Теңдеу


1 Теңдеу.
2 Теңдеуді шешу
Теңдеу ұғымы құрамында әріпті өрнегі (немесе әрпі) бар теңдік ретінде 1-сыныпта енгізіледі. Алдымен санды теңдіктерді теңдік құру тапсырмалары түрінде қайталау. 3 және 4 сандарының қосындасы 7-ге тең. 3+4=7;
6 және 4 сандарының айырмасы 2-ге тең 6-4=2, яғни құрамына сандар, амал таңбалары және теңдік таңбасы енетін теңдік (немесе теңдік таңбасымен осылған екі санды өрнек); Кейін тапсырма түрінде құрамына белгісіз сан енетін теңдіктер құрастыру. Ойлаған санды а әрпімен белгіле және жаз:
ойлаған сан мен 3-тің қосындысы 7-ге тең → а+3=7;
10 мен ойлаған санның айырмасы 1-ге тең →10-а=1;
ойлаған сан мен 2-нің айырмасы 6-ға тең → а-2=6;
Бұл өрнектерді санды өрнек деуге бола ма? (жоқ, өйткені оның құрамында әріп бар). Бұлар теңдеулер. Нәтижесінде оқушыларда теңдеу болу үшін, әріпті өрнек пен өрнектің мәні арасында теңдік таңбасы болу керектігі туралы түсінік қалыптасады, демек, теңдеудің сол жақ және оң жақ бөлігі болады. Одан кейін оқушылар теңдіктер, теңсіздіктер және теңдеулерді әртүрлі бағандарға жазу барысында ажыратуға үйренеді.

Пән: Математика, Геометрия
Жұмыс түрі:  Материал
Тегін:  Антиплагиат
Көлемі: 9 бет
Таңдаулыға:   
Бұл жұмыстың бағасы: 500 теңге
Кепілдік барма?

бот арқылы тегін алу, ауыстыру

Қандай қате таптыңыз?

Рақмет!






