Жарық толқындары
§ 4.1 Жарық табиғатына көзқарастың дамуы
§ 4.2 Жарықтың шағылысу заңы. Жарықтың сыну заңы. Толық шағылу құбылысы
§ 4.3 Жарық дисперсиясы. Дисперсия құбылысын бақылау
§ 4.4 Жарық интерференциясы. Жұқа қабыршықтағы жарық интерференциясы. Интерференцияның техникада қолданылуы
§ 4.5 Жарық дифракциясы. Дифракциялық тор
§ 4.6 Электромагниттiк сәуле шығарудың шкаласы. Осы сәулелердiң қасиеттерi және оны пайдалану
Есеп шығару үлгiлерi
§ 4.2 Жарықтың шағылысу заңы. Жарықтың сыну заңы. Толық шағылу құбылысы
§ 4.3 Жарық дисперсиясы. Дисперсия құбылысын бақылау
§ 4.4 Жарық интерференциясы. Жұқа қабыршықтағы жарық интерференциясы. Интерференцияның техникада қолданылуы
§ 4.5 Жарық дифракциясы. Дифракциялық тор
§ 4.6 Электромагниттiк сәуле шығарудың шкаласы. Осы сәулелердiң қасиеттерi және оны пайдалану
Есеп шығару үлгiлерi
Жарық табиғатына деген адамдардың көзқарасы ерте заманнан ақ қалыптаса бастаған. Осыдан екi жарым мың жыл бұрын Пифагор «әрбiр зат өзiнен аса ұсақ бөлшектер шығарады, ол бөлшектер адам көзiне жетiп, адам заттарды көредi» деп түсiндiрген. Көптеген ғасырлар бойы үстемдiк құрған осы пiкiрдi И.Ньютон одан әрi дамытты. Ол жарық бөлшектерiн корпускулалар деп атап, бұл бөлшектер инерция заңын қанағаттандырады деп есептедi. Бұлай деу тәжiрибеден байқалатын жарықтың түзу сызық бойымен таралу, шағылу заңдарын түсiндiруге мүмкiндiк беретiн. Одан әрi жарық жөнiнде жаңа тәжiрибелiк деректердiң жинақталу барысында интерференция және дифракция тәрiздi құбылыстар ашылды. Бұл құбылыстарды жарықтың корпускулалық қасиетi арқылы түсiндiру мүмкiн емес едi. Осымен байланысты ХIХ ғасырдың басында Х.Гюйгенс, Ю.Юнг және О.Френель тәрiздi ғалымдардың еңбектерiнде жарықтың толқындық теориясы ұсынылып, қалыптасты.
Жарық жөнiндегi көптеген көкейтестi мәселелердiң шешiмi тек Максвелл ойлап тапқан электромагниттiк өрiстiң теориясынан кейiн ғана табылды. Бұл теориядан жарық дегенiмiз толқын ұзындығы белгiлi бiр аралықта жатқан электромагниттiк толқындар екендiгi шығатын.
Жарықтың табиғатын түсiнуде оның жылдамдығының шектi екендiгiн анықтаудың маңызы зор болды. Жарық жылдамдығын алғаш рет ХVII ғасырдың аяғында О.Ремер өлшеген болатын. Ремер әдiсi Юпитер планетасының серiгiнiң қозғалысын бақылауға негiзделген болатын.
Жарық жөнiндегi көптеген көкейтестi мәселелердiң шешiмi тек Максвелл ойлап тапқан электромагниттiк өрiстiң теориясынан кейiн ғана табылды. Бұл теориядан жарық дегенiмiз толқын ұзындығы белгiлi бiр аралықта жатқан электромагниттiк толқындар екендiгi шығатын.
Жарықтың табиғатын түсiнуде оның жылдамдығының шектi екендiгiн анықтаудың маңызы зор болды. Жарық жылдамдығын алғаш рет ХVII ғасырдың аяғында О.Ремер өлшеген болатын. Ремер әдiсi Юпитер планетасының серiгiнiң қозғалысын бақылауға негiзделген болатын.
