Жай сандар
1 Натурал сандар арифметиканың ірге тасы
2 Эратосфен торы
2 Эратосфен торы
Натурал сандар санау нәтижесінде пайда болған.Натурал сандар жиынын N=1, 2 , 3 ,4 ,...., .... символымен белгілейді.Натурал сандар жиынын үш класқа бөліп ажыратуға болады.Олар:
1) 1 саны;
2) Жай сандар;
3) Құрама сандар.
Соның ішінде жай сандарға тоқталайық.
Анықтама.Екі бөлгіші бар натурал сандар жиынын жай сандар деп атайды.
Жай сандардың шексіз екенін гректің ұлы математигі Евклид біздің санауымыздан 300 жыл бұрын дәлелдеген.Осы дәлелдемені келтірейік.
Евклид теоремасы. Жай сандар шексіз.
Дәлелдеуі. Қарсы жорып, жай сандар шекті болсын делік. Олар p , p, p, ….p санын аламыз. Енді осы жай сандардың көбейтіндісіне 1-ді қосып жаңадан p , p, p, ….p санын аламыз. Бұл сан жай сан емес, өйткені жоғарыда аталған сандардың ешқайсысына тең емес, олардың бәрінен үлкен. Құрама сан да жай сан емес, бірақ бұлай болуы мүмкін емес. Бұл қайшылық қарсы жоруымыз дұрыс емес екендігін көрсетеді, демек жай сандар шексіз болады.
Теорема 2. Кез-келген 1-ден артық натурал санның ең болмағанда бір жай бөлгіші бар болады.
Дәлелдеуі. Қарсы жорып, жай бөлшектері жоқ 1-ден артық натурал сандар бар болсын дейік. Олардың жиынын 8 деп белгілейік. А жиынын ең кіші сан а санын алайық. А – жай сан емес және 1-ден артық, ендеше а- құрама сан болғаны.Бірақ , а – құрама сан да емес, а- құрама сан болса,онда оның 1 мен а-дан өзгеше в бөлігі бар болады. Бұл в бөлгіші а- дан кіші болғандықтан А жиынына джатпайды. В саны А жиынына жатпайтын болса, онда оның жай р бөлгіші бар болғаны, ал а саны в –ға , в –саны р-ға бөлінгендіктен( бөлінгіштік қатынастың транзитивтік қатынасы бойынша) а саны р-ға бөлінеді, яғни а санының р бөлгіші бар болады. Бұл қарсы жоруымызға қайшы.Демек, жай бөлгіштері жоқ.1-ден артық натурал сан болмайды екен.
Теореме 3. Құрама а санының ең кіші жай бөлгіші а-дан артық емес.
Дәлелдеуі. А-құрама сан, ал р- оның ең кіші жай бөлгіші болсын. Сонда a=p.в, мұндағы р<в. Егер р>в болса,онда а-ның р-дан да кіші жай бөлгіші болар еді, бұлай болуы мүмкін емес.енді р<в теңсіздігінің екі жағын да р-ға көбейтіп, р=а.в теңсіздігін аламыз, Яғни р а , бұдан р
1) 1 саны;
2) Жай сандар;
3) Құрама сандар.
Соның ішінде жай сандарға тоқталайық.
Анықтама.Екі бөлгіші бар натурал сандар жиынын жай сандар деп атайды.
Жай сандардың шексіз екенін гректің ұлы математигі Евклид біздің санауымыздан 300 жыл бұрын дәлелдеген.Осы дәлелдемені келтірейік.
Евклид теоремасы. Жай сандар шексіз.
Дәлелдеуі. Қарсы жорып, жай сандар шекті болсын делік. Олар p , p, p, ….p санын аламыз. Енді осы жай сандардың көбейтіндісіне 1-ді қосып жаңадан p , p, p, ….p санын аламыз. Бұл сан жай сан емес, өйткені жоғарыда аталған сандардың ешқайсысына тең емес, олардың бәрінен үлкен. Құрама сан да жай сан емес, бірақ бұлай болуы мүмкін емес. Бұл қайшылық қарсы жоруымыз дұрыс емес екендігін көрсетеді, демек жай сандар шексіз болады.
Теорема 2. Кез-келген 1-ден артық натурал санның ең болмағанда бір жай бөлгіші бар болады.
Дәлелдеуі. Қарсы жорып, жай бөлшектері жоқ 1-ден артық натурал сандар бар болсын дейік. Олардың жиынын 8 деп белгілейік. А жиынын ең кіші сан а санын алайық. А – жай сан емес және 1-ден артық, ендеше а- құрама сан болғаны.Бірақ , а – құрама сан да емес, а- құрама сан болса,онда оның 1 мен а-дан өзгеше в бөлігі бар болады. Бұл в бөлгіші а- дан кіші болғандықтан А жиынына джатпайды. В саны А жиынына жатпайтын болса, онда оның жай р бөлгіші бар болғаны, ал а саны в –ға , в –саны р-ға бөлінгендіктен( бөлінгіштік қатынастың транзитивтік қатынасы бойынша) а саны р-ға бөлінеді, яғни а санының р бөлгіші бар болады. Бұл қарсы жоруымызға қайшы.Демек, жай бөлгіштері жоқ.1-ден артық натурал сан болмайды екен.
