Математикалық функциялар жайлы


1 ЖҰП ЖӘНЕ ТАҚ ФУНКЦИЯЛАР
2 Периодты функциялар
3 Элементар функциялар. Кері функция.
4 Күрделі функция.
5 Параметрлі түрде берілген функция.
6 Дәрежелік функция
Анықтама. Егер М жиынының құрамына кез келген х санымен бірге оған симметриялық - х саны да кірсе, ол М жиыны симметриялық жиын деп аталады.
Симметриялық жиындарға мысалдар: барлық бүтін сандар жиыны, [—5, +5] сегментіндегі барлық сандардың жиыны, (-b, +b) интервалындағы барлық сандардың жиыны.
Анықтама. Егер f(х) симметриялық облыста берілсе және сол облыстағы аргумент x-тін, кез келген мәні үшін
f(-x)=f(x) (1)
теңдігі орындалса, f(х) сол симметриялық облыста жұп функция деп аталады.
Басқаша айтқанда: егер аргументтің мәні х-ті -х - ке ауыстырғанда f(x)-тің мәні өзгермейтін болса, f(х)-ті жұп функция деп атайды.
М ы с а л ы: у = sес x; у = х2n (бұндағы n — натурал сан), у = 2х4— 5х2 — 3; у = 2 — sіn2 х; функциялары интервалында жүп функциялар.
Енді f(х) = ln(1— х) + ln(1+х) функциясы өзінің анықталу облысында жұп функция екенін көрсетелік.
Шынында, берілген f(х) функциясы (—1, +1) интервалында анықталған.
F(-x)=ln[1-(-x)]+ln[1+(-x)]=ln(1+x)+ln(1-x)=f(x).
Демек, f(—х)=f(х) болады, яғни берілген функция (-1,+ 1) интервалында жұп функция.

Жұп функцияның графигі ординаталар осіне симметриялық түрде орналасатындығын f(—х)=f(х) теңдігінен көруге болады.

Анықтама. Егер f(х) симметриялық облыста беріліп, облыстағы аргумент x-тің кез келген мәні үшін
f (-х) = - f(х). (2)
теңдігі орындалса, яғни аргументтің таңбасы кері таңбаға ауысқанда функцияның да таңбасы кері таңбаға ауысса, f(x) сол облыста тақ функция деп аталады.
М ы с а л ы: у=х3; у=7х5 — 2х3 + х; у=сosес х; у=х2n-1
(бұндағы n —натурал сан); y= ; у=| х |x ; у = сtgх функциялары тақ функциялар.
Енді g(х) =ln өзінің анықталу облысында тақ функция екенін көрсетелік.
Шынында: бұл функцияның анықталу облысы (—1, + 1) интервалы. Ал
g(-x)=ln =ln =ln(1-x)-ln(1+x)=
=- [ln(1+x)-ln(1-x)]=-ln =-g(x),
яғни g(-х)= -g(х). Демек, берілген функция g(x) (-1, +1) интервалында тақ функция болады. Тақ функцияның графигі координаталар системасының бас нүктесіне симметриялық түрде орналасады.

Пән: Математика, Геометрия
Жұмыс түрі:  Материал
Тегін:  Антиплагиат
Көлемі: 5 бет
Таңдаулыға:   
Бұл жұмыстың бағасы: 500 теңге
Кепілдік барма?

бот арқылы тегін алу, ауыстыру

Қандай қате таптыңыз?

Рақмет!






ЖҰП ЖӘНЕ ТАҚ ФУНКЦИЯЛАР

Анықтама. Егер М жиынының құрамына кез келген х санымен бірге оған
симметриялық - х саны да кірсе, ол М жиыны симметриялық жиын деп
аталады.
Симметриялық жиындарға мысалдар: барлық бүтін сандар жиыны, [—5, +5]
сегментіндегі барлық сандардың жиыны, (-b, +b) интервалындағы барлық
сандардың жиыны.
Анықтама. Егер f(х) симметриялық облыста берілсе және сол облыстағы
аргумент x-тін, кез келген мәні үшін
f(-x)=f(x) (1)
теңдігі орындалса, f(х) сол симметриялық облыста жұп функция деп
аталады.
Басқаша айтқанда: егер аргументтің мәні х-ті -х - ке ауыстырғанда
f(x)-тің мәні өзгермейтін болса, f(х)-ті жұп функция деп атайды.
М ы с а л ы: у = sес x; у = х2n (бұндағы n — натурал сан), у = 2х4—
5х2 — 3; у = 2 — sіn2 х; функциялары интервалында жүп
функциялар.
Енді f(х) = ln(1— х) + ln(1+х) функциясы өзінің анықталу облысында жұп
функция екенін көрсетелік.
Шынында, берілген f(х) функциясы (—1, +1) интервалында анықталған.
F(-x)=ln[1-(-x)]+ln[1+(-x)]=ln(1+x) +ln(1-x)=f(x).
Демек, f(—х)=f(х) болады, яғни берілген функция (-1,+ 1)
интервалында жұп функция.