Жарық толқындары
§ 4.1 Жарық табиғатына көзқарастың дамуы
Жарық табиғатына деген адамдардың көзқарасы ерте заманнан ақ қалыптаса
бастаған. Осыдан екi жарым мың жыл бұрын Пифагор әрбiр зат өзiнен аса ұсақ
бөлшектер шығарады, ол бөлшектер адам көзiне жетiп, адам заттарды көредi
деп түсiндiрген. Көптеген ғасырлар бойы үстемдiк құрған осы пiкiрдi
И.Ньютон одан әрi дамытты. Ол жарық бөлшектерiн корпускулалар деп атап, бұл
бөлшектер инерция заңын қанағаттандырады деп есептедi. Бұлай деу
тәжiрибеден байқалатын жарықтың түзу сызық бойымен таралу, шағылу заңдарын
түсiндiруге мүмкiндiк беретiн. Одан әрi жарық жөнiнде жаңа тәжiрибелiк
деректердiң жинақталу барысында интерференция және дифракция тәрiздi
құбылыстар ашылды. Бұл құбылыстарды жарықтың корпускулалық қасиетi арқылы
түсiндiру мүмкiн емес едi. Осымен байланысты ХIХ ғасырдың басында
Х.Гюйгенс, Ю.Юнг және О.Френель тәрiздi ғалымдардың еңбектерiнде жарықтың
толқындық теориясы ұсынылып, қалыптасты.
Жарық жөнiндегi көптеген көкейтестi мәселелердiң шешiмi тек Максвелл ойлап
тапқан электромагниттiк өрiстiң теориясынан кейiн ғана табылды. Бұл
теориядан жарық дегенiмiз толқын ұзындығы белгiлi бiр аралықта жатқан
электромагниттiк толқындар екендiгi шығатын.
Жарықтың табиғатын түсiнуде оның жылдамдығының шектi екендiгiн анықтаудың
маңызы зор болды. Жарық жылдамдығын алғаш рет ХVII ғасырдың аяғында О.Ремер
өлшеген болатын. Ремер әдiсi Юпитер планетасының серiгiнiң қозғалысын
бақылауға негiзделген болатын.
§ 4.2 Жарықтың шағылысу заңы. Жарықтың сыну заңы. Толық шағылу құбылысы
Тығыздығы өзгеретiн ортада тараған жарық өзiнiң түзусызықты қалыпынан
ауытқып, таралу бағытын өзгертедi. Егер тығыздықтың мәнi екi ортаның
шекарасында күрт өзгеретiн болса, онда бұл жерде жарықтың шағылысу және
сыну құбылыстары байқалады. Мұндай орталардағы жарықтың таралу бағытын
әдетте түсу, шағылу және сыну бұрыштары арқылы анықтайды.
4.1 - сурет
Түсу бұрышы деп түскен сәуле мен түсу нүктесiне тұрғызылған
перпендикулярдың арасындағы α бұрышын айтады. Сәйкес шағылу бұрышы α′ –
шағылған сәуле мен осы перпендикулярдың, ал сыну бұрышы β? – сынған сәуле
мен осы перпендикулярдың арасындағы бұрыштар ( 4.1 – сурет ).
Жарықтың шағылу заңы былай дейдi : Түскен сәуле, шағылған сәуле және түсу
нүктесiне тұрғызылған перпендикуляр бiр жазықтықта жатады және түсу бұрышы
шағылу бұрышына тең болады, яғни α=α′
Жарықтың сыну заңын тұжырымдамастан бұрын ортаның сыну көрсеткiшi ұғымын
енгiзелiк. Ортаның абсолют сыну көрсеткiшi деп жарықтың вакуумдағы
жылдамдығының оның осы ортадағы жылдамдығына қатынасын айтады, яғни
(4.
1)
мұндағы ε және μ – ортаның салыстырмалы диэлектрлiк және магниттiк
өтiмдiлiгi. Бұл өрнекте ферромагниттi емес кез-келген орта үшiн μ∼1 екенi
ескерiлген.
