Графтар теориясы және оның элементтері
Графтар теориясы (ағылш.graph theory) — түйіндері нүктелер жиыны, ал түйіндердің жалғасуы (қабырға деп аталатын) парлы екі нүкте болып келетін тор түрінде бейнеленеді. Егер түйіндердің жалғасу реті айтарлықтай маңызды болса — бағытталған граф, әйтпесе бағытталмаған граф болады. Графтар информатикада кеңінен қолданылады, айталық, алгоритмдер схемасы немесе программалар бағытталған графтарға жатады.
Түрлері
• Бағдарланбaғaн граф (Неориентированный граф) — төбелерді қосатын доғаларының бағыты болмайтын граф.
• Бағдарланған граф (Ориентированный граф; directed graph) - әр түрлі төбелер жұбын жалғастыратын қабырғалармен бірге түйіндердің (немесе төбелердің) құр ақырғы жиыны. Егер е қабырғасы Vl және V2 төбелерін жалғастырса, онда Vl мен И,-ні инцидент деп атайды және бұл төбелер көршілес болып саналады, е — реттелмеген жұп (К, и V2). Әдетте, граф көрнекті формада ұсынылады, сонымен бірге төбелері нүктелермен немесе кейде ұқсастыру мақсатымен ентаңбаланған басқа мүсіндермен, ал қабырғалары сәйкес нүктелерді жалғастыратын сызықтармен кескінделеді. Егер әрбір қабырғаға бағыт көрсетілсе, онда мұндай граф бағдарланған граф деп аталады. Бұл жағдайда қабырға әр түрлі төбелердің реттелген жұбының жиынын үйымдастырады және оларды көбінесе доға деп атайды. Бағдарланған граф көрнекті түрде ұсынылған кезде әрбір доға жебелікпен жабдықталады.
Көптеген қолданбалы есептерде айналамызды қоршаған ортаның әртүрлі объектілер арасындағы байланыстар жүйесі зерттеледі. Объектілер төбелер деп аталып, нүктелер арқылы белгіленеді, ал төбелер арасындағы байланыстар доғалар деп аталып, сәйкес нүктелерді қосатын бағытталған түзулермен белгіленеді. Қала көшелерін граф арқылы кескіндеуге болады: көше қиылысуларын графтардың төбесі деп, ал көшелерді доғалар деп алуға болады;
Блок-схемаларды да граф түрінде кескіндеуге болады: блоктар — граф төбелері, ал операцияның орындалу кезегін көрсететін стрелкалар доғалар.
Анықтама: G=(M,R) алгебралық жүйе граф деп аталады. Мұндағы М—жиынтығы бос емес жиын, оның элементтері графтың төбелері деп аталады, ал бинарлы R қатынасының R M2 элементтері доғалар деп аталады. Сонымен граф төбелері дегеніміз –айналамызды қоршаған ортаның кез келген объектісі. Олардың саны шектеулі болғандықтан,біз оларды натурал сандармен белгілейміз. Ал граф қабырғалары оның кейбір төбелерін қосады. Граф қабырғаларын әдетте латын әріптерімен белгілейді. G= ‹M,R› графының геометриялық кескіні жазықтықта графтың әр төбесін нүкте арқылы белгілеп , егер (a,b) R болса а төбесінен b төбесіне доға жүргізу арқылы алынады.
Түрлері
• Бағдарланбaғaн граф (Неориентированный граф) — төбелерді қосатын доғаларының бағыты болмайтын граф.
• Бағдарланған граф (Ориентированный граф; directed graph) - әр түрлі төбелер жұбын жалғастыратын қабырғалармен бірге түйіндердің (немесе төбелердің) құр ақырғы жиыны. Егер е қабырғасы Vl және V2 төбелерін жалғастырса, онда Vl мен И,-ні инцидент деп атайды және бұл төбелер көршілес болып саналады, е — реттелмеген жұп (К, и V2). Әдетте, граф көрнекті формада ұсынылады, сонымен бірге төбелері нүктелермен немесе кейде ұқсастыру мақсатымен ентаңбаланған басқа мүсіндермен, ал қабырғалары сәйкес нүктелерді жалғастыратын сызықтармен кескінделеді. Егер әрбір қабырғаға бағыт көрсетілсе, онда мұндай граф бағдарланған граф деп аталады. Бұл жағдайда қабырға әр түрлі төбелердің реттелген жұбының жиынын үйымдастырады және оларды көбінесе доға деп атайды. Бағдарланған граф көрнекті түрде ұсынылған кезде әрбір доға жебелікпен жабдықталады.
