Арифметика


Пән: Математика, Геометрия
Жұмыс түрі:  Материал
Тегін:  Антиплагиат
Көлемі: 5 бет
Таңдаулыға:   

Arithmetic symbols2.svg Арифметика

Арифметика (грек. arіthmētіkē, arіthmos - сан) - сандар (бүтін және бөлшек) және оларға қолданылатын амалдар туралы ғылым (грекше arіthmetіke, arіthmos - сан) .

Алғашқыда санау мен өлшеудің (мысалы, қашықтықты, уақытты, ауданды, т. б. өлшеу) қажеттілігінен туған. Ежелгі мәдениет белгісі болған Мысыр мен Вавилонда дербес ғылым болып қалыптасқан. Қазіргі араб цифрлары деп аталып жүрген цифрлар мен ондық санау жүйесі Үндістанда шыққан. Біздің заманымыздан бұрынғы 7 - 4 ғасырларда грек ғалымдары Пифагор, Евдокс (біздің заманымыздан бұрынғы 408 - 355), Евклид, Эратосфен (біздің заманымыздан бұрынғы 276 - 194), Архимед, т. б. арифметика мәселелерін терең зерттеген. 7 - 15 ғасырларда арифметика амалдарын жетілдіруде Шығыс ғалымдары да қомақты үлес қосты. Әл-Хорезмидің «Үнді есебі» атты еңбегі қазіргі бастауыш кластағы математикаға ұқсас. 15 - 17 ғасырларда Еуропа ғалымдары қазіргі қолданылып жүрген арифметикалық белгілеулер мен таңбаларды қалыптастырды, теориялық арифметиканы одан әрі дамытты.

Ресейде Леонтий Магницкийдің «Арифметика» атты тұңғыш оқулығы 1703 ж. басылып шықты. 18 ғасырда Леонард Эйлердің және оның шәкірттерінің (Семен Котельников, Степан Румовский) еңбектерінде арифметика қазіргі түрге келді. 19 ғасырдан бастап арифметиканы аксиомалық түрде құру зерттелді (Готфрид Лейбниц, Герман Грассман) . 1866 ж. Ресейде шыққан «Арифметика оқулығы» мен «Арифметика есептерінің жинағы» 1917 жылға дейін қолданылып келді. Ал Андрей Киселевтің 1884 ж. шыққан «Арифметикасы» кеңес мектептерінде пайдаланылды. Қазақ тіліндегі арифметика оқулықтары 20 ғасырдың 20-жылдарынан бастап шыға бастады. Бірыңғай бағдарлама мен тұрақты оқулықтарға көшуге байланысты, 1933 жылдан бастап, қазақ мектептерінде аударма оқулықтар қолданылатын болды. Тек 1996 жылдан бастап, Қазақстанда арифметикадан жаңа оқулықтар жасау ісі қолға алынды.

Hand Calculate 9.png Алгебра - математиканың алгебралық шешу жөніндегі есептерге байланысты дамыған негізгі бөлімдерінің бірі. Алгебра (арабша әл-джәбр) атау және жеке ғылым саласы ретінде Мұхаммед әл-Хорезмидің (9 ғасыр) 1-, 2-дәрежелі теңдеулерге келтірілетін есептердің жалпы шешімі көрсетілген «Әл-джәбр уә-л-муқабәлә» атты еңбегінен бастау алады. Ал Омар Һайям 3-дәрежелі теңдеулерді зерттеуді жүйелеп, өзінің «Алгебрасын» жазған. Орта ғасырлық Шығыс ғұламалары гректер мен үнділіктер математикасын түрлендіріп, қайта өңдеп Еуропаға табыс еткен. Амалдарды белгілейтін таңбалар енгізу нәтижесінде алгебра одан әрі дамыды. 17 ғасыр ортасында қазіргі алгебрада қолданылатын таңбалар, әріптер толық орнықты, ал 18 ғасырдың басында алгебра математиканың жеке бөлімі ретінде қалыптасты. 17 - 18 ғасырларда теңдеулердің жалпы теориясы (көпмүшелер алгебрасы) шапшаң қарқынмен дамыды. Оған сол кездегі аса ірі ғалымдар - француз ғалымы Рене Декарт, ағылшын ғалымы Исаак Ньютон, француз ғалымдары Жан Даламбер мен Жозеф Лагранж үлкен үлес қосты. Неміс математигі Карл Гаусс кез келген n дәрежелі алгебралық теңдеудің нақты не жорымал n түбірі болатындығын анықтаған. 19 ғасырдың басында норвег математигі Нильс Абель және француз математигі Эварист Галуа дәрежесі 4-тен жоғары болатын теңдеулердің шешімін алгебралық амалдар көмегімен теңдеудің коэффициенті арқылы өрнектеуге болмайтындығын дәлелдеген. Теңдеулердің радикалда шешілуінің шарттары туралы мәселенің түбегейлі шешімін Галуа берді. Норвег математигі Софус Ли зерттеулері үзіліссіз топтар теориясына жол ашты. Ағылшын ғалымы Уильям Гамильтон мен неміс математигі Герман . Грассман еңбектерінен гиперкомплекс жүйелер теориясы (алгебралар теориясы) бастау алды. 20 ғасырда алгебраның өрістер теориясы, сақиналар теориясы мен топтардың жалпы теориясы, топологиялық алгебра мен құрылымдар теориясы, 1940 - 50 жылдары жартытоптар мен квазитоптар теориясы, әмбебап алгебралар теориясы, категориялар теориясы сияқты жаңа бөлімдері пайда болды.