Егер жарықтың сыну құбылысы вакуум мен ортаның шекарасында емес, қандай да
бiр екi оптикалық ортаның шекарасында болса, онда екiншi ортаның бiрiншi
ортаға қатысты салыстырмалы сыну көрсеткiшi n21 деп жарықтың бiрiншi
ортадағы жылдамдығының екiншi ортадағы жылдамдығына қатынасына тең мына
шаманы айтады
(4.
2)
мұндағы n1 және n2 – сәйкес бiрiншi және екiншi орталардың абсолют сыну
көрсеткiштерi.
Жарықтың сыну заңы былай дейдi : Түскен сәуле, сынған сәуле және түсу
нүктесiне тұрғызылған перпендикуляр бiр жазықтықта жатады және түсу
бұрышының синусының сыну бұрышының синусына қатынасы тұрақты шама, ол екi
ортаның салыстырмалы сыну көрсеткiшiне тең болады, яғни
(4.
3)
Ортаның абсолют сыну көрсеткiшi оның оптикалық тығыздығымен байланысты.
Оптикалық тығыздықтың мәнi артқан сайын сыну көрсеткiшiнiң мәнi де артады.
Егер жарық оптикалық тығыздығы кемдеу ортадан оптикалық тығыздығы артықтау
ортаға өтсе, онда n2n1, немесе n211. Ал бұдан sin α sin β екендiгi
шығады, яғни түсу бұрышы сыну бұрышынан әрқашанда үлкен.
Ал, керiсiнше, жарық оптикалық тығызырақ ортадан оптикалық тығыздығы кемдеу
ортаға өтсе, онда сәйкес sin α sin β, немесе α β, яғни сыну бұрышы түсу
бұрышынан үлкен. Бұл жағдайда егер түсу бұрышын бiртiндеп арттыра бастасақ,
онда сыну бұрышы да арта отырып, α – ның қандай да бiр αшек –ге тең мәнiнде
ол 900-қа тең болады. Ал ендi α-ның мәнiн одан да әрi арттыратын болсақ,
онда сынған сәуле екiншi ортаға өтпей сол бiрiншi ортада қалып қояды. Осы
құбылысты толық iшкi шағылу құбылысы деп атайды. Шағылу және сыну
заңдарының ерекшелiктерiн мына жерден көруге болады.
§ 4.3 Жарық дисперсиясы. Дисперсия құбылысын бақылау
Ақ жарық шыны призмадан өткен кезде бiрнеше түске жiктелетiнiн алғаш рет
И.Ньютон бақылап, зерттеген болатын. Мұндай монохроматты ( бiр түстi,
мысалы, қызыл, көк, күлгiн т.с.с. ) жарық одан әрi басқа түстерге
жiктелмейдi. Ал ендi осылай ақ жарықтың монохроматты жарықтарға жiктелуiнiң
себебi неде ? Ол мынада. Жарық дегенiмiз – электромагниттiк толқындар.
Әртүрлi түстегi жарықтар бiр-бiрiнен толқын ұзындығының, немесе онымен
байланысты жиiлiгiнiң әртүрлi болуымен өзгешеленедi. Ал жарықтың шыны
призмадан өткенде әртүрлi түске жiктелуiнiң себебi қандай да бiр ортадағы
жарық жылдамдығының ( немесе онымен байланысқан сыну көрсеткiшiнiң ) жарық
жиiлiгiнен тәуелдiлiгiмен байланысты. Сыну көрсеткiшiнiң жарық жиiлiгiнен
осындай тәуелдiлiгiн дисперсия құбылысы деп атайды (4.2 - сурет). Бұл
құбылысты түсiндiруге Максвеллдiң электромагниттiк теориясын қолдану оң
нәтиже бермедi.
4.2 - сурет
Себебi бұл жердегi мәселе тек электромагниттiк толқынның қасиетiнде ғана
емес, сонымен қатар ол толқындардың затпен әсерлесу сипатымен де байланысты
болатын.
