Биотехнология және оның негізгі бағыттары



Жоспары
1.Кіріспе
2.Негізгі бөлім
2.1.Биотехнология және оның негізгі бағыттары
2.2.Гендік инженерия
3.Қорытыды
4.Пайдаланылған әдебиеттер
Кіріспе
Биотехнология дегеніміз — биологиялық организмдердің қатысуымен жүретін процестерді, адамның мақсатына сай өзгерту арқылы өндірісте пайдалану. "Биотехнология" деген терминді алғаш рет 1919 жылы венгр ғалымы К.Эреки енгізді. Қазіргі биотехнологияның басты мақсаты — өсімдіктердің жаңа сорттарын, жануарлардың асыл тұкымын, микроорганизмдердің штаммаларын шығару. Оны адам өміріне қажетті заттар өндіру үшін биологиялық нысандар мен процестерге негізделген жаңа ғылымның және өндірістің сапасы деп қарауға болады. Ата-әжелеріміз ежелден микроорганизмдерді қымыз бен шұбат, айран ашытуға,құрт пен ірімшік жасауға, нан пісіруге, тері илеуге, т.б. қажетті заттарды дайындауға пайдаланған. Қазіргі биотехнологияның мынадай негізгі бағыттары бар: микробиологиялық өндіріс, жасушалық инженерия жөне гендікинженерия. Биотехнологияда биохимия, микробиология, молекулалық биология, генетика ғылымдарының жетістіктерінің нәтижесінде өте бағалы биологиялық белсенді заттар — гормондар, ферменттер, витаминдер, антибиотиктер, органикалық қышқылдар — сірке, лимон, сүт және кейбір дәрі-дәрмектер алынады. Қазір ең жоғары өнімді микроорганизмдер штаммаларының көмегімен 150-ден астам биологиялық заттардың түрлері синтезделді. Мысалы, адамда және кейбір жануарлар организмінде синтезделмейтін аминқышқылылизинді тек микроорганизмдер арқылы алады. Егер жануарлар организмінде лизин жетіспейтін болса, оның денесінің өсуі тоқтайды. Сондықтан лизинді жануарлардың жемшебіне қосып береді. Биотехнологияның биологиялық әдістерін қоршаған ортаны ластанудан тазарту үшін қолданады. Ластанған суларды микроорганизмдердің көмегімен тазартады. Үлкен қалалардың, өндіріс орындардың шығарған зиянды қалдықтарын тазарту кейбір бактериялардың қатысуымен жүреді. Металл қалдықтарымен (уран, мыс, кобальт, т.б.) ластанған суларды тазарту үшін оларды өз жасушаларына жинайтын бактериялардың түрлерін пайдаланады. Сонымен биотехнология экологиялық мәселелерді шешуге қатысады. Үндістанда, Қытайда, Филиппинде үйлерді жылытуға және тамақ дайындауда биогаз — метан мен кеміркышқыл газдың қоспасын пайдаланады. Ол үшін арнаулы контейнерлерге малдың қиын, қант өндірісінің, ауыл шаруашылығы заттарының калдыңтарын жинап, оларға бактерияның арнайы себіндісін қосады. Осы қоспадан биогаз алады.

