Тұқым қуудың хромосомалық теориясы.Генетикалық процестердің молекулалық механизмі


Қазақстан Республикасының Білім және Ғылым Министрлігі
Семей қаласының Шәкәрім атындағы мемлекеттік университеті
БАӨЖ
ТАҚЫРЫБЫ: Тұқым қуудың хромосомалық теориясы. Генетикалық процестердің молекулалық механизмі.
Орындаған:Е-313 топ студенті
Елубекова Е. Б.
Семей 2015ж
Тұқым қуудың хромосомалық теориясы. Хромосомалық теория - тұқым қуалаушылықтың хромосомалық теориясы "тірі организмдерге тән тұқым қуалаушылық белгілер, яғни организмнің нәсілдік қасиеттері ұрпақтан ұрпаққа жасуша ядросы хромосомаларындағы тендер арқылы беріледі" деп тұжырымдайды. Хромосомалық теорияны тәжірибе жүзінде дәлелдеп, XX ғасырдың басында ашқан американ биологі Томас Хант Морган (1866-1945) мен оның шәкірттері Г. Меллер, А. Стертевант және т. б. еді. Т. Морган мектебінің ғалымдары жасуша ядросы хромосомаларындағы гендердің орналасу зандылығын зерттеу нәтижесінде Г. Мендель зандарының цитологиялық механизін ашып, табиғи сұрыптау теориясының генетикалық негізін жасады. Тұқым қуалаушылықтың хромосомалық теориясының негізгі қағидалары мынадай:
- Гендер хромосомада бір сызықтың бойымен тізбектеле орналасқан. Әр геннің хромосомада нақтылы орны (локус) болады.
- Бір хромосомада орналасқан гендер тіркесу топтарын құрайды. Тіркесу топтарының саны сол организмге тән хромосомалардың гаплоидты санына сәйкес келеді.
- Ұқсас хромосомалардың арасында аллельді гендердің алмасуы жүреді.
- Хромосомадағы гендердің ара қашықтығы айқасу жиілігіне тура пропорционал.
ХІХ ғасырдың соңында жасуша құрылысының зерттелуіне байланысты ядро мен оның құрамындағы хромосомалардың тұқым қуалаушылыққа қатысы бар екені анықталды. 1883 жылы бельгиялық зоолог Э. Бенеден мейоз процесіндегі редукциялық бөліну аталық және аналық хромосомалардың ажырауына байланысты деп жорамалдады. Мендель заңдарын кейін 1902-1903 жылдары В. Сэттон редукциялық бөліну және ұрықтану кезіндегі хромосомалардың тәртібі мен будан ұрпақтардағы белгілердің тәуелсіз ажырауының арасында байланыс бар екенін анықтады. Өзінің “Хромосомалар және тұқым қуалаушылық” деген еңбегінде хромосомаларды цитологиялық тұрғыдан алғанда Мендель анықтаған тұқым қуалау факторларының таралуына сәйкес келетіндігін көрсетті. 1905 жылы Э. Вильсон жынысты анықтаудың хромосомалық негізін сипаттады.
Т. Морган заңдылықтары
Американдық генетик Т. Морган тұқым қуалаушылықтың хромосомалық теориясының негізін қалады. Мендельдің үшінші заңы -“Белгілердің тәуелсіз ажырауың гендердің әр түрлі жұп хромосомаларда орналасуына байланысты болады. Алайда, кез келген организмдерге тән гендер саны хромосома санынан әлдеқайда артық болады. Мұндай жағдайда ол гендердің тұқым қуалауы немесе белгілердің ұрпақтан-ұрпаққа берілуі қалай жүреді деген сұрақ туады. Бұл сұрақтың жауабын Т. Морган 1910-1915 жылдары өзінің шәкірттерімен бірге жеміс шыбыны - дрозофилаға жүргізген тәжірибелерінің нәтижесінде анықтады. Дрозофила шыбыны - генетикалық зерттеулер жүргізуге өте қолайлы объект. Себебі, оның хромосомаларының диплоидты жиынтығы 8, ал гаплоидты жиынтығы төртеу. Зертханалық жағдайда +25° жылылықта дарақтардың әр жұбынан пробиркада өсіріп, 14-15 күн сайын 100-ге жуық ұрпақ алуға болады. Морган бір хромосомада орналасқан гендердің бір-бірінен ажырап кетпей, көбіне бірге тұқым қуалайтынын анықтады. Оны мына тәжірибеден көз жеткізуге болады. Р. ВВVV жетік қанатты сұр шыбын мен bbvv шала қанатты қара шыбынды алып будандастырды. Сонда бірінші F1 ұрпақтағы будандық дарақтардың барлығы біркелкілік заңына сәйкес генотипі ВbVv дигетерозиготалы, фенотипі бойынша жетік қанатты сұр денелі шыбындар болып шықты. Морган осы бірінші ұрпақтағы дигетерозиготалы аналық шыбынды қайтадан шала қанатты қара денелі аталық шыбынмен кері будандастырғанда, екінші ұрпақта төрт түрлі фенотиптері бар дарақтар