Дисперсия құбылысын ХIХ ғасырдың аяғында қалыптасқан Г.Лоренцтiң
классикалық электрондық теориясы ғана түсiндiрiп бере алды. Бұл теорияның
түсiндiруi бойынша жарықтың дисперсиясы зат атомдарындағы электрондардың
электромагниттiк өрiспен әсерлесуiнiң нәтижесiнде туындылайтын ерiксiз
тербелiсiнiң нәтижесi болып табылады. Осы теорияның негiзiнде табылған
дисперсия заңы (сыну көрсеткiшiнiң жиiлiктен тәуелдiлiгi) мынадай:
(4.
4)
4.3 - сурет
мұндағы N – молекулалар концентрациясы, e – элементар заряд, m –
электронның массасы, ε0 – электр тұрақтысы, ω0 – электронның өзiндiк
жиiлiгi, ω – сыртқы электромагниттiк өрiстiң жиiлiгi. Бұл тәуелдiлiктiң
сызбасы 4.3 – суретте келтiрiлген. Мұндағы үзiк сызық ( 4.4 ) өрнегiмен
есептелген дисперсияның теориялық тәуелдiлiгiне, ал тұтас сызық тәжiрибенiң
нәтижесiне сәйкес келедi. Бұл суреттегi жиiлiк артқан кездегi сыну
көрсеткiшi де артатын, өзiндiк жиiлiктiң мәнiнен тысқары жатқан ab және cd
аймағы дұрыс дисперсия деп аталады. Ал өзiндiк жиiлiктiң маңында жатқан bc
аймағында, керiсiнше, жиiлiк артқан кезде сыну көрсеткiшi кемидi. Бұл
аномальдi дисперсия аймағы. Тәжiрибе бұл аймақта жарық затқа қатты
жұтылатындығын көрсетедi. Бұл оның резонансты құбылыстармен терең
байланыста екендiгiнiң дәлелi.
§ 4.4 Жарық интерференциясы. Жұқа қабыршықтағы жарық интерференциясы.
Интерференцияның техникада қолданылуы
Жарық бiр мезгiлде бiр емес бiрнеше көзден тарауы мүмкiн. Осылай әртүрлi
жарық көзiнен шыққан толқындар бiр-бiрiмен қабаттасқан кезде қандай құбылыс
байқалатынын қарастыралық. Кеңiстiктiң берiлген нүктесiне бiр мезгiлде екi
жарық көзiнен шыққан толқындар келiп жетсiн делiк. Толқын теңдеулерi :
E1y=Emcos (ω - k1 r1 + φ1)
E2y=Emcos (ω - k2 r2 + φ2)
Мұндағы k1 = 2πn1 λ және k2 = 2πn2λ сәйкес толқындық сандар, ал n1 және
n2 жарық тарап жатқан орталардың сыну көрсеткiштерi. Бұл жерде есептеулердi
жеңiлдету үшiн тербелiс амплитудаларын және жиiлiктерiн бiрдей етiп алдық.
Ендi кеңiстiктiң берiлген нүктесiнде осы екi толқынның қабаттасуынан пайда
болған қортқы тербелiстi табалық. Ол үшiн элементер математика курсынан
белгiлi тригонометриялық өрнектердi пайдалана отырып, мынаны аламыз:
Мұндағы
қортқы тербелiстiң амплитудасы, ал
бастапқы фазасы. Амплитуданың өрнегiндегi Δ=n2r2 - n1r1 шамасын оптикалық
жол айырымы деп атайды. Егер екi толқын да бiр оптикалық ортада тараса,
онда n1=n2, ал одан Δ=r2 - r1, яғни оптикалық жол айырымы геометриялық
жол айырымына тең.
Жарықтың берiлген нүктедегi интенсивтiлiгi осы нүктедегi тербелiс
амплитудасының квадратына пропорционал екендiгi белгiлi, яғни
(4.