Көптеген қолданбалы есептерде айналамызды қоршаған ортаның әртүрлі объектілер арасындағы байланыстар жүйесі зерттеледі. Объектілер төбелер деп аталып, нүктелер арқылы белгіленеді, ал төбелер арасындағы байланыстар доғалар деп аталып, сәйкес нүктелерді қосатын бағытталған түзулермен белгіленеді. Қала көшелерін граф арқылы кескіндеуге болады: көше қиылысуларын графтардың төбесі деп, ал көшелерді доғалар деп алуға болады;
Блок-схемаларды да граф түрінде кескіндеуге болады: блоктар — граф төбелері, ал операцияның орындалу кезегін көрсететін стрелкалар доғалар.
Анықтама: G=(M,R) алгебралық жүйе граф деп аталады. Мұндағы М—жиынтығы бос емес жиын, оның элементтері графтың төбелері деп аталады, ал бинарлы R қатынасының R M2 элементтері доғалар деп аталады. Сонымен граф төбелері дегеніміз –айналамызды қоршаған ортаның кез келген объектісі. Олардың саны шектеулі болғандықтан,біз оларды натурал сандармен белгілейміз. Ал граф қабырғалары оның кейбір төбелерін қосады. Граф қабырғаларын әдетте латын әріптерімен белгілейді. G= ‹M,R› графының геометриялық кескіні жазықтықта графтың әр төбесін нүкте арқылы белгілеп , егер (a,b) R болса а төбесінен b төбесіне доға жүргізу арқылы алынады.
Қазақстан Республикасының Білім және Ғылым Министрлігі
Семей қаласындағы Шәкәрім атындағы Мемлекеттік Университеті
СОӨЖ
Тақырыбы:Графтар теориясы және оның элементтері
Орындаған:Садырбаева Б.С.
Тексерген:Джунусова М.Ж.
Семей 2015 жыл
Графтар теориясы (ағылш.graph theory) -- түйіндері нүктелер жиыны, ал түйіндердің жалғасуы (қабырға деп аталатын) парлы екі нүкте болып келетін тор түрінде бейнеленеді. Егер түйіндердің жалғасу реті айтарлықтай маңызды болса -- бағытталған граф, әйтпесе бағытталмаған граф болады. Графтар информатикада кеңінен қолданылады, айталық, алгоритмдер схемасы немесе программалар бағытталған графтарға жатады.
----------------------------------- ----------------------------------- ----------
Түрлері
* Бағдарланбaғaн граф (Неориентированный граф) -- төбелерді қосатын доғаларының бағыты болмайтын граф.
* Бағдарланған граф (Ориентированный граф; directed graph) - әр түрлі төбелер жұбын жалғастыратын қабырғалармен бірге түйіндердің (немесе төбелердің) құр ақырғы жиыны. Егер е қабырғасы Vl және V2 төбелерін жалғастырса, онда Vl мен И,-ні инцидент деп атайды және бұл төбелер көршілес болып саналады, е -- реттелмеген жұп (К, и V2). Әдетте, граф көрнекті формада ұсынылады, сонымен бірге төбелері нүктелермен немесе кейде ұқсастыру мақсатымен ентаңбаланған басқа мүсіндермен, ал қабырғалары сәйкес нүктелерді жалғастыратын сызықтармен кескінделеді. Егер әрбір қабырғаға бағыт көрсетілсе, онда мұндай граф бағдарланған граф деп аталады. Бұл жағдайда қабырға әр түрлі төбелердің реттелген жұбының жиынын үйымдастырады және оларды көбінесе доға деп атайды. Бағдарланған граф көрнекті түрде ұсынылған кезде әрбір доға жебелікпен жабдықталады.