алған (113-сурет) . Олардың пайыздық мөлшерлері әр түрлі: 41, 5% жетік қанатты сұр денелі, 41, 5% шала қанатты қара денелі шыбындар, ал 8, 5% шала қанатты сұр денелі және 8, 5% жетік қанатты қара денелі шыбындар болған. Демек, дрозофиланың 17%-ы ата-аналарына мүлде ұқсамай жаңа белгілерге ие болған. Ендеше, ата-аналарына ұқсас жетік қанатты сұр шыбын мен шала қанатты қара шыбынның бірдей қатынаста болуы, яғни 83%-ы осы аталған белгілерді анықтайтын гендердің бірлесіп, тіркес тұқым қуалайтынын көрсетеді. Бұл құбылысты - Морган гендердің тіркесуі немесе тіркесіп тұқым қуалау заңы деп атады. Бір хромосоманың бойында орналасқан және тіркесіп тұқым қуалайтын гендер тобы тіркесу топтарын құрайды. Тіркесу топтарының саны хромосомалардың гаплоидты жиынтығына сәйкес келеді. Мысалы, дрозофила шыбынында - 4 тіркесу тобы, асбұршақта - 7, жүгеріде - 10, ал адамда 23 тіркесу тобы болады. Мендель тәжірибелерінде көрсетілгендей, аллельді емес гендер бір-бірінен толық тәуелсіз болу үшін олар әр түрлі хромосомаларда орналасуы керек. Сонда ғана олар мейоз кезінде тәуелсіз ажырай алады. Бірақ кез келген эукариотты организмде гендердің саны хромосомалардың санынан артық болады. Мысалы, XX ғасырдың бас кезінде Морган және оның шәкірттері дрозофила шыбынынан жүздеген генді ашты. Қазіргі кезде оның төрт жұп хромосомасында 7000-дай ген бар екені белгілі. Адамның 46 хромосомасында 50 мыңдай ген болады деген болжам бар.
Кроссинговер
Ұқсас жұп хромосомаларды бойлай бірнеше аллельді гендердің орналасатындығы анықталған. Кейде осы жұп хромосомалар айқасып, нәтижесінде Х тәрізді фигуралар (пішіндер) - хиазмалар пайда болады. 1911 жылы Морган ашқан бұл құбылысты хромосомалардың айқасуы немесе кроссинговер деп атады. 114-суретте хромосомалардың айқасуы мен оларда болатын гендердің жаңа үйлесімдері көрсетілген. Бір хромосомада орналасқан екі ген (қызыл хромосомалардағы ақ дақтар) айқасу нәтижесінде әр түрлі ұқсас хромосомаларға ауысады. Кроссинговердің нәтижесінде гендердің алмасуы жүреді, соған байланысты сапа жағынан мүлде жаңа хромосомалар түзіледі. Демек, ұрықтану кезінде хромосомаларда гендердің жаңа үйлесімдері пайда болады. Мысалы, Морган дрозофила шыбынына тәжірибе жасағанда 17%-ы ата-аналарына ұқсамайтын, жаңа белгілері бар шыбындар болып шыққан. Ол белгілер: шыбындардың 8, 5%-ы жетік қанат, қара дененің болуы, 8, 5%-ы шала қанат пен сұр дененің пайда болуы. Ол клетканың мейоздық бөлінуі кезінде хромосомалардың бір-бірімен айқасып, сәйкес үлескілерімен алмасуының нәтижесі болып есептелінеді. Бір хромосоманы бойлай орналасқан аллельді емес гендердің алмасу жиілігі сол гендердің ара қашықтығын көрсетеді. Гендер неғұрлым бір-біріне жақын орналасса, соғұрлым олардың тіркесу мүмкіндігі артып, алмасуға ұшырауы сирек байқалады. Керісінше, бір-бірінен алшақ орналасқан гендердің тіркесіп тұқым қуалауы төмендеп алмасуға жиірек ұшырайтындығы байқалған. Хромосомалардың айқасуына байланысты гендердің алмасуы үнемі болып тұрады (115-сурет) . Мұны Морган өз шәкірттерімен бірге дәлелдеп, хромосомалардың генетикалық картасын жасады. Ол картада гендердің орналасу ретін көрсетті (оны келесі сабақта қарастырасыңдар) . Кроссинговерге ұшырған хромосомалары бар гаметалар кроссоверлі, ал ұшырамаған хромосомаларды кроссоверленбеген деп атайды. Хромосомалардың айқасу мөлшерін, кроссоверлі дарақтардың пайызын ұрпақтың жалпы санына шағып есептейді. Айқасудың өлшем бірлігі ретінде оның бір пайызға тең мөлшері алынады. Оны Т. Морганның құрметіне морганида кейде сантиморган деп атайды. Мысалы, жүгерінің екі сорт тармағын (линиясын) будандастырғанда барлығы 1000 дән алынса, оның 36-сы кроссоверлі болған. Сонда айқасудың немесе кроссинговердің мөлшері: Морган өз шәкірттерімен бірге дрозофила шыбынына тәжірибе жасаудың нәтижесінде “тұқым қуалаушылықтың хромосомалық теориясын” ашты.
