, тау сілемдері, терезе шынысына қатқан қыраулар, полимерді түзетін молекулар, тірі клеткалар және тағы сол сияқты нысандар мен құрылымдардың бәріне ортақ бір қасиеті – олардың кіші және бөліктерінің бір – біріне ұқсастығы. Әртүрлі уақыт мезетінде түсірілген, үлкен және кіші бұлттардың суреттерін салыстыру олардың өзгеру заңдылығының бірдей болатынын көрсетеді. Осы сияқты заңдылықты әртүрлі масштабта түсірілген жағалау сызықтарының фрагменттерінін (мысалы, Британия аралының, Арал теңізінің, Балқаш көлінің) салыстыру арқылы да байқауға болады.
Осындай өзұқсас нысандар үшін француз математигі Б. Мандельброт жаңа фрактал (латыншадан аудармасы – бөлшектік, кескіленген) ұғымын енгізді. Ол құрылымдық, өзіне - өзі ұқсас иерархиялық ішкі құрылысы бар обьектілерді фракталдар деп аталады. Фракталдық қасиет бейсызық процестер мен құбылыстарды сипаттайтын фазалық кеңістіктерде, күрделі жүйенің функционалды харакеттерінде, адрондардың әсерлесуінің, қоғамның экономикалық көрсеткішінің өзгерістерінде және т. б. байқалады.

Пән: Астрономия
Жұмыс түрі: Материал
Көлемі: 7 бет
Бұл жұмыстың бағасы: 300 теңге




Фракталдар.