Математиканың тууы. Математиканың туу, даму барысы ұзақ мерзімге созылды. Арифметиканың өзі дербес ғылым ретінде бірітіндеп қалыптасқанымен, оның негізгі сан ұғымы өте ертеде, тарихқа дейінгі заманда, санау қажеттілігі туған кезде пайда болған. Геометрияның бастапқы қарапайым ұғымдары табиғатты бақылау, тікелей практикалық өлшеу тәжірибелерінен алынған. Математиканың бастапқы мағұлматтары барлық халықтарда болған. Ғылымның дамуына, әіресе Египетте (Мысыр), Вавилонда жинақталған мәдени дәстүрлердің ықпалы үлкен болды. Бұл елдерде 5-4 мыңжылдықтарда өзіндік мәдениет өркендеп, ғылым білім жинақталған. Күнтізбе жасау құрылыс салу, жер суару, жер және әр түрлі ыдыс көлемін өлшеу, теңізде жүзу, жан-жақты байланыс жасау ісі математикалық білім дағдылардың дамуын талап етті, оның бастапқы оның қарапайым ережелері дәлелдеусіз қалыптаса басталды. Египетте санды эроглиф арқылы кескіндеу пайда болды, бүтін бөлшек сандарға арифметикалық 4 амал қолдану ережелері мәлім болды. Бір белгісізі бар теңдеулер, сондай-ақ қарапайым арифметикалық және геометриялық прогрессиялпрға келтірілетін есептер шығару тәжірибесі кездеседі. Египеттіктер төртбұрыштың, трапецияның, ұшбұрыштың ауданын, параллелипедт пен табаны квадрат пирамиданаң дәл есептей білді, дөңгелек ауданын жуықтап тапты ( П=з немесе П≈3, 14) . Вавилондықтар сандарды көбейту, квадраттау, квадрат және куб, түбір табу, бөлу таблицаларын жасады; бірінші, екінші, үшінші дәрежелі теңдеуге келтірілетін есептер шеше білген. Олар астрономиялық өлшеулер жүргізігендіктен тригонометриялық білімдерден де хабардар болған. Пифагор теорнмасы да вавилондықтарға белгілі болған. Бұл мағлұматтар мен дәстүнрлер математиканың өзінше зерттелу пәні, әдістері бар ғылым болып бөлінінуіне жағдай жасайды. Математика ғылымын дамытуға орта ғасырда Орта Азия мен Қазақстан өңірінен шыққан ғалымдар үлкен үлес қосты. Хорезмед туып - өскен Әбу Абдаллаһ әл- Хорезмше тұнғыш рет математиканың негізгі саласы алгебра ретінде баяндады. Отырарда туып-өскен оның серіктесі Ғаббас әл-Жауһари (ІХ-ғ) шығыста алғашқылардың бірі болып параллель түзулер теориясын зерттей бастады. Отырарда туған Әбу-Насыр әл-Фараби геометрия, тригонометрия, математиканың методологиясы т. б. салалар бойынша үлкен табыстарға жеткен. Бұлардың математика зерттеулері Әбу Райхан әл- Бируни, Омарп хаям, Әбу Жафар ат-Туси, Ұлықбке Жамал Түркіңстани, т. б. еңбектерінде дамытылды ХҮ ғ. ІІ-жартысынан бастап Орта Азия мен Қазақстанда бірспыра себептердің салдарынан мәдениет пен ғылымның дамуы мейлінше төмендеп, ғылыми зерттеулер тоқтап қалды. Рухани мектептері мен медресселерде практикалық арифметика геометрия бойынша ғана қарапайым мағлұматтар берілді. Математика қазақ жерінде тек Қазан төңкерісінен кейін жаңа қарқынмен дами бастады. ХХ ғ. 20-30 ж. ж. жаңа типтегі жалпы білім беретін мектептерде математика арнайы оқытылды. Бірнеше жоғарғы оқу ( КазПИ, ҚазМУ, ҚазПТИ), ХХ ғ. 30-40жж алғашқы қазақ математиктері кандидаттық диссертациялар қорғады. Ғылыми кадрлар дайындауда 1945 жылдан КСРО-ға Қазақ бөлімшесінің математика және механика секторы маңызды рөл атқарды. Математика саласында басты бағыт дифференц мен орнықтылық теориясы болды. Көрнекті Ресей математигі және механигі А. М. Ляпунов (1857-1918жж) жасаған орнықтылық теориясы

... жалғасы

Сіз бұл жұмысты біздің қосымшамыз арқылы толығымен тегін көре аласыз.
Ұқсас жұмыстар
Менталды арифметика пәні
Бастауышта математикалық білім беру
Машинада деректер бойынша операцияларды орындау
Геометрия ғылымының аталуы ежелгі
Арифметикалық амалдарды оқыту әдістемесі
Ұлы математиктер
Элементтар математика кезеңі
Қазақстандағы бастауыш мектептердің қалыптасуы мен дамуы (1861-1930 ж.ж. материалдар негізінде)
Пифагор және оның сандар туралы ілімі
XIII ғасырға дейінгі Еуропа математикасы
Пәндер



Реферат Курстық жұмыс Диплом Материал Диссертация Практика Презентация Сабақ жоспары Мақал-мәтелдер 1‑10 бет 11‑20 бет 21‑30 бет 31‑60 бет 61+ бет Негізгі Бет саны Қосымша Іздеу Ештеңе табылмады :( Соңғы қаралған жұмыстар Қаралған жұмыстар табылмады Тапсырыс Антиплагиат Қаралған жұмыстар kz