Параметрмен берілген есептердің графигін салу



Көбінесе, параметрмен берілген тапсырманы шешу әртүрлі геометриялық талдауды қолдану арқылы шешімін оңайлатуға болады, ал қатарда тапсырманың шешімі бір ғана жол арқылы шығарылады. Ең алдымен екі қарапайым мысалмен танысайық.
Мысал 6.7 параметр а мен берілген теңдеулер жүйесінің қандай мәнінде бір ғана шешім болады.

Шешімі: Қойылған шарт бойынша тапсырманы шешу үшін, біз теңдеулер жүйесіне енетін түсіндірудің геометриялық теңдеуін қолданамыз. Теңдеулер жүйесінде берілген нүктелерді (х,у) координата жазықтығында саламыз. Бірінші теңдеулер жүйесінен түзу сызығы, ал екіншіінен центрі координатаның бас нүктесіне және радиусы -ға тең шеңбер жиыны болады.
1 суретте көрсетілгендей, берілген жүйенің бір ғана шешім болады. Егер а параметрі шеңберге түзу жанама болғанда, бұл шеңбердің радиусы оған а-ның мына мәні сәйкес келеді,

Пән: Математика, Геометрия
Жұмыс түрі:  Материал
Тегін:  Антиплагиат
Көлемі: 7 бет
Таңдаулыға:   
Параметрмен берілген есептердің графигін салу
Көбінесе, параметрмен берілген тапсырманы шешу әртүрлі геометриялық
талдауды қолдану арқылы шешімін оңайлатуға болады, ал қатарда тапсырманың
шешімі бір ғана жол арқылы шығарылады. Ең алдымен екі қарапайым мысалмен
танысайық.
Мысал 6.7 параметр а мен берілген теңдеулер жүйесінің қандай мәнінде
бір ғана шешім болады.

Шешімі: Қойылған шарт бойынша тапсырманы шешу үшін, біз теңдеулер
жүйесіне енетін түсіндірудің геометриялық теңдеуін қолданамыз. Теңдеулер
жүйесінде берілген нүктелерді (х,у) координата жазықтығында саламыз.
Бірінші теңдеулер жүйесінен түзу сызығы, ал екіншіінен центрі
координатаның бас нүктесіне және радиусы -ға тең шеңбер жиыны болады.
1 суретте көрсетілгендей, берілген жүйенің бір ғана шешім болады. Егер
а параметрі шеңберге түзу жанама болғанда, бұл шеңбердің радиусы оған
а-ның мына мәні сәйкес келеді,
Жауабы:

Мысал 6.8: а параметрімен берілген теңсіздіктің қандай мәнінде барлық
х-үзіндісі -тең болады?

Шешуі: Берілген теңсіздіктер жүйесі бойынша шешімін қарастырамыз.

Бірінші теңсіздіктер жүйесінің шешімі центрі координатаның бас
нүктесінде және радиусы 2-тең, ал екінші функциясының графигінен
жоғары жатқан нүктелер.
2 суретте берілген нүктелер жүйенің шешмін көрсетеді.
Қойылған шартты формула арқылы келесі жолмен шешуге болады: а-ның
мәнін тауып, боялған жолақта жатқан немесе соның және түзу
сызығын яғни, енді мұндай тапсырманың шешімін табу үшін, х обцисса осімен
шеңберін немесе түзуін кесіп өтетін нүкте табу керек.
Жауабы:

Көрсетілген 2 мысалда аналитикалық жолмен шешілуі мүмкін және бұл
шешім әсіресе қиындық келтіретін болмауы да мүмкін. Бірақ, олар
параметрмен берілген тапсырмалардың шешімін табуға көп пайдаланылатын 2
басты графикалық әдіс, 6.7. мысалда берілгендей, (х;у) жазықтығында
салынған параметрге тәуелді қисықтар жиыны және белгісіз параметрлер
жазықтығында графикалық нұсқасының шешімін салуға болады.
Мысалы (а;х) жазықтығында, 6.8. мысалда берілгендей.
Сіздерді қарапайым кітаптарда берілген мәліметтер функциялардың
графигін салуды үйретпейді. Көбінесе, біз белгісіз, дайын суреттерді
қолданамыз. Сондықтан, оқырмандарға өз бетінше параметрден тәуілді
графиктер жынын және берілген. Мысалдарға функцияның графигін, қалай салу
керек екенін үйренгенін қалаймыз.
Міндетті түрде функцияның графигін салу әдісіне ерекше көңіл бөлуі
керек.

Берілген функцияның графигін өзгертуге болады.
Мысал.6.9. а параметрмен берілгене теңдеулер жүйесінің қандай мәнінде
шешімі болады?

Шешуі: Радикалды оңашалап алып, теңдеулер жүйесіндегі бірінші
теңдеулер жүйесінің екінші жағында квадраттаймыз. Оны біз келесі берілген
мына шарт бойынша да қолдана аламыз.

Сонымен, одан шығады. Былайша, бұл теңдеулер жарты
пораболаның жиындарын береді. Параболаның оң жақ тармағының ұшы
обцииса осімен қиылысады. (3-суретте). Ары қарай, теңдеулер жүйесінің ІІ
бөлігі толық квадрат, оны көбейткішке жіктейміз.

(х,у) жазықтығындағы көптеген нүктелері 2 теңдеуді қанағаттандыратын
және түзуі болады. а параметрмен берілген қисықтар жиыны жарты
парабола алынған түзулердің ең ... жалғасы

Сіз бұл жұмысты біздің қосымшамыз арқылы толығымен тегін көре аласыз.
Ұқсас жұмыстар
Нақты алгебралық мәселелерді геометриялық жолмен шешудің артықшылғын көрсету
Maple 7 жүйесі мүмкіндіктерімен таныстыру
ТЕҢДЕУЛЕР ЖҮЙЕСІН ШЕШУДІҢ ӘДІС ТӘСІЛДЕРІ
Жаратылыстану және экология есептерінің дифференциалдық модельдерін құрып-зерттеу
Стандартты емес теңдеулер мен теңсіздіктерді шешуді оқыту әдістемесі
Сүт өнімі туралы мәлімет
Модуль таңбасымен берілген теңдеулер мен теңсіздіктер
Стандартты емес теңсіздіктерді шешуге оқыту әдістемесі
Параметрі бар есептерді шығаруда геометриялық әдісті қолдану
Стандарт емес есептерді шығару арқылы оқушылардың математикалық қабілеттерін дамыту
Пәндер