Табиғатта кездесетін өлшемдері атомдық масштабтан әлемдік кеңістікке дейін созылып жатқан обьектілердің (нысандардың) геометриясы біздің оны зерттеп түсіну үшін құратын, идеалдандырылған модельдерімізде басты орын алады. Бірақ дәстүр бойынша табиғат геометриясын индуктивті түсінудің негізі ретінде осы уақытқа дейін евклидтік геометрияның түсініктері: сызықтар, шеңберлер, сфералар мен тетраэдрлар қолданылады.
Күрделі жүйелерде болатын процестерді, құрылымды - стохастикалық құбылыстарды барынша қарапайым түрде сипаттауға, түсіну мен түсіндіруге мүмкіндік беретін ғылым - фракталдар теориясы.
Фрактал түсінігі алғаш математикалық түрде күрделі геометриялық формаларды сипаттау үшін енгізіледі. Ғылымның дамуы және компьютерлік техниканы қолданудың алуан түрлі мүмкіндіктері фрактал түсінігінің табиғаттың ең жалпы, түбегейлі заңдылықтарымен байланысты екенін көрсетті. Физика - математика ғылымдарының бұл жаңа бағытының күрт дамуына француз ғалымы Б. Мандельброттың 1982 жылы жарық көрген "Табиғаттың фракталдық геометриясы" атты кітабының шығуы тікелей себеп болды.
Б. Мандельброт бұл кітабында табиғатта кездесетін фракталдық нысандардың көптеген мысалдарын келтірді және оған ғылыми көпшіліктің жаппай назарын аударды. Оның дамытқан геометриясы сан түрлі обьектілердің формасын сипаттауға қолданылуымен қатар, заңдылығы бар, масштабты - инварианты құрылымдарның моделін салуға мүмкіндік береді. Осы үлгілерді қолдану ретсіз құрылымдарды зерттеп білудің жаңа жолдары болып табылды.
Аспандағы бұлттар, тау сілемдері, терезе шынысына қатқан қыраулар, полимерді түзетін молекулар, тірі клеткалар және тағы сол сияқты нысандар мен құрылымдардың бәріне ортақ бір қасиеті - олардың кіші және бөліктерінің бір - біріне ұқсастығы. Әртүрлі уақыт мезетінде түсірілген, үлкен және кіші бұлттардың суреттерін салыстыру олардың өзгеру заңдылығының бірдей болатынын көрсетеді. Осы сияқты заңдылықты әртүрлі масштабта түсірілген жағалау сызықтарының фрагменттерінін (мысалы, Британия аралының, Арал теңізінің, Балқаш көлінің) салыстыру арқылы да байқауға болады.
Осындай өзұқсас нысандар үшін француз математигі Б. Мандельброт жаңа фрактал (латыншадан аудармасы - бөлшектік, кескіленген) ұғымын енгізді. Ол құрылымдық, өзіне - өзі ұқсас иерархиялық ішкі құрылысы бар обьектілерді фракталдар деп аталады. Фракталдық қасиет бейсызық процестер мен құбылыстарды сипаттайтын фазалық кеңістіктерде, күрделі жүйенің функционалды харакеттерінде, адрондардың әсерлесуінің, қоғамның экономикалық көрсеткішінің өзгерістерінде және т. б. байқалады.
Фракталдардың дәл және қатаң анықтамасы әзірге жоқ. Б.Мандельброт алғаш рет фрактал анықтамасының мынадай вариантын ұсынған: фрактал деп тұтас күйіне белгілі бір мағынада ұқсас бөліктерден тұратын құрылым айтылады.
Математикада өзұқсас геометриялық обьектілер деп бір-бірі ұқсас, саны шекті бірдей элементтерге бөлуге болатын денелер саналады. Мысалы, төменде кесіндіні, тең қабырғалы үшбұрышты, квадратты, кубты сәйкес 2, 4, 4, 8, өзұқсас элементтерге бөлу тәсілі келтірілген. Суреттен фракталдың қандай масштабта байқалғанына қарамастан бір-біріне ұқсас , бірдей түрге ие екендігі білінеді. Бірақ, қосымша еш информация алмай, біртіндеп кішірейіп немесе үлкейіп отыратын өзұқсас өркеш - өркеш бұлттардың сыртқы пішінінің өлшемдерін бағалау мүмкін емес. Себебі, бұл кезде элементтер саны өте көп және олар бірсыдырғы орналаспайды. Бұл үшін арнайы өлшемділік ұғымы енгізілуі тиіс.
Жалпы өлшемділік ұғымы кеңістіктегі нүктенің орнын анықтауға мүмкіндік беретін, ең аз тәуелсіз координаталар санын анықтаумен тығыз байланысты. Физикада бұл геометриялық обьектіні бейнелеуге мүмкіндік беретін тәуелсіз айнымалылар санымен - параметрлік өлшемділікпен сәйкес келеді. Евклид кеңістігіндегі көлемді анықтауға керекті бұндай айнымалыларды саны үшке тең (x, y, z), жазықтықтың ауданын өлшеуге оның екеуі (x, y) болса, ал сызық үшін бір координата x болса да жеткілікті. Нүктенің өлшемділігі нөлге тең. Осы жағынан кеңістік үш өлшемді, жазықтық екі өлшемді, ал сызық бір өлшемді деп айтылады, яғни, параметрлік өлшемділіктің мәндері бүтін сандар 0, 1, 2, 3.
Өлшемділіктің екінші түріне топологиялық өлшемділік d жатады. Топологиялық өлшемділіктің анықтамасы былай беріледі: кез - келген жиынның топологиялық өлшемділігі оны екі, өзара байланыссыз бөліктерге ажырататын қиманың өлшемділігіне бірді қосқанға тең. Түзуді екі байланыссыз кескіндерге бөлу оның бір нүктесін алып тастау арқылы жүзеге асырылады. Ал шекті нүктелер жиынының өлшемділігі нөлге тең болғандықтан, сызық бір өлшемді, яғни Жазықтық екі өлшемді, себебі, оны екіге бөлуді өлшемді, екіге тең, яғни, Демек, топологиялық өлшемділіктер де бүтін сандар.
Бірақ, табиғатта кездесетін кейбір нысандарды өлшеу үшін, бұл өлшемділіктер жеткіліксіз болып шықты. Себебі, адамның сезім мүшелерінің қабылдау шегін әртүрлі сезімтал құралдар (микраскоптар, телескоптар және т.б.) арқылы басқа деңгейге ауыстыруға болады, бірақ барлық масштабты бір мезгілде қадағалау және нысандардың өлшемдерінің әртүрлі масштабта қандай қатынастарда болатынын тағайындау қиын. Информациялық қордың молаюы мен ғылыми - техникалық прогресс бұл қиындықты жеңуге мүмкіндік берді.
Алғаш рет күрделі нысандарды өлшеуді ағылшын физигі Л. Ричардсон жүзеге асырды. Ол фракталдық құрылымдардың бәріне ортақ маңызды ерекшеліктерінің бірі - олардың аддитивті еместігін, яғни, өлшенетін шама (ұзындық, аудан, көлем, масса, заряд, және т. б.) мәндерінің кеңістікте жүргізілген өлшеулердің дәлдігіне тәуелділігін пайдаланды. Мысалы, аса күрделі, шым - шытырық броундық бөлшектің траекториясының ұзындығы L, өлшеу бірлігіне (масштабына) байланысты. Масштаб кішірейген сайын өлшенген обьектінің ұзындығы арта береді.
Л. Ричардсон Британия аралының әртүрлі масштабта түсірілген карталарын алып, оның А және С нүктелерінің арасын қосатын жағалау сызығының ұзындығын анықтау үшін адымы - ға тең ашамен өлшеулер жүргізіледі. (1 - сурет ). А ... жалғасы
Ұқсас жұмыстар
Кванттық жіпшелі кеуекті кремнийдың фракталдық қасиеттері
Гaлaктикaлaрдың кеңістіктегі үлестірілуінің мультифрaктaлдық пaрaметрлерін aнықтaудың әдістері
Күннің рентген сәулеленуін бейсызық талдау
Ғалам дамуының фракталдық заңдылықтары
Күндегі және планета аралық кеністіктегі бейстационар процестердің мультифракталдық сипаттамалары
Динамикалық хаостың сипаттамалары
Астрофизикалық объектілерді фракталды талдау
Радиосигналдардың мультифракталдық талдауы
Материяның эллипстік пен спиралды галактикалардағы таралуының фракталдық және мультифракталдық сипаттамаларын анықтау
Кейбір астрофизикалық құбылыстарды динамикалық хаос теориясы әдісімен сипаттау
Пәндер

Қазақ тілінде жазылған рефераттар, курстық жұмыстар, дипломдық жұмыстар бойынша біздің қор №1 болып табылады.

Байланыс

Qazaqstan
Phone: 777 614 50 20
WhatsApp: 777 614 50 20
Email: info@stud.kz
Көмек / Помощь
Арайлым
Біз міндетті түрде жауап береміз!
Мы обязательно ответим!
Жіберу / Отправить

Рахмет!
Хабарлама жіберілді. / Сообщение отправлено.

Email: info@stud.kz

Phone: 777 614 50 20
Жабу / Закрыть

Көмек / Помощь