Пән: Биология
Жұмыс түрі:  Реферат
Тегін:  Антиплагиат
Көлемі: 14 бет
Таңдаулыға:   
Жоспары
1.Кіріспе
2.Негізгі бөлім
----------------------------------- ----------------------------------- ----------
2.1.Биотехнология және оның негізгі бағыттары
----------------------------------- ----------------------------------- ----------
2.2.Гендік инженерия
3.Қорытыды
4.Пайдаланылған әдебиеттер

Кіріспе
Биотехнология дегеніміз -- биологиялық организмдердің қатысуымен жүретін процестерді, адамның мақсатына сай өзгерту арқылы өндірісте пайдалану. "Биотехнология" деген терминді алғаш рет 1919 жылы венгр ғалымы К.Эреки енгізді. Қазіргі биотехнологияның басты мақсаты -- өсімдіктердің жаңа сорттарын, жануарлардың асыл тұкымын, микроорганизмдердің штаммаларын шығару. Оны адам өміріне қажетті заттар өндіру үшін биологиялық нысандар мен процестерге негізделген жаңа ғылымның және өндірістің сапасы деп қарауға болады. Ата-әжелеріміз ежелден микроорганизмдерді қымыз бен шұбат, айран ашытуға,құрт пен ірімшік жасауға, нан пісіруге, тері илеуге, т.б. қажетті заттарды дайындауға пайдаланған. Қазіргі биотехнологияның мынадай негізгі бағыттары бар: микробиологиялық өндіріс, жасушалық инженерия жөне гендікинженерия. Биотехнологияда биохимия, микробиология, молекулалық биология, генетика ғылымдарының жетістіктерінің нәтижесінде өте бағалы биологиялық белсенді заттар -- гормондар, ферменттер, витаминдер, антибиотиктер, органикалық қышқылдар -- сірке, лимон, сүт және кейбір дәрі-дәрмектер алынады. Қазір ең жоғары өнімді микроорганизмдер штаммаларының көмегімен 150-ден астам биологиялық заттардың түрлері синтезделді. Мысалы, адамда және кейбір жануарлар организмінде синтезделмейтін аминқышқылы лизинді тек микроорганизмдер арқылы алады. Егер жануарлар организмінде лизин жетіспейтін болса, оның денесінің өсуі тоқтайды. Сондықтан лизинді жануарлардың жемшебіне қосып береді. Биотехнологияның биологиялық әдістерін қоршаған ортаны ластанудан тазарту үшін қолданады. Ластанған суларды микроорганизмдердің көмегімен тазартады. Үлкен қалалардың, өндіріс орындардың шығарған зиянды қалдықтарын тазарту кейбір бактериялардың қатысуымен жүреді. Металл қалдықтарымен (уран, мыс, кобальт, т.б.) ластанған суларды тазарту үшін оларды өз жасушаларына жинайтын бактериялардың түрлерін пайдаланады. Сонымен биотехнология экологиялық мәселелерді шешуге қатысады. Үндістанда, Қытайда, Филиппинде үйлерді жылытуға және тамақ дайындауда биогаз -- метан мен кеміркышқыл газдың қоспасын пайдаланады. Ол үшін арнаулы контейнерлерге малдың қиын, қант өндірісінің, ауыл шаруашылығы заттарының калдыңтарын жинап, оларға бактерияның арнайы себіндісін қосады. Осы қоспадан биогаз алады.

----------------------------------- ----------------------------------- ----------
Биотехнология тарихы
Алғаш рет биотехнология термині 1917 жылы Карл Эреки шошқаларды қант қызылшасы қоректендіру кезінде олардың өнімдерінің жоғарылауы жасалған жұмыстарының нәтижесінде берілген.
Биотехнологияның пайда болуы мен даму тарихында ғылыми пән ретінде голланд ғалымы Е.Хаувинк 5 кезеңді ажыратты.
Пастер ғасырына дейінгі кезең (1865 жылы). Сыра, шарап,нан өнімдері және сыра ашытқыларын, ірімшік алғандағы спирттік және сүт қышқылды ашытуды қолдану. Сірке қышқылын және ферментативті өнімдерді алу.
1. Пастер ғасырлық кезеңі (1866-1940 жж) эталон,бутолон ацетеглицерин, органикалық қышқылдарды, вакциналарды өндіру. Канализациялық суды аэробты тазалау.Көмірсулардан азықтық ашытқыларды өндіру.
2. Антибиотиктер кезеңі (1940-1960жж) - тереңдетілген ферматация жолымен пинцелин және басқа антибиотиктерді алу.Өсімдік жасушаларын дақылдау және вирустық вакциналарды алу. Стероидтардың микробиологиялық биотрансформациясы.
3. Меңгерілетін биосинтез кезеңі (1961-1975) - микробты мутанттар көмегімен амин қышқылдарын өндіру. Тазартылған ферменттік препараттар алу. Иммобилизацияланған ферменттерді және жасушаларды өндірістік қолдану. Канализациялық суларды анаэробты тазалау және биогаз алу. Бактериалды полисахаридтерді өндіру.
