Кездейсоқ сигналдардың таратушы заңдарын зерттеу


Пән: Автоматтандыру, Техника
Жұмыс түрі:  Материал
Тегін:  Антиплагиат
Көлемі: 8 бет
Таңдаулыға:   

№5 Зертқаналық жұмыс

Кесдейсоқ сигналдардың таратушы заңдарын зерттеу

Жұмыстың мақсаты: кездейсоқ процесстерді лездік мәндердің ықтималдық тығыздықтарын тәжірибелік зерттеудің әдістемесімен танысу. Кездейсоқ процесстің сипатымен, оның сандық сипаттамаларымен және ықтималдық тығыздық граыиктерімен есептік байланыстарын алу.

Құрал жабдықтар: лабораториялық стенд

Бақылау сұрақтары

  1. Кез келген сигналдың ықтималдық тығыздықтың графигін салыңыз. Остер өлшемдер бойымен бөліп шығаруын түсіндіріңіз. «Ықтималдық тығыздық» ұғымының мағынасы.
  2. Ықтималдық тығыздықты қалай іс жүзінде табады?
  3. Қалыпты кездейсоқ процесс деген не? Оның аналитикалық жазбасын көрсетіңіз.
  4. Қалыпты заң үшінW(x) кестесінσ\sigmaжәнеmоның және көбею не кішірею өзгерісін салыңыз.
  5. Қалыпты заңдыW(x) график бойымен математикалық күтімді және дисперцияны қалай табамыз?
  6. БерілгенΔ\mathrm{\Delta}xаралықтың дәл келуінің ықтималдығын қалай анықтаймыз?
  • ықтималдық тығыздықтың графигі бойымен;
  • үлестіру функциясының графигі бойымен;
  1. Байланыс сигналдарына қарай математикалық күтім мен дисперция ұғымдарының физикалық мағынасын түсіндіріңіз.
  2. Тұрақты және тұрақты емес процесстердің айырмашылығы неде?
  3. Эргодиялық процесс дегеніміз не?
  4. Кездейсоқ процесс және оның өткізуі дегеніміз не?

1. Егер X пен Ү үздіксіз кездейсоқ шамалар болса, онда олардың біріккен ықтималдық тығыздығы

(1)

теңдігімен анықталады.

(1) тендіктің оң жағын үлестірім функциясы арқылы
өрнектесек

(2)

Егер үлестірім функциясы Ғ(х, у) және оның екінші ретті туындысы үздіксіз болса, онда (2) теңдіктің оң жағы F(х, у) функциясының аралас туындысын береді:

(3)

Сонымен екі кездейсоқ шамалар системасының ықтималдық тығыздығы кездейсоқ (Х, Ү) нүктесінің элементар тік төрбұрыш ауданына түсу ықтималдығының сол ауданға қатынасының шегіне тең

( ) Үлестірім тығыздығын үлестірім функциясының екінші ретті аралас туындысы арқылы есептеуге болады f (х, у) функциясының графигін үлестірім беті деп атайды.

Екі кездейсоқ шамалар системасы үшін f (х, у) dxdy көбейтіндісі ықтималдық элементі деп аталып, ол өлшемдері dх жөне dу болатын тік төрбұрышқа кездейсоқ нүктенің түсу ықтималдығын көрсетеді.

Ықтималдық элементінің геометриялық мағынасы: табаны dх және dу болатын тік төртбұрыш, ал биіктігі f (х, у) -ке тең элементар параллелепипедтің көлемін береді (1-сурет) .

1-сурет

Сонымен, үлестірім тығыздығы f (х, у) болса, кездейсоқ (Х, Ү) нүктесінің берілген В облысына түсу ықтималдығын келесі формуламен анықтауға болады:

(4)

Үлестірім функциясы Р(х, у) абциссалары (- , х) және ординаталары (- , у) аралығындағы квадрантқа түсу ықтималдығын көрсететін болғандықтан оны ықтималдық тығыздығы f (х, у) арқылы былай өрнектейді:

(5)

Екі кездейсоқ шамалар системасының ықтималдық
тығыздығының қасиеттерін қарастырайық.

1°. Ықтималдық тығыздығы теріс емес мәндерді қабылдайтын функция: f(x, y) .

(1) тендік бойынша бөлшектің алымы мен бөлімі оң мәндер қабылдайды, ал оның шегі теріс болуы мүмкін емес.

2º. Ықтималдық тығыздағынан алынған қос меншіксіз интеграл мәні бірге тең

Үлестірім функциясының қасиеті бойынша F( ) болғандықтан (5) формула негізінде:

.

Бұл теңдіктің геометриялық мағынасы үлестірім беті мен жазықтығы арқылы шектелген дененің көлемі бірге тең болады.