Генетикалық процестердің молекулалық механизмдері
.
Ген туралы түсініктің қалыптасу мен дамуы. Вирустар мен бактериялар молекулалық генетиканың қолайлы обьектісі болып табылады. Вирустық инфекцияның механизмі. Бактериядағы трансформация және тарнсдукция құбылыстарының ДНҚ ны тұқым қуалаушылық пен тұқым қуалайтын өзгергіштікті анықтайтындығының тікелей дәлелі. плазмидтер мен эписомалар.
Тұқым қуалайтын информацияны жүзеге асырудың молекулалық механизмдері. ДНҚ ның генетикалық құрылымы және нуклеотидтік жұптардың бірізділігі, тұқым қуалайтын информацияның кодпен хабарлануының негзі.
Транскрипция. Клеткадағы РНК типтері, информациялық, транспорттық, рибосомалық. Транскрипцияның дискреттілігі. Ген активтілігінің реттелуі және оған генетикалық бақылау. Прокариотты микроорганизмдерде гендердің дифференциалды қызмет атқаруын қамтамасыз ететіндігін оперондар жүйесі (реттеуші, оператор, структуралық ген) . РНК полимераза ферменті және оның транскрипцияға қатысуы. Кері транскрипция, ревертаза.
Моекулаларды гибридизациялау, ДНК, РНК гибридтері.
Трансляция. Генетикалық коданың негізгі қаситеттері: триплеттілігі, коданың өтірсіз бір бағытта оөылуы, коданың артып кетуі (бұзылуы) . Клеткасыз жүйелердегі кестесі. Коданың универсалдылығы.
Транспорттық РНК ның құрылымы мен қаситеі. Кадон антикадонның өзара әрекеті. Рибосомалардың структурасы жіне олардың белок синтезіндегі функциясы. Белок синтезіндегі функциясы. Белок синтезінің иницияциясы мен терминациясы.
Жоғары сатыдағы организмдерде молекулалық генетикалық процессредің жүзеге асуының ерекшеліктері. Артық мөлшердегі ДНҚ және эукариоттардағы геннің структурасы. Эукриоттардағы транскрипцияның ерекшеліктері. Эукриоттардағы хромосомалар репарациясының рекомбинация мен мутагенездің ерекшеліктері.
Генетикалық инженерия оның праткикалық және теориялық маңызы. генетикалық инженерияның даму тарихы. Сомалық клеткаларды гибридизациялау. Ген инженериясы. Генді қолдан синтездеу, оны ДНҚ құрамынан бөліп шығару. Генді басқа клеткаға айырып салу.
Генді алудың үш әдісі бар: табиғи генді тікелей бөлу (сирек мүмкіндік),
химиялық және ферменттік синтез. Табиғи генетикалық материалдан - ДНҚ-дан арнайы ферменттердің (рестрикциялық эндонуклеазалардың) көмегімен қажет ген «кесіліп» алынады. Бұл әдістің елеулі кемшіліктері бар. Біріншіден, ДНҚ-дан қажет генді танып, кесе алатын ферментті таңдап алу қиын. Фермент тенді әрқашанда наңтьі шекарасыпда емес әр қилы
үзеді:
не геннің екі жағынан артық нуклеотидтерді үзуі, не түгел үзбеуі мүмкің, мұндай ДНҚ фрагментерінің
қызметі
жеткіліксіз, сондықтан оларды пайдалану мүмкін болмайды. Екіншіден, эукариоттық организм геномының экзон-интрондық құрылысы, олардың гендерін
бактерия
ларға енгізгенде функциялық тұрғыдан қиындық
туғыза
ды, өйткені бактериялық клеткада сплайсинг процесі (ин-трондардың кесілуі) өтпейді. Үшіншіден, егер ген барлық ДНҚ-ның аз ғана бөлігін құраса, онда оны бөлу мен анықтауда елеулі қиындықтар пайда болады. Сондықтан бұл әдіс негізінен генетикалық эксперименттер талабына сәйкес вирус пен бактериялардың генін бөлуде қолданылады.