4. Жаңа биотехнология кезеңі (1973 жылдан бастап) - биосинтез агенттерін алу мақсатында жасушалық және генетикалық инженерияны қолдану. Моноклоналды антиденелерді өндіретін будандарды, протопласттарды және меристемді дақылдарды будандастырып алу. Эмбриондарды трансплантациялау.
----------------------------------- ----------------------------------- ----------
Биотехнология салалары
Биотехнология ғылыми пән және өндірістік технология есебінде тірі жасушанығ биоөндіргіштік белсенділігін зерттеуге, сапалы өндірушілік қабілеті бар және әртүрлі салаларда ауыл шаруашылық салаларында фармацевтикада; тағам өнеркәсібінде;биоэнергетикада қоршаған орта ремедиациясында; биоэнергетикада; тағы басқаларда қолданылады.
Ауыл шаруашылық биотехнология ауыл шаруашылық және тұрмыстағы қалдықтар, автомобильдерден шығатын улы заттар, өндірістен және ірі қалалардан бөлінетін лас суларды тазартуда микробиологиялық биотехниканың маңызы зор. Арам шөптерге, түрлі зиянды жәндіктерге қарсы күресуде қолданылатын пестицидтердің адам үшін зиянды екені белгілі. Сондықтан пестицидтердің орнына экологиялық жағынан тиімді препараттар Биотехнология тәсілімен алынады. Топырақтың құнарлылығын арттыруда да биотехнологияның маңызы зор. Мысалы, ауа азотын пайдаланып, онымен қоректенетін микроорганизмдердің (азотобактер, т.б.) көмегімен бактериялы тыңайтқыштар (нитрагин, т.б.) дайындалады.Мал шаруашылығында, азықтық жемшөпке құнарлығын арттыру үшін ферменттер (аминосубтелин,протосубтелин т.б.) қосады, соның нәтижесінде жемшөп құрамындағы күрделі қосылыстар (лигни, целлюлоза т.б.) жақсы ыдырайды.
----------------------------------- ----------------------------------- ----------

----------------------------------- ----------------------------------- ----------
Гендік инженерия
Соңғы жылдары молекулалық биология мен генетика ғылымдарының жетістіктеріне байланысты гендік инжерения ғылымы пайда болды. Гендік инженерия организмдердің жаксы қасиеттерін сақтап қалумен қатар оған сапалы қасиет бере алады. "Инженерия" термині құрастыру деген мағынаны білдіреді. Гендік инженерияның мақсаты -- алдын ала белгіленген үлгіге сәйкес генотипі жағынан жақсарған организмдер алу. Алғаш рет гендік инженерияның тәсілдерін пайдаланып инсулин алды. Инсулин гормоны адамның ұйқы безінде жасалынады. Егер инсулиннің түзілуі бұзылатын болса, адам диабет ауруына шалдығады. Қазір дүние жүзінде 60 млн-нан астам адам диабетпен ауырады. Осы уақытқа дейін инсулин гормонын сиыр мен шошқаның ұйкы безінен алатын. Ал инсулинге тәуелді адамдардың саны жылдан-жылға арта түсуде. Осы себептерге орай адамның инсулин генін бактерияға гендік инженерия әдісімен көшіру керек болды. 1982 жылы адамның инсулин синтездейтін генін ішек таяқшасы бактериясының генотипіне енгізді. Сонда көлемі 1000 л бактерия себіндісінен 200 г-ға дейін инсулин өндіруге болады екен. Бұрынғы әдіс бойынша есу гормонының мұндай мөлшерін өндіру үшін сиырдың немесе шопщаның 1600 кг ұйқы безі қажет болар еді. Инсулиннен кейін гендік инженериялық әдіспен самотропин деп аталатын өсу гормонын бактерияларда синтездеу қолға алынды. Самотропин ірі қара малдардың сүтінің артуына қой мен шошканың еттілігінің жақсаруына әсер ететіні анықталды.