5)
Бұл өрнектен қортқы интенсивтiлiктiң толқындардың Δ жол айырымына және δ=φ1
- φ2 фазалар айырымына тәуелдi екенi көрiнiп тұр. Бiр-бiрiнен тәуелсiз
жарық шығарып тұрған көздер үшiн δ фазалар айырымы кездейсоқ түрде
өзгередi. Ал аргументi кездейсоқ өзгерген косинустың квадратының орташа
мәнiнiң 12 ге тең екенiн ескерсек, онда бұл жағдайдағы жарық
интенсивтiлiгi үшiн
өрнегiн аламыз. Яғни, берiлген нүктедегi интенсивтiлiк әрбiр жеке көздерден
түскен жарықтың интенсивтiлiктерiнiң қарапайым қосындысына тең.
Ендi екi жарық көзiнен шыққан толқындардың фазалар айырымы тұрақты болып
қалсын делiк, яғни δ=φ1-φ2=const. Мұндай фазалар айырымы уақытқа қатысты
өзгермейтiн жарық көздерiн когеренттi жарық көздерi деп атайды Онда,
жоғарыдағы жарық интенсивтiлiгiнiң берiлген нүктедегi мәнi тек Δ жол
айырымы арқылы ғана анықталады.. Дербес жағдайда δ=φ1-φ2=0 деп алсақ, (4.5)
өрнегiнен берiлген нүктедегi жарық интенсивтiлiгiнiң мәнiнiң болғанда
максимальдi, ал болғанда минимальдi екенi көрiнiп ... жалғасы
§ 4.1 Жарық табиғатына көзқарастың дамуы
Жарық табиғатына деген адамдардың көзқарасы ерте заманнан ақ қалыптаса
бастаған. Осыдан екi жарым мың жыл бұрын Пифагор әрбiр зат өзiнен аса ұсақ
бөлшектер шығарады, ол бөлшектер адам көзiне жетiп, адам заттарды көредi
деп түсiндiрген. Көптеген ғасырлар бойы үстемдiк құрған осы пiкiрдi
И.Ньютон одан әрi дамытты. Ол жарық бөлшектерiн корпускулалар деп атап, бұл
бөлшектер инерция заңын қанағаттандырады деп есептедi. Бұлай деу
тәжiрибеден байқалатын жарықтың түзу сызық бойымен таралу, шағылу заңдарын
түсiндiруге мүмкiндiк беретiн. Одан әрi жарық жөнiнде жаңа тәжiрибелiк
деректердiң жинақталу барысында интерференция және дифракция тәрiздi
құбылыстар ашылды. Бұл құбылыстарды жарықтың корпускулалық қасиетi арқылы
түсiндiру мүмкiн емес едi. Осымен байланысты ХIХ ғасырдың басында
Х.Гюйгенс, Ю.Юнг және О.Френель тәрiздi ғалымдардың еңбектерiнде жарықтың
толқындық теориясы ұсынылып, қалыптасты.
Жарық жөнiндегi көптеген көкейтестi мәселелердiң шешiмi тек Максвелл ойлап
тапқан электромагниттiк өрiстiң теориясынан кейiн ғана табылды. Бұл
теориядан жарық дегенiмiз толқын ұзындығы белгiлi бiр аралықта жатқан
электромагниттiк толқындар екендiгi шығатын.
Жарықтың табиғатын түсiнуде оның жылдамдығының шектi екендiгiн анықтаудың
маңызы зор болды. Жарық жылдамдығын алғаш рет ХVII ғасырдың аяғында О.Ремер
өлшеген болатын. Ремер әдiсi Юпитер планетасының серiгiнiң қозғалысын
бақылауға негiзделген болатын.
§ 4.2 Жарықтың шағылысу заңы. Жарықтың сыну заңы. Толық шағылу құбылысы
Тығыздығы өзгеретiн ортада тараған жарық өзiнiң түзусызықты қалыпынан
ауытқып, таралу бағытын өзгертедi. Егер тығыздықтың мәнi екi ортаның
шекарасында күрт өзгеретiн болса, онда бұл жерде жарықтың шағылысу және
сыну құбылыстары байқалады. Мұндай орталардағы жарықтың таралу бағытын
әдетте түсу, шағылу және сыну бұрыштары арқылы анықтайды.