Жұп функцияның графигі ординаталар осіне симметриялық түрде
орналасатындығын f(—х)=f(х) теңдігінен көруге болады.

Анықтама. Егер f(х) симметриялық облыста беріліп, облыстағы аргумент x-
тің кез келген мәні үшін
f (-х) = - f(х).
(2)
теңдігі орындалса, яғни аргументтің таңбасы кері таңбаға ауысқанда
функцияның да таңбасы кері таңбаға ауысса, f(x) сол облыста тақ функция деп
аталады.
М ы с а л ы: у=х3; у=7х5 — 2х3 + х; у=сosес х; у=х2n-1
(бұндағы n —натурал сан); y=; у= х x ; у = сtgх функциялары
тақ функциялар.
Енді g(х) =ln өзінің анықталу облысында тақ функция екенін
көрсетелік.
Шынында: бұл функцияның анықталу облысы (—1, + 1) интервалы.
Ал
g(-x)=ln=ln =ln(1-x)-ln(1+x)=
=- [ln(1+x)-ln(1-x)]=-ln=-g(x),
яғни g(-х)= -g(х). Демек, берілген функция g(x) (-1, +1) интервалында тақ
функция болады. Тақ функцияның графигі координаталар системасының бас
нүктесіне симметриялық түрде орналасады.

Сөйтіп, егер тақ функция х=0 нүктесінде анықталған болса, функцияның ол
нүктедегі мәні нольге тең. Бұдан х = 0 нүктесінде анықталған тақ функцияның
графигі міндетті түрде координаталар системасының бас нүктесі арқылы
өтетіндігіне көзіміз жетеді.

Периодты функциялар
Анықтама. Егер f(х) функциясының анықталу облысындағы аргумент х-
тің әрбір мәні үшін f(x+L)=f(x)
(1)
теңдігі орындалатын нольге тең емес L саны табылатын болса, f(х) — периодты
функция, L саны — f(х)-тің периоды деп аталады.
Егер (1) теңдікті х + l нүктесі үшін қолдансақ,
f[(х+l)+l]=f(x+l)=f(x), немесе
f(x+2l)=f(x)
болар еді. Бұл процесті соза берсек, мына теңдіктер орындалар еді:
F(х+3l)=f(х).
f(х+4l)=f(х),
... ... ... ... ..
F(х+nl)=fх)
... ... ... ... ... ...,
Сонымен, егер периодты f(х) функциясының анықталу облысында х болса, х
+ nl сандары да (n — кез келген натурал сан) f(х)-тің анықталу облысында
болады және nl сандары f(x)-тің периодтары болады. Периоды L-ге тең функция
f(х) үшін f(х) =f[(х—I) +l] теңдігі де орындалатын болғандықтан, ( -L) саны
да f(х)-тің периоды болады. Сондай-ақ жоғарыдағыша байымдап тек саны
ғана емес,— 2l, —3l, ..., —nl сандарының да f(х) үшін периодтар
болатындығын байқау қиын емес.
Сөйтіп, егер f(х) —периодты функция болып, оның периоды болса,
kl (бұндағы k—кез келген нольге тең емес бүтін сан, k=±1,±2\ ...; ±nl)
сандары да f(x)-тің периодтары болатыны айқындалады.

Демек, егер f(х) (— , + ) интервалында периодты функция
болса, ол функцияның міндетті түрде оң периоды болуға тиіс, өйткені
және сандарының бірі оң сан болатыны анық. Сондықтан да (—, +
) интервалындағы периодты функцияның оң периодтары сансыз көп. Оң
периодтарының жиынында ең кіші ω саны болуы мүмкін. Бұл санды ең кіші
период немесе негізгі период деп атаймыз.
Периодты функцияларға мысалдар келтірейік.
1) Тригонометриялық функциялар:
sinx, cosx, tgx, ctgx.
sinx пен соsx-тің ең кіші (немесе негізгі) периоды 2π, ал tgx ... жалғасы
Ұқсас жұмыстар
Бессель теңдеуінің шешімі
ПАСКАЛЬ ПРОГРАММАЛАУ ОРТАСЫ
Excel электрондық кестесі
Фурье интегралдық түрлендірулері
Ұяшықтардың абсалюттік және салыстырмалы адресі
Математиканы тереңдетип окыту
Функцияларды енгізу терезесі
Сигнал түсінігі және оның моделі
Математиканың даму тарихы
Математикадан факультативтік сабақтар
Пәндер