Гендік инженерия, немесе генетикалық инженерия -- гентикалық және биохимиялық әдістердің көмегімен түраралық кедергілері жоқ, тұқым қуалайтын қасиеттері өзгеше, табиғатта кездеспейтін жаңа гендер алу; молек. биологияның бір саласы. Гендік инженерия әр түрлі оргонизмдер геномының бөлігінен рекомбинатты ДНҚ құрастырумен қатар, ол рекомбинатты молекулаларды басқа ағза геномына енгізіп, жұмыс істеуін (экспрессиясын) қамтамасыз етеді. Гендік инженериядағы тұңғыш тәжірибені 1972 ж. американ биохимигі Т. Берг (Нобель сыйл. лауреаты) іске асырды. Ол маймылдың онноген вирусы SV-40-тың толық геномын, бактериофаг -- L геномының бір бөлігін және Е. Colі бактериясының галактоза генін біріктіру арқылы рекомбинантты (гибридті) ДНҚ алды. 1973 -- 74 ж. Америка биохимиктері С. Коэн, Г. Бойер, т.б. түрлі ағзалардан бөліп алынған генді бактерия плазмидасының құрамына енгізді. Бұл тәжірибе басқа организмдер гендерінің жаңа ағза ішінде жұмыс істей алатынын дәлелдеді. Жануарлар клеткаларымен жүргізілген тәжірибелерде бір клетканың ядросын екіншісімен алмастыруға, екі немесе бірнеше эмбриондарды қосып біріктіруге, оларды бірнеше бөлікке бөлшектеуге болатыны анықталды. Мыс., генотиптері әр түрлі тіндердің клеткаларын біріктіру арқылы тышқанның аллофенді особьтары (фенотипі әр түрлі дарабастар) алынды. Гендік инженерия-ның теориялық негізіне генетикалық кодтың әмбебаптылығы жатады. Бір ғана кодтың (триплиттің) әр түрлі ағзадағы белок молекулаларының құрамына енетін амин қышқылдарын бақылай алатындығына байланысты, ДНҚ молекуласының кез келген бөлігін басқа бөтен клеткаға апарып салу, яғни молек. деңгейде будандастырылу теориялық тұрғыдан алғанда мүмкін екені анықталды. Жануарлар, өсімдіктер және микроорганизмдер гендерінің қызметін қолдан басқаруға болатындығы дәлелденді.
Ауыл шаруашылығында өсімдіктің атмосфералық азотты өзіне жинақтап алуы -- үлкен мәселе. Осыған байланысты 1970 жылдары азотты фиксациялауға қабілеті жоқ пішен таяқшасына азотты жинақтай алатын, басқа бір бактерияның гені салынып, азотты жинақтау қасиетіне ие болды. Мед. саласында жаңа гендерді енгізу арқылы тұқым қуалайтын ауруларды емдеуге болады. Қазіргі кезде ауру адамдардан зат алмасудың 1000-нан аса әр түрлі тұқым қуалайтын өзгерістері табылған.Гендік (генетикалық) инженерияны - молекулалық және клеткалық инженерия белгілі бір мақсатпен жасанды айқын қасиеттері бар генетикалық материалдарды алдын ала құрастырып, оларды басқа клеткаға енгізіп, көбейтіп, зат алмасу процесін өзгеше жүргізу. Бұл әдіспен организмдердегі тұқым қуалайтын информацияны көздеген мақсатқа сай өзгертіп, олардың геномдарын белгілеген жоспармен қайта құруға болады.Гендік инженерия ол функциональдық активті генетикалық құрылымдарды рекомбинаттық (ата-ана екі ДНК молекулалары арасынан пайда болған будан) ДНК молекулалары түрінде қолдан құрастыру. Гендік инженерияның мәні жеке гендерді бір организмнен алып, басқа организмге көшіріп орналастыру.
Бұл рестриктаза деген фермент пен лигаза ферментінің ашылуы негізінде мүмкін болды. Рестриктаза ферменті ДНК молекуласын нақты белгіленген жерлерін кесіп алады да, осылай фрагменттерді (рестрикция сайттарын) түзеді. Ал лигаза ферменті гетерогендік ДНК-ның фрагменттерін бүтін тігеді. Құрамында шығу тегі әр түрлі ДНК-лары бар молекуланы рекомбинаттық молекула деп атайды.Рекомбинаттық ДНК = прокариоттардың және немесе вирустардың ДНК-ы (вектор) + эукариоттардың ДНК-ы (бөтен ДНК).