Теореме 3. Құрама а санының ең кіші жай бөлгіші а-дан артық емес.
Дәлелдеуі. А-құрама сан, ал р- оның ең кіші жай бөлгіші болсын. Сонда a=p.в, мұндағы р<в. Егер р>в болса,онда а-ның р-дан да кіші жай бөлгіші болар еді, бұлай болуы мүмкін емес.енді р<в теңсіздігінің екі жағын да р-ға көбейтіп, р=а.в теңсіздігін аламыз, Яғни р а , бұдан р
ЖАЙ САНДАР
Байжұманова Мадина
7Г, №12 орта мектеп
жетекші: Құрманбаева А.С
Натурал сандар арифметиканың ірге тасы. Натурал сандар санау
нәтижесінде пайда болған.Натурал сандар жиынын N=1, 2 , 3 ,4 , ... , ...
символымен белгілейді.Натурал сандар жиынын үш класқа бөліп ажыратуға
болады.Олар:
1) 1 саны;
2) Жай сандар;
3) Құрама сандар.
Соның ішінде жай сандарға тоқталайық.
Анықтама.Екі бөлгіші бар натурал сандар жиынын жай сандар деп атайды.
Жай сандардың шексіз екенін гректің ұлы математигі Евклид біздің
санауымыздан 300 жыл бұрын дәлелдеген.Осы дәлелдемені келтірейік.
Евклид теоремасы. Жай сандар шексіз.
Дәлелдеуі. Қарсы жорып, жай сандар шекті болсын делік. Олар p , p, p, ... p
санын аламыз. Енді осы жай сандардың көбейтіндісіне 1-ді қосып жаңадан p ,
p, p, ... p санын аламыз. Бұл сан жай сан емес, өйткені жоғарыда аталған
сандардың ешқайсысына тең емес, олардың бәрінен үлкен. Құрама сан да жай
сан емес, бірақ бұлай болуы мүмкін емес. Бұл қайшылық қарсы жоруымыз дұрыс
емес екендігін көрсетеді, демек жай сандар шексіз болады.
Теорема 2. Кез-келген 1-ден артық натурал санның ең болмағанда бір жай
бөлгіші бар болады.
Дәлелдеуі. Қарсы жорып, жай бөлшектері жоқ 1-ден артық натурал сандар бар
болсын дейік. Олардың жиынын 8 деп белгілейік. А жиынын ең кіші сан а санын
алайық. А – жай сан емес және 1-ден артық, ендеше а- құрама сан
болғаны.Бірақ , а – құрама сан да емес, а- құрама сан болса,онда оның 1 мен
а-дан өзгеше в бөлігі бар болады. Бұл в бөлгіші а- дан кіші болғандықтан А
жиынына джатпайды. В саны А жиынына жатпайтын болса, онда оның жай р
бөлгіші бар болғаны, ал а саны в –ға , в –саны р-ға бөлінгендіктен(
бөлінгіштік қатынастың транзитивтік қатынасы бойынша) а саны р-ға бөлінеді,
яғни а санының р бөлгіші бар болады. Бұл қарсы жоруымызға қайшы.Демек, жай
бөлгіштері жоқ.1-ден артық натурал сан болмайды екен.
Теореме 3. Құрама а санының ең кіші жай бөлгіші а-дан артық емес.
Дәлелдеуі. А-құрама сан, ал р- оның ең кіші жай бөлгіші болсын. Сонда
a=p.в, мұндағы рв. Егер рв болса,онда а-ның р-дан да кіші жай бөлгіші
болар еді, бұлай болуы мүмкін емес.енді рв теңсіздігінің екі жағын да р-
ға көбейтіп, р=а.в теңсіздігін аламыз, Яғни р а , бұдан р
Сонымен а саны а-дан артпайтын ешбір жай санға бөлінбесе , нода оның жай
бөлгіші мүлдем жоқ болғаны , демек а саны жай сан.
Мысалы, 139 санының жай сан екенін анықтайық. Ол үшін 139 санынан
жуықтап түбір табамыз, яғни 11 139 12 . 139 саны жай сан болады.
... жалғасы
Байжұманова Мадина
7Г, №12 орта мектеп
жетекші: Құрманбаева А.С
Натурал сандар арифметиканың ірге тасы. Натурал сандар санау
нәтижесінде пайда болған.Натурал сандар жиынын N=1, 2 , 3 ,4 , ... , ...
символымен белгілейді.Натурал сандар жиынын үш класқа бөліп ажыратуға
болады.Олар:
1) 1 саны;
2) Жай сандар;
3) Құрама сандар.