Мысалы. Екі кездейсоқ шамалар системасының ықтималдық тығыздығы

а параметрінің мәнін, үлестірім функциясын f (x, y) және кездейсоқ нүктенің төбелері О(0, 0), А(0, 1), В( , 1), С( , 0) нүктелерінде болатын тік төртбұрышқа түсу ықтималдығын табу керек.

Шешуі. Ықтималдық тығыздығының екінші қасиеті бойынша а параметрінің мәні:

Осыдан a = .

Үлестірім функциясын F(x, y) (5) формуламен анықтаймыз:

Кездейсоқ (X, Y) нүктесінің берілген D облысына түсу ықтималдығы (4) формула арқылы табамыз:

2. Ықтималдық P i деп: физикалық шамалардың өлшенген мəндерінің N i санының, ансамблдегі барлық элементтердің санына N қатынасының шегін (ансамблдегі элементтің саны шексіздікке өскен кездегі) айтамыз:

P i = lim N N i N P_{i} = \lim_{\ N\ \rightarrow \infty\ \ \ }\frac{N_{i}}{N} (6)

Бұл формуланы эвивалентті түрде жазуға болады:

P i = lim T t i T P_{i} = \lim_{\ T\ \rightarrow \infty\ \ \ }\frac{t_{i}}{T} (7)

мұндағы t i - жүйе i күйінде (x ξ, i мəні) болған кездегі уақыт, T- бақылаудың толық уақыты . Бұл формулалар (6), (7) системаның сыртқы шарттары өзгеріссіз күйде болған кезде орындалады.

Үздіксіз кездейсоқ сигналдар үшін ықтималдылықтың (6), (7) анықтамасын дəлірек алу қажет. Себебі, үздіксіз шамалар шексіз (есепсіз мəндер) мəндердің жиынын қабылдайды, сондықтан t i уақыты нөлге тең болғандықтан P i де нөлге тең болады. Осы себепті кездейсоқ шаманың болатын мəндерінің белгілі интервалын қарастыру керек, мысалы 0< x ξ <. x. Сонда біз дискретті жағдаймен ұқсастыққа келеміз жəне үздіксіз кездейсоқ шама x(t) үшін ықтималдылықтың таралу функциясының анықтамасын (ықтималдылықтың таралу заңдылығының аналитикалық өрнегін) сипаттай аламыз:

3. Уақыт бойынша өзгеретін кездейсоқ сигналдың математикалық моделі кездейсоқ процесс деп аталады. Егер ξ(t) - кездейсоқ сандардың тізбегі (кездейсоқ күш) болса, функцияның ерекше түрін - онда кездейсоқ процесті x ξ (t) түрінде белгілейміз. Табиғи жағдайда кездейсоқ күштердің ξ i (t ) (i=1, 2, …N) тізбегі кездеседі, оған x i, ξ (t) ансамблі сəйкес келеді. Ансамбілдің сигналдың қабылдануынан кейін толық белгілі болған осы функциялардың бірі кездейсоқ процестің байқалуы деп аталады. Бұл байқалуды уақыттың детерминделген (кездейсоқ емес) функциясы ретінде қарастыруға болады. Байқалулардың N \rightarrow \infty кездегі статистикалық ансамблі кездейсоқ (стохасты) процесс деп аталады.

4, 5, 6, 7. кездейсоқ шамасының математикалық күтімі немесе орта мәні дегеніміз саны.

Математикалық күтімнің негізгі қасиеттері: егер кейбір кездейсоқ емес шама болса, онда , , егер кез келген кездейсоқ шама болса, онда .

кездейсоқ шамасының дисперсиясы дегеніміз саны.

Яғни, дегеніміз, кездейсоқ шамасының өзінің орта мәні -ден ауытқу квадратының математикалық күтімі. болатыны айқын.

Математикалық күтім мен дисперсия - кездейсоқ шамасының негізгі сандық характеристикалары.

Егер де біз кездейсоқ шамасын көп рет бақылып, шамаларын алсақ, онда олардың арифметикалық ортасы осы кездейсоқ шамасының математикалық күтімі -ге жуық болады: .

Дисперсия дегеніміз осы кездейсоқ мәндерінің орта мәні -ден ауытқуын сипаттайды.

.

Дисперсияның негізгі қасиеттері: егер кейбір кездейсоқ емес шама болса, онда , .

Ықтималдылықтар теориясында тәуелсіз кездейсоқ шамалар түсінігі өте маңызды. Егер және кездейсоқ шамалары тәуелсіз болса, онда келесі қатынастар дұрыс: , .

Кездейсоқ шама үзіліссіз деп аталады, егер ол интервалынан кез келген мән қабылдаса.

Үзіліссіз кездейсоқ шамасы, оның мүмкін болатын мәні жататын интервалымен және ықтималдылықтар тығыздығы, немесе - дің үлестіру тығыздығы, деп аталатын функциясымен анақталады.

Мұнда және