4.1 - сурет
Түсу бұрышы деп түскен сәуле мен түсу нүктесiне тұрғызылған
перпендикулярдың арасындағы α бұрышын айтады. Сәйкес шағылу бұрышы α′ –
шағылған сәуле мен осы перпендикулярдың, ал сыну бұрышы β? – сынған сәуле
мен осы перпендикулярдың арасындағы бұрыштар ( 4.1 – сурет ).
Жарықтың шағылу заңы былай дейдi : Түскен сәуле, шағылған сәуле және түсу
нүктесiне тұрғызылған перпендикуляр бiр жазықтықта жатады және түсу бұрышы
шағылу бұрышына тең болады, яғни α=α′
Жарықтың сыну заңын тұжырымдамастан бұрын ортаның сыну көрсеткiшi ұғымын
енгiзелiк. Ортаның абсолют сыну көрсеткiшi деп жарықтың вакуумдағы
жылдамдығының оның осы ортадағы жылдамдығына қатынасын айтады, яғни
(4.
1)
мұндағы ε және μ – ортаның салыстырмалы диэлектрлiк және магниттiк
өтiмдiлiгi. Бұл өрнекте ферромагниттi емес кез-келген орта үшiн μ∼1 екенi
ескерiлген.
Егер жарықтың сыну құбылысы вакуум мен ортаның шекарасында емес, қандай да
бiр екi оптикалық ортаның шекарасында болса, онда екiншi ортаның бiрiншi
ортаға қатысты салыстырмалы сыну көрсеткiшi n21 деп жарықтың бiрiншi
ортадағы жылдамдығының екiншi ортадағы жылдамдығына қатынасына тең мына
шаманы айтады
(4.
2)
мұндағы n1 және n2 – сәйкес бiрiншi және екiншi орталардың абсолют сыну
көрсеткiштерi.
Жарықтың сыну заңы былай дейдi : Түскен сәуле, сынған сәуле және түсу
нүктесiне тұрғызылған перпендикуляр бiр жазықтықта жатады және түсу
бұрышының синусының сыну бұрышының синусына қатынасы тұрақты шама, ол екi
ортаның салыстырмалы сыну көрсеткiшiне тең болады, яғни
(4.
3)
Ортаның абсолют сыну көрсеткiшi оның оптикалық тығыздығымен байланысты.
Оптикалық тығыздықтың мәнi артқан сайын сыну көрсеткiшiнiң мәнi де артады.
Егер жарық оптикалық тығыздығы кемдеу ортадан оптикалық тығыздығы артықтау
ортаға өтсе, онда n2n1, немесе n211. Ал бұдан sin α sin β екендiгi
шығады, яғни түсу бұрышы сыну бұрышынан әрқашанда үлкен.
Ал, керiсiнше, жарық оптикалық тығызырақ ортадан оптикалық тығыздығы кемдеу
ортаға өтсе, онда сәйкес sin α sin β, немесе α β, яғни сыну бұрышы түсу
бұрышынан үлкен. Бұл жағдайда егер түсу бұрышын бiртiндеп арттыра бастасақ,
онда сыну бұрышы да арта отырып, α – ның қандай да бiр αшек –ге тең мәнiнде
ол 900-қа тең болады. Ал ендi α-ның мәнiн одан да әрi арттыратын болсақ,
онда сынған сәуле екiншi ортаға өтпей сол бiрiншi ортада қалып қояды. Осы
құбылысты толық iшкi шағылу құбылысы деп атайды. Шағылу және сыну
заңдарының ерекшелiктерiн мына жерден көруге болады.
§ 4.3 Жарық дисперсиясы. Дисперсия құбылысын бақылау
Ақ жарық шыны призмадан өткен кезде бiрнеше түске жiктелетiнiн алғаш рет
И.Ньютон бақылап, зерттеген болатын. Мұндай монохроматты ( бiр түстi,
мысалы, қызыл, көк, күлгiн т.с.с. ) жарық одан әрi басқа түстерге
жiктелмейдi. Ал ендi осылай ақ жарықтың монохроматты жарықтарға жiктелуiнiң
себебi неде ? Ол мынада. Жарық дегенiмiз – электромагниттiк толқындар.