Соның ішінде жай сандарға тоқталайық.
Анықтама.Екі бөлгіші бар натурал сандар жиынын жай сандар деп атайды.
Жай сандардың шексіз екенін гректің ұлы математигі Евклид біздің
санауымыздан 300 жыл бұрын дәлелдеген.Осы дәлелдемені келтірейік.
Евклид теоремасы. Жай сандар шексіз.
Дәлелдеуі. Қарсы жорып, жай сандар шекті болсын делік. Олар p , p, p, ... p
санын аламыз. Енді осы жай сандардың көбейтіндісіне 1-ді қосып жаңадан p ,
p, p, ... p санын аламыз. Бұл сан жай сан емес, өйткені жоғарыда аталған
сандардың ешқайсысына тең емес, олардың бәрінен үлкен. Құрама сан да жай
сан емес, бірақ бұлай болуы мүмкін емес. Бұл қайшылық қарсы жоруымыз дұрыс
емес екендігін көрсетеді, демек жай сандар шексіз болады.
Теорема 2. Кез-келген 1-ден артық натурал санның ең болмағанда бір жай
бөлгіші бар болады.
Дәлелдеуі. Қарсы жорып, жай бөлшектері жоқ 1-ден артық натурал сандар бар
болсын дейік. Олардың жиынын 8 деп белгілейік. А жиынын ең кіші сан а санын
алайық. А – жай сан емес және 1-ден артық, ендеше а- құрама сан
болғаны.Бірақ , а – құрама сан да емес, а- құрама сан болса,онда оның 1 мен
а-дан өзгеше в бөлігі бар болады. Бұл в бөлгіші а- дан кіші болғандықтан А
жиынына джатпайды. В саны А жиынына жатпайтын болса, онда оның жай р
бөлгіші бар болғаны, ал а саны в –ға , в –саны р-ға бөлінгендіктен(
бөлінгіштік қатынастың транзитивтік қатынасы бойынша) а саны р-ға бөлінеді,
яғни а санының р бөлгіші бар болады. Бұл қарсы жоруымызға қайшы.Демек, жай
бөлгіштері жоқ.1-ден артық натурал сан болмайды екен.
Теореме 3. Құрама а санының ең кіші жай бөлгіші а-дан артық емес.
Дәлелдеуі. А-құрама сан, ал р- оның ең кіші жай бөлгіші болсын. Сонда
a=p.в, мұндағы рв. Егер рв болса,онда а-ның р-дан да кіші жай бөлгіші
болар еді, бұлай болуы мүмкін емес.енді рв теңсіздігінің екі жағын да р-
ға көбейтіп, р=а.в теңсіздігін аламыз, Яғни р а , бұдан р
Сонымен а саны а-дан артпайтын ешбір жай санға бөлінбесе , нода оның жай
бөлгіші мүлдем жоқ болғаны , демек а саны жай сан.
Мысалы, 139 санының жай сан екенін анықтайық. Ол үшін 139 санынан
жуықтап түбір табамыз, яғни 11 139 12 . 139 саны жай сан болады.
... жалғасы
Ұқсас жұмыстар
Пәндер
- Іс жүргізу
- Автоматтандыру, Техника
- Алғашқы әскери дайындық
- Астрономия
- Ауыл шаруашылығы
- Банк ісі
- Бизнесті бағалау
- Биология
- Бухгалтерлік іс
- Валеология
- Ветеринария
- География
- Геология, Геофизика, Геодезия
- Дін
- Ет, сүт, шарап өнімдері
- Жалпы тарих
- Жер кадастрі, Жылжымайтын мүлік
- Журналистика
- Информатика
- Кеден ісі
- Маркетинг
- Математика, Геометрия
- Медицина
- Мемлекеттік басқару
- Менеджмент
- Мұнай, Газ
- Мұрағат ісі
- Мәдениеттану
- ОБЖ (Основы безопасности жизнедеятельности)
- Педагогика
- Полиграфия
- Психология
- Салық
- Саясаттану
- Сақтандыру
- Сертификаттау, стандарттау
- Социология, Демография
- Спорт
- Статистика
- Тілтану, Филология
- Тарихи тұлғалар
- Тау-кен ісі
- Транспорт
- Туризм
- Физика
- Философия
- Халықаралық қатынастар
- Химия
- Экология, Қоршаған ортаны қорғау
- Экономика
- Экономикалық география
- Электротехника
- Қазақстан тарихы
- Қаржы
- Құрылыс
- Құқық, Криминалистика
- Әдебиет
- Өнер, музыка
- Өнеркәсіп, Өндіріс
Қазақ тілінде жазылған рефераттар, курстық жұмыстар, дипломдық жұмыстар бойынша біздің қор #1 болып табылады.
Ақпарат
Қосымша
Email: info@stud.kz