Көптеген қолданбалы есептерде айналамызды қоршаған ортаның әртүрлі объектілер арасындағы байланыстар жүйесі зерттеледі. Объектілер төбелер деп аталып, нүктелер арқылы белгіленеді, ал төбелер арасындағы байланыстар доғалар деп аталып, сәйкес нүктелерді қосатын бағытталған түзулермен белгіленеді. Қала көшелерін граф арқылы кескіндеуге болады: көше қиылысуларын графтардың төбесі деп, ал көшелерді доғалар деп алуға болады;
Блок-схемаларды да граф түрінде кескіндеуге болады: блоктар -- граф төбелері, ал операцияның орындалу кезегін көрсететін стрелкалар доғалар.
Анықтама: G=(M,R) алгебралық жүйе граф деп аталады. Мұндағы М -- жиынтығы бос емес жиын, оның элементтері графтың төбелері деп аталады, ал бинарлы R қатынасының R M2 элементтері доғалар деп аталады. Сонымен граф төбелері дегеніміз - айналамызды қоршаған ортаның кез келген объектісі. Олардың саны шектеулі болғандықтан,біз оларды натурал сандармен белгілейміз. Ал граф қабырғалары оның кейбір төбелерін қосады. Граф қабырғаларын әдетте латын әріптерімен белгілейді. G= ‹M,R› графының геометриялық кескіні жазықтықта графтың әр төбесін нүкте арқылы белгілеп , егер (a,b) R болса а төбесінен b төбесіне доға жүргізу арқылы алынады. Мысалы: төбелері М={1,2,3,4}, ал доғалары R={(1,1),(1,2),(2,3),(3,4),(4,3),(4 ,1)} болатын G графының геометриялық кескіні төмендегідей:
Графтың төбелерінің қандай сызықтарымен қосылатындығы (түзу әлде қисық), сызықтардың ұзындығы туралы ақпараттар маңызды емес.Төбелердің арасында байланыс бар екендігі және ол байланыс туралы ақпарат R доғалар жиынында екендігі болса болды.Төбелерді қосатын сызықтардың бағыты көрсетілген болуы мүмкін (мысалдағы сияқты). Мұндай граф бағытталған граф деп аталады (оргграф). Оған математикалық түрде мынандай анықтама беруге болады.
Анықтама: Егер R қатынасы симметриялы болмаса, яғни (a,b) R,(b,а) R онда G=M,R графы бағытталған (оргграф) деп аталады, ... жалғасы
Семей қаласындағы Шәкәрім атындағы Мемлекеттік Университеті
СОӨЖ
Тақырыбы:Графтар теориясы және оның элементтері
Орындаған:Садырбаева Б.С.
Тексерген:Джунусова М.Ж.
Семей 2015 жыл
Графтар теориясы (ағылш.graph theory) -- түйіндері нүктелер жиыны, ал түйіндердің жалғасуы (қабырға деп аталатын) парлы екі нүкте болып келетін тор түрінде бейнеленеді. Егер түйіндердің жалғасу реті айтарлықтай маңызды болса -- бағытталған граф, әйтпесе бағытталмаған граф болады. Графтар информатикада кеңінен қолданылады, айталық, алгоритмдер схемасы немесе программалар бағытталған графтарға жатады.
----------------------------------- ----------------------------------- ----------
Түрлері
* Бағдарланбaғaн граф (Неориентированный граф) -- төбелерді қосатын доғаларының бағыты болмайтын граф.
* Бағдарланған граф (Ориентированный граф; directed graph) - әр түрлі төбелер жұбын жалғастыратын қабырғалармен бірге түйіндердің (немесе төбелердің) құр ақырғы жиыны. Егер е қабырғасы Vl және V2 төбелерін жалғастырса, онда Vl мен И,-ні инцидент деп атайды және бұл төбелер көршілес болып саналады, е -- реттелмеген жұп (К, и V2). Әдетте, граф көрнекті формада ұсынылады, сонымен бірге төбелері нүктелермен немесе кейде ұқсастыру мақсатымен ентаңбаланған басқа мүсіндермен, ал қабырғалары сәйкес нүктелерді жалғастыратын сызықтармен кескінделеді. Егер әрбір қабырғаға бағыт көрсетілсе, онда мұндай граф бағдарланған граф деп аталады. Бұл жағдайда қабырға әр түрлі төбелердің реттелген жұбының жиынын үйымдастырады және оларды көбінесе доға деп атайды. Бағдарланған граф көрнекті түрде ұсынылған кезде әрбір доға жебелікпен жабдықталады.