Әртүрлi түстегi жарықтар бiр-бiрiнен толқын ұзындығының, немесе онымен
байланысты жиiлiгiнiң әртүрлi болуымен өзгешеленедi. Ал жарықтың шыны
призмадан өткенде әртүрлi түске жiктелуiнiң себебi қандай да бiр ортадағы
жарық жылдамдығының ( немесе онымен байланысқан сыну көрсеткiшiнiң ) жарық
жиiлiгiнен тәуелдiлiгiмен байланысты. Сыну көрсеткiшiнiң жарық жиiлiгiнен
осындай тәуелдiлiгiн дисперсия құбылысы деп атайды (4.2 - сурет). Бұл
құбылысты түсiндiруге Максвеллдiң электромагниттiк теориясын қолдану оң
нәтиже бермедi.
4.2 - сурет
Себебi бұл жердегi мәселе тек электромагниттiк толқынның қасиетiнде ғана
емес, сонымен қатар ол толқындардың затпен әсерлесу сипатымен де байланысты
болатын.
Дисперсия құбылысын ХIХ ғасырдың аяғында қалыптасқан Г.Лоренцтiң
классикалық электрондық теориясы ғана түсiндiрiп бере алды. Бұл теорияның
түсiндiруi бойынша жарықтың дисперсиясы зат атомдарындағы электрондардың
электромагниттiк өрiспен әсерлесуiнiң нәтижесiнде туындылайтын ерiксiз
тербелiсiнiң нәтижесi болып табылады. Осы теорияның негiзiнде табылған
дисперсия заңы (сыну көрсеткiшiнiң жиiлiктен тәуелдiлiгi) мынадай:
(4.
4)
4.3 - сурет
мұндағы N – молекулалар концентрациясы, e – элементар заряд, m –
электронның массасы, ε0 – электр тұрақтысы, ω0 – электронның өзiндiк
жиiлiгi, ω – сыртқы электромагниттiк өрiстiң жиiлiгi. Бұл тәуелдiлiктiң
сызбасы 4.3 – суретте келтiрiлген. Мұндағы үзiк сызық ( 4.4 ) өрнегiмен
есептелген дисперсияның теориялық тәуелдiлiгiне, ал тұтас сызық тәжiрибенiң
нәтижесiне сәйкес келедi. Бұл суреттегi жиiлiк артқан кездегi сыну
көрсеткiшi де артатын, өзiндiк жиiлiктiң мәнiнен тысқары жатқан ab және cd
аймағы дұрыс дисперсия деп аталады. Ал өзiндiк жиiлiктiң маңында жатқан bc
аймағында, керiсiнше, жиiлiк артқан кезде сыну көрсеткiшi кемидi. Бұл
аномальдi дисперсия аймағы. Тәжiрибе бұл аймақта жарық затқа қатты
жұтылатындығын көрсетедi. Бұл оның резонансты құбылыстармен терең
байланыста екендiгiнiң дәлелi.
§ 4.4 Жарық интерференциясы. Жұқа қабыршықтағы жарық интерференциясы.
Интерференцияның техникада қолданылуы
Жарық бiр мезгiлде бiр емес бiрнеше көзден тарауы мүмкiн. Осылай әртүрлi
жарық көзiнен шыққан толқындар бiр-бiрiмен қабаттасқан кезде қандай құбылыс
байқалатынын қарастыралық. Кеңiстiктiң берiлген нүктесiне бiр мезгiлде екi
жарық көзiнен шыққан толқындар келiп жетсiн делiк. Толқын теңдеулерi :
E1y=Emcos (ω - k1 r1 + φ1)
E2y=Emcos (ω - k2 r2 + φ2)
Мұндағы k1 = 2πn1 λ және k2 = 2πn2λ сәйкес толқындық сандар, ал n1 және
n2 жарық тарап жатқан орталардың сыну көрсеткiштерi. Бұл жерде есептеулердi
жеңiлдету үшiн тербелiс амплитудаларын және жиiлiктерiн бiрдей етiп алдық.