Вектордың көмегімен эукариоттардың бөтен ДНК-ы клеткаға еніп, геномға интеграциялана алады. Сонымен, прокариоттар мен вирустардың зерттелетін ДНК молекулалары нақты белгіленген жерден кесіліп, одан кейін бұл жерге эукариоттардың қажетті бөтен гені енгізіледі, осылайша рекомбинаттық (гибридтік) ДНК түзіледі.Түзілген рекомбинаттық ДНК тірі клеткаға енгізіледі, жаңа геннің экспрессиясы (көріну күші) басталғаннан соң, клетка сол ген белгілеген белокты синтездей бастайды. Сонымен, клеткаға рекомбинаттық ДНК молекуласы түрінде жаңа генетикалық информацияны енгізіп, соңында жаңа белгісі бар организмді алуға болады. Мұндай организмді трансгендік немесе трансформацияланған организм дейді. Осылайша, гендік инженерияның дамуына негіз болған молекулалық биология мен молекулалық генетиканың мынадай жетістіктері бар:

1. Рестриктазалар мен лигаза ферменттерінің ашылуы;
2. Гендерді химиялық заттарды және ферменттерді қолдану арқылы синтездеу;
3. Бөтен генді клеткаға тасымалдаушы-векторларды пайдалану;
4. Бөтен генге ие болған клеткаларды таңдап, бөліп алу жолдарының ашылуы.
Алғашқы рет рекомбинаттық ДНК 1972 жылы АҚШ-та П.Бергтің лабораториясында жасалды.
----------------------------------- ----------------------------------- ----------
Эмбриогенетикалық инженерия
Эбриогенетикалық инженерия - жануарлар геномын, олардың өсіп өнуіне онтогенездің (жеке даму) алғашқы сатыларында белсенді араласу арқылы қайта құру. Геномды қайта құру - клондау арқылы ұрықты (эмбрионды) реконструкциялау, біріктіру немесе олардың ядроларына бөгде ДНҚ-ны енгізу. Бірақ эмбриондық өркендерді, химерлерді (грек."chimaira" - әртүрлі генетикалық тканьдардан тұратын мозаик-организм), немесе трансгендік жануарларды алу, тек қана реконструкцияланған эмбрионды ұқыпты трансплантациялау нәтижесінде ғана мүмкін.
Трансплантация(лат. "transplantare" - көшіріп отырғызу) - жоғарғы өнімді малдардың (донорлар) бір немесе бірнеше эмбрионын алып, өнімі төмен малдарға (рецепиенттерге) салу арқылы жүргізіледі. Трансплантацияны қолдану генетикалық құнды бір аналықтан ондаған есе көп ұрпақ алуға мүмкіндік береді.
Трансплантация технологиясы жануарлар өсіп-өну биологиясының зор табыстарына негізделген, оның ішіне мынадай тәсілдер кіреді:
1. гормондар арқылы суперовуляция (лат."super" - көп, "ovum" - жұмыртқа) туғызу;
2. ұрпақтары бойынша бағаланған аталықтардың ұрығымен донорларды ұрықтандыру;
3. эмбрионды тауып алу және оның сапасын анықтап, сақтау және рецепиентке көшіріп отырғызу немесе оны сұйық азотта криоконсервациялау (грек. "kryos" - суық, "conservare" - сақтау), жібіту және отырғызу.
Ұрықты трансплантациялауды төмендегі мақсаттар үшін пайдаланады
1. генетикалық құнды тұлғаларды көбейту үшін; осы әдістің көмегімен жоғарғы өнімді, ауруға төзімді аталық іздері (линиялар) және ұяларды (семейства) шығаруды тездету;
2. алғашқы ... жалғасы

Сіз бұл жұмысты біздің қосымшамыз арқылы толығымен тегін көре аласыз.
Ұқсас жұмыстар
Биотехнология дамуының негізгі бағыттары және анықтамасы жөнінде
Биотехнология туралы
БИОТЕХНОЛОГИЯ ЖӘНЕ ОНДАҒЫ КРИОКОНСЕРВІЛЕУ
Клеткалық инженерияның мәселелері
Жасушалық инженерия туралы
Жануарлар биотехнологиясы
Тағамдық шикізатты биотехнологиямен өңдеу
Биотехнология ғылымы
Жасушылық инженерия
Рекомбинантты ДНК технологиясы негізіндегі жаңа буынды вакциналар
Пәндер