Теңдеу. Теңдеуді шешу.
Теңдеу ұғымы құрамында әріпті өрнегі (немесе әрпі) бар теңдік ретінде 1-
сыныпта енгізіледі. Алдымен санды теңдіктерді теңдік құру тапсырмалары
түрінде қайталау. 3 және 4 сандарының қосындасы 7-ге тең. 3+4=7;
6 және 4 сандарының айырмасы 2-ге тең 6-4=2, яғни құрамына сандар, амал
таңбалары және теңдік таңбасы енетін теңдік (немесе теңдік таңбасымен
осылған екі санды өрнек); Кейін тапсырма түрінде құрамына белгісіз сан
енетін теңдіктер құрастыру. Ойлаған санды а әрпімен белгіле және жаз:
ойлаған сан мен 3-тің қосындысы 7-ге тең → а+3=7;
10 мен ойлаған санның айырмасы 1-ге тең →10-а=1;
ойлаған сан мен 2-нің айырмасы 6-ға тең → а-2=6;
Бұл өрнектерді санды өрнек деуге бола ма? (жоқ, өйткені оның құрамында әріп
бар). Бұлар теңдеулер. Нәтижесінде оқушыларда теңдеу болу үшін, әріпті
өрнек пен өрнектің мәні арасында теңдік таңбасы болу керектігі туралы
түсінік қалыптасады, демек, теңдеудің сол жақ және оң жақ бөлігі болады.
Одан кейін оқушылар теңдіктер, теңсіздіктер және теңдеулерді әртүрлі
бағандарға жазу барысында ажыратуға үйренеді.
7 + а= 9 79 72 7=7 а + 7 = 9
9 - а=7 9=9 2=2 29 а – 7 = 2
Теңдеумен танысқаннан кейін оқушыларда оларды шешу білігі қалыптасады:
Теңдеуді шешу-ол теңдеуді тура теңдікке айналдыратындай, а әрпінің мәндерін
табу деген сөз. Төртінші сыныпта “теңдеуді шешу” ұғымын нақтылау: теңдеуді
тура теңдікке айналдыратын белгісіз сан таңдеудің шешімі деп аталады.
Теңдеуді шешу –оның мәнін табу деген сөз. Теңдеуді шешудің әртүрлі
таныстыру.
Бірінші сыныпта –бірінші тәсіл “сынап көру”: а әрпінің орнына тура санды
теңдік шыққанша, сандарды кезекпен қою; сондықтан бұл тәсілді сынап көру
тәсілі дейді:
3 + а =7 3+0 =7 тура емес теңдік
3+1=7 тура емес теңдік
3+2=7 тура емес теңдік
3+2=7 тура емес теңдік
3+4=7 тура теңдік
демек, а=4-теңдеудің шешімі.
Екінші тәсіл теңдеулерді теңбе-тең түрлендіруге негізделген:
х + 2 =5 –теңдеудің екі бөлігінен де бірдей санды азайту: х=3 Тексеру:
3+2=5
5=5
Теңдеудің мына түрін шешумен жұмыста алдыңғыдай жүргізіледі:
Х • 5=10-теңдеудің екі бөлігін де бірдей санға бөлу; х=10:5-теңдеудің екі
бөлігін де 5-ке бөлеміз. х=2
Тексеру:
2 х 5=10
10=10
Теңдеудің шешін тексеру былайша жүргізіледі: теңдеудегіх-тің орнына оның
мәні қойылады; егер теңдеудің сол бөлігінегі санды өрнектің мәні оның оң
бөлігіндегі санға тең болса, онда теңдеу дұрыс шешілген. Теңдеуді шешудің
үшінші тәсілінде қосу мен азайтудың, көбейту мен бөлудің өзара кері амалдар
екендігі пайлалнылады;
57- х =7, 57 санынан х-ті азайту х-ке қандай санды қосқанда, 57 шығады
деген сөз. Ондай сан 7, ендеше х+7=57, осылайша таныс тәсілге яғни екі
бөлігінен де бірдей санды азайтуға келтіріледі, ол сан –7.
Х+7=57
х =57-7
х=50
тексеру:
50+7=57
57=57Кейбір күрделі теңдеуцлерді белгілі тәсілдерге дейін ықшамдау
барысында шешіледі.
Үшінші сыныпта екінші сыныптағыға ұқсас теңдеуді шешуде белгілі тәсілді
біршама қарапайым түрге келтіре отырып, күрделі теңдеулер шешуге тапсырма
ұсынылады,
Х+2=7*9, х:2=27-20; 72:х=45:5
Төртінші сыныпта, үшінші сыныпта басталған теңдеулер ықшамдалған, содан соң
әртүрлі тәсілдермен шешілетін күрделі теңдеулермен жұмыс жалғасытырылады:
Х*3=10*3
Х*3=30
І тәсіл: теңдеудің екі бөлігін д е 3-ке бөлу;
х=30:3
х=10
ІІ тәсіл-сынап көру тәсілі.
Мұнда теңдеуге түсіндіру сипатындағы мынадай анықтама беріледі: “Теңдеу-
оның құрамына енетін өрнектің мәнін табуды қажет ететін түсінік”. Үшінші
және төртінші сыныптарда 1000 көлеміндегі және көптаңбалы сандармен теңдеу
енгізіледі.
Өрнектерді ықшамдау тәсілдерімен таныстыру. Қосудың ауыстырымдылық
қасиеті: 380+х+620= 380+620+х=(380+620)+х= 1000+х-бастапқы өрнекті
ықшамдадық, өйткені қосылғыштың орнына екеу аламыз. Көбейтудің
ауыстырымдылық қасиеті: 125*х*4= көбейтудің терімділік қасиеті =125*4*х=
(125*4)*х=500*х
Бастапқы өрнекті ықшамдадық, үш көбейткіштің орнына екеу алдық. Қорытынды:
көптеген ажғдайларда әріпті өрнектің мәнін есептеуде, мүмкін болса, алдымен
өрнекті ықшамдаймыз. Оқушылар өз беттерімен өрнектерді ықшамдайды, содан
соң х =20 деп алып, өрнектің мәнін табады. Геометриялық есептерде де
алгебра элементтерін қолданып, теңдеу құрып, шешу. Берілген фигуралардың
периметрінөрнек түрде жазу.
Төртінші сыныпта теңдеудің түбірі, теңдеуді шешу, теңдеу түбірлерінің
жиындары туралы түсінік кеңейтіледі. Х+8=12 теңдеуінің шешімі х=4, мұнда х-
тің орнына басқа санды қойғанда, тура теңдік шықпайды, демек, бұл теңдеудің
шешімі біреу. Теңдеудің бір немесе бірнеше шешімі болуы мүмкін.
Геометриялық есептерді шығаруда теңдеулерді шығармашылық деңгейде
қолданады. Теңдеулерді шешу операциясы бірнеше кезеңнен тұрады:
1) санды теңдікке көшу;
2) Теңдеуді у*а=в, х+а=в стандарт түрге келтіру, ол үшін санды теңдікке
қосу не көбейтудің коммутативтік заңы немес бөлудің не азайтудың
анықтамалары қолданылады. Сонда кейбір теңдеулерде х не у бірден даралануы
мүмкін.
3) белгісізді даралау,. Ол үшін ақиқат санды теңдіктің екі бөлігінен де
бірдей сан а алынады не екі бөлігі де бірдей сан аға бөлінеді.
4) ықшамдау және есептеулер жүргізу.
5) түбірін табу. Тексеру және жауабына жазу. Осылайша жасаудың артықшылығы
оқушылардың өте жиі шатастыратын белгісіз компоненталарды табу ережесінің
өзін және оны қолдануды білуінің қажеттігі болмайды, сондай-ақ бір
белгісізді теңдеуді шешудегі негізгі операцияны меңгеруге себі тиеді. Біраз
машықтанғаннан кейін осы операцияның кезеңдері әлдеқайда қысқартылған түрде
орындалады. Мысалы түбірін тексерудің ілгеріде қажеттігі болмайдмы,
белгісізді даралау операциясы ауызша түсіндііріліп сәйкес жазулар
қалдырылып кетеді.
Теңдеулердің анықтамасы. Теңдеулердің түбірлері. Айнымалысы бар f (x)
=g (x) теңдігі бір х айынымалы теңдеу деп аталады.
f (x) пен g (x) өрнектері мен сандық сәндер қабылдайтындай
айнымасының әрбір мәні теңдеудің түбірі деп аталады. Теңдеуді шешу
дегеніміз оның барлық түбірлерін табу немесе оның түбірлері жоқ екенін
дәлелдеу.
1.Мысал. 3+х=7 теңдеуінің жалғыз (бір ғана) түбірі бар: 4, өйткені
айнымасының осы және тек қана осы мәнінде 3+х=7 дұрыс теңдік болады.
2.Мысал. (х-1) (х-2) = 0 теңдеуінің екі түбірі бар: 1 мен 2.
3.Мысал. х2+1= 0 теңдеуінің нақты түбірі жоқ.
Теңдеулердің жорынал түбірлері туралы да сөз етуге болатынын атап
өтейік. Солай, х2+1= 0 теңдеуінің екі жорамал түрібір бар.
х1 = х2 = .
Бірдей (ортақ) түбірлері бар теңдеулер пара-пар теңдеулер деп
аталады. Түбірлері жоқ болатын теңдеулер де пара-пар теңдеулер деп
есептеледі.
Масалы, х+2= 5 пн х+5= 8 теңдеулері пара-пар, өйткені олардың
әрқайсысының бір ғана (жалғыз) түбірі бар: ол 3 саны. х2+1= 0 мен 2х2+5= 0
теңдеулері де пара-пар – бұл теңдеулердің ешбірінің де түбірі жоқ. х-5= 1
мен х2= 36 теңдеулері пара-пар емес, өйткені біріншінің тек бір х= 6 түбірі
бар, ал екіншісінің екі түбірі бар: 6 мен -6.
Теңдеуді шешу процесінде оны қарапайымдау, бірақ берілгенге пара-пар
теңдеулермен ауыстыруға болады. Сондықтан қандай түрлендірулер берілген
теңдеулерді оған пара-пар теңдеуге көшіретінін білу маңызды.
Егер теңдеудің қандай да бір мүшесін теңдіктің бір жағынан екінші
жағына таңбасын өзгертіп көшірсек, онда берілген теңдеуге пара-пар теңдеу
алынады.
Мысалы, х2+2= 3х теңдеуі х2+2- ... жалғасы
Ұқсас жұмыстар
Дифференциалдық теңдеулер курсында тірек конспектілерін қолдану, және де дифференциалдық теңдеулерді шешу жолдары
Трансцендентті теңдеулер
БАСТАУЫШ СЫНЫПТАРДА ТЕҢДЕУДІ ОҚЫТЫП ҮЙРЕТУДІҢ ӘДІСТЕМЕСІ
Бастауыш сыныптарда теңдеулермен жұмыс істеу әдістемесі.
Модуль ішінде айнымалысы бар теңдеулер
Мәндес түрлендірулерді теңдеулер шешуге пайдалану
Теңдеулер теориясы
Үшінші және төртінші дәрежелі теңдеулерді шешу әдістері
Бірінші ретті дифференциалдық теңдеулер
Жеке туындылардағы дифференциал теңдеулерді шешу жайлы
Пәндер