2. Генді-синтездеудің химиялық
әдісі. Бұл әдістер
бе
локтың немесе полипептидтің бірінші құрылымы
( амин
қышқылдар қатары) белгілі болса, оның генінің нуклеотидтер қатары химиялық жолмен синтезделеді.
Берілген нуклеотидтер тізбегі бойынша
ДНҚ
- синтездеу әдісін 1969 жылы, ген инженериясының
дәуірі
басталмаған кезде-ақ, Г. Корана ұсынған болатын.
Ашыт
қы тРНҚ-ның гені осылай синтезделді. Бұл
ген 77
н. ж. құралған. Алдымен, ұзындығы 5-12 нуклеотидтерден тұратын ДНҚ-ның қысқа фрагменттері синтезделді, онан соң олар арнайы ферменттің (лигаза) әсерімен
бір-бірімен
қосылды. Алайда, алғаш синтезделген бұл генді ішек
таяқ
шасының клеткасына енгізген кезде жұмыс істей
алма
ды, өйткені онда реттеуші элементтер -
промотор және
терминация бөліктері жоқ болатын. Кейін,
1976 ж. Г. Ко
рана қызметкерлерімен тирозиннің тРНҚ-ының генін
син
тездей алды. Геннің ұзындығы
126
н. ж.
тең болды, оған
52 н. ж. құралған промотор, 21 н. ж. - терминатор
және
ұштарына тетрануклеотидтер (ААТТ және
ТТАА) жал
ғанды. Нәтижесінде, осы генді бактериофаг арқылы Е. Со1і клеткасына енгізгенде олар өз функциясын көрсете
ал
ды. Қазіргі уақытта Г. Корана өңдеген әдістер бірқатар жасанды гендерді синтездеу үшін қолданылады. Осындай жолмен адамның - инсулин және интерферон, адам мен жануарлардың - энкефалин және бардикинин гормондарының функциялы гендері синтезделді. Қазіргі кезде гендерді автоматты синтездейтін құралдар бар. 1980 ж. Итакура алғаш өзінің құрамында алдын ала берілген тізбек бойынша 6 сағ. ішінде 12-мүшелік олигонуклеотидті синтездеуге қабілетті автоматтың жұмысын компьютер бақылады. Мұндай жабдықтардың 1982 жылғы бағасы 36000-39500 долларға тең болатын. Егер 1979 жылы 120 н. ж. генді синтездеу үшін екі жыл керек болса, ал 1981 ж. бұл мақсатқа үш-аң күнде жетуге болады.
- Іс жүргізу
- Автоматтандыру, Техника
- Алғашқы әскери дайындық
- Астрономия
- Ауыл шаруашылығы
- Банк ісі
- Бизнесті бағалау
- Биология
- Бухгалтерлік іс
- Валеология
- Ветеринария
- География
- Геология, Геофизика, Геодезия
- Дін
- Ет, сүт, шарап өнімдері
- Жалпы тарих
- Жер кадастрі, Жылжымайтын мүлік
- Журналистика
- Информатика
- Кеден ісі
- Маркетинг
- Математика, Геометрия
- Медицина
- Мемлекеттік басқару
- Менеджмент
- Мұнай, Газ
- Мұрағат ісі
- Мәдениеттану
- ОБЖ (Основы безопасности жизнедеятельности)
- Педагогика
- Полиграфия
- Психология
- Салық
- Саясаттану
- Сақтандыру
- Сертификаттау, стандарттау
- Социология, Демография
- Спорт
- Статистика
- Тілтану, Филология
- Тарихи тұлғалар
- Тау-кен ісі
- Транспорт
- Туризм
- Физика
- Философия
- Халықаралық қатынастар
- Химия
- Экология, Қоршаған ортаны қорғау
- Экономика
- Экономикалық география
- Электротехника
- Қазақстан тарихы
- Қаржы
- Құрылыс
- Құқық, Криминалистика
- Әдебиет
- Өнер, музыка
- Өнеркәсіп, Өндіріс
Қазақ тілінде жазылған рефераттар, курстық жұмыстар, дипломдық жұмыстар бойынша біздің қор #1 болып табылады.

Ақпарат
Қосымша
Email: info@stud.kz