Ендi кеңiстiктiң берiлген нүктесiнде осы екi толқынның қабаттасуынан пайда
болған қортқы тербелiстi табалық. Ол үшiн элементер математика курсынан
белгiлi тригонометриялық өрнектердi пайдалана отырып, мынаны аламыз:
Мұндағы
қортқы тербелiстiң амплитудасы, ал
бастапқы фазасы. Амплитуданың өрнегiндегi Δ=n2r2 - n1r1 шамасын оптикалық
жол айырымы деп атайды. Егер екi толқын да бiр оптикалық ортада тараса,
онда n1=n2, ал одан Δ=r2 - r1, яғни оптикалық жол айырымы геометриялық
жол айырымына тең.
Жарықтың берiлген нүктедегi интенсивтiлiгi осы нүктедегi тербелiс
амплитудасының квадратына пропорционал екендiгi белгiлi, яғни
(4.
5)
Бұл өрнектен қортқы интенсивтiлiктiң толқындардың Δ жол айырымына және δ=φ1
- φ2 фазалар айырымына тәуелдi екенi көрiнiп тұр. Бiр-бiрiнен тәуелсiз
жарық шығарып тұрған көздер үшiн δ фазалар айырымы кездейсоқ түрде
өзгередi. Ал аргументi кездейсоқ өзгерген косинустың квадратының орташа
мәнiнiң 12 ге тең екенiн ескерсек, онда бұл жағдайдағы жарық
интенсивтiлiгi үшiн
өрнегiн аламыз. Яғни, берiлген нүктедегi интенсивтiлiк әрбiр жеке көздерден
түскен жарықтың интенсивтiлiктерiнiң қарапайым қосындысына тең.
Ендi екi жарық көзiнен шыққан толқындардың фазалар айырымы тұрақты болып
қалсын делiк, яғни δ=φ1-φ2=const. Мұндай фазалар айырымы уақытқа қатысты
өзгермейтiн жарық көздерiн когеренттi жарық көздерi деп атайды Онда,
жоғарыдағы жарық интенсивтiлiгiнiң берiлген нүктедегi мәнi тек Δ жол
айырымы арқылы ғана анықталады.. Дербес жағдайда δ=φ1-φ2=0 деп алсақ, (4.5)
өрнегiнен берiлген нүктедегi жарық интенсивтiлiгiнiң мәнiнiң болғанда
максимальдi, ал болғанда минимальдi екенi көрiнiп ... жалғасы
Ұқсас жұмыстар
Пәндер
- Іс жүргізу
- Автоматтандыру, Техника
- Алғашқы әскери дайындық
- Астрономия
- Ауыл шаруашылығы
- Банк ісі
- Бизнесті бағалау
- Биология
- Бухгалтерлік іс
- Валеология
- Ветеринария
- География
- Геология, Геофизика, Геодезия
- Дін
- Ет, сүт, шарап өнімдері
- Жалпы тарих
- Жер кадастрі, Жылжымайтын мүлік
- Журналистика
- Информатика
- Кеден ісі
- Маркетинг
- Математика, Геометрия
- Медицина
- Мемлекеттік басқару
- Менеджмент
- Мұнай, Газ
- Мұрағат ісі
- Мәдениеттану
- ОБЖ (Основы безопасности жизнедеятельности)
- Педагогика
- Полиграфия
- Психология
- Салық
- Саясаттану
- Сақтандыру
- Сертификаттау, стандарттау
- Социология, Демография
- Спорт
- Статистика
- Тілтану, Филология
- Тарихи тұлғалар
- Тау-кен ісі
- Транспорт
- Туризм
- Физика
- Философия
- Халықаралық қатынастар
- Химия
- Экология, Қоршаған ортаны қорғау
- Экономика
- Экономикалық география
- Электротехника
- Қазақстан тарихы
- Қаржы
- Құрылыс
- Құқық, Криминалистика
- Әдебиет
- Өнер, музыка
- Өнеркәсіп, Өндіріс
Қазақ тілінде жазылған рефераттар, курстық жұмыстар, дипломдық жұмыстар бойынша біздің қор #1 болып табылады.
Ақпарат
Қосымша
Email: info@stud.kz