Көптеген қолданбалы есептерде айналамызды қоршаған ортаның әртүрлі объектілер арасындағы байланыстар жүйесі зерттеледі. Объектілер төбелер деп аталып, нүктелер арқылы белгіленеді, ал төбелер арасындағы байланыстар доғалар деп аталып, сәйкес нүктелерді қосатын бағытталған түзулермен белгіленеді. Қала көшелерін граф арқылы кескіндеуге болады: көше қиылысуларын графтардың төбесі деп, ал көшелерді доғалар деп алуға болады;
Блок-схемаларды да граф түрінде кескіндеуге болады: блоктар -- граф төбелері, ал операцияның орындалу кезегін көрсететін стрелкалар доғалар.
Анықтама: G=(M,R) алгебралық жүйе граф деп аталады. Мұндағы М -- жиынтығы бос емес жиын, оның элементтері графтың төбелері деп аталады, ал бинарлы R қатынасының R M2 элементтері доғалар деп аталады. Сонымен граф төбелері дегеніміз - айналамызды қоршаған ортаның кез келген объектісі. Олардың саны шектеулі болғандықтан,біз оларды натурал сандармен белгілейміз. Ал граф қабырғалары оның кейбір төбелерін қосады. Граф қабырғаларын әдетте латын әріптерімен белгілейді. G= ‹M,R› графының геометриялық кескіні жазықтықта графтың әр төбесін нүкте арқылы белгілеп , егер (a,b) R болса а төбесінен b төбесіне доға жүргізу арқылы алынады. Мысалы: төбелері М={1,2,3,4}, ал доғалары R={(1,1),(1,2),(2,3),(3,4),(4,3),(4 ,1)} болатын G графының геометриялық кескіні төмендегідей:
Графтың төбелерінің қандай сызықтарымен қосылатындығы (түзу әлде қисық), сызықтардың ұзындығы туралы ақпараттар маңызды емес.Төбелердің арасында байланыс бар екендігі және ол байланыс туралы ақпарат R доғалар жиынында екендігі болса болды.Төбелерді қосатын сызықтардың бағыты көрсетілген болуы мүмкін (мысалдағы сияқты). Мұндай граф бағытталған граф деп аталады (оргграф). Оған математикалық түрде мынандай анықтама беруге болады.
Анықтама: Егер R қатынасы симметриялы болмаса, яғни (a,b) R,(b,а) R онда G=M,R графы бағытталған (оргграф) деп аталады, ... жалғасы
Ұқсас жұмыстар
Пәндер
- Іс жүргізу
- Автоматтандыру, Техника
- Алғашқы әскери дайындық
- Астрономия
- Ауыл шаруашылығы
- Банк ісі
- Бизнесті бағалау
- Биология
- Бухгалтерлік іс
- Валеология
- Ветеринария
- География
- Геология, Геофизика, Геодезия
- Дін
- Ет, сүт, шарап өнімдері
- Жалпы тарих
- Жер кадастрі, Жылжымайтын мүлік
- Журналистика
- Информатика
- Кеден ісі
- Маркетинг
- Математика, Геометрия
- Медицина
- Мемлекеттік басқару
- Менеджмент
- Мұнай, Газ
- Мұрағат ісі
- Мәдениеттану
- ОБЖ (Основы безопасности жизнедеятельности)
- Педагогика
- Полиграфия
- Психология
- Салық
- Саясаттану
- Сақтандыру
- Сертификаттау, стандарттау
- Социология, Демография
- Спорт
- Статистика
- Тілтану, Филология
- Тарихи тұлғалар
- Тау-кен ісі
- Транспорт
- Туризм
- Физика
- Философия
- Халықаралық қатынастар
- Химия
- Экология, Қоршаған ортаны қорғау
- Экономика
- Экономикалық география
- Электротехника
- Қазақстан тарихы
- Қаржы
- Құрылыс
- Құқық, Криминалистика
- Әдебиет
- Өнер, музыка
- Өнеркәсіп, Өндіріс
Қазақ тілінде жазылған рефераттар, курстық жұмыстар, дипломдық жұмыстар бойынша біздің қор #1 болып табылады.
Ақпарат
Қосымша
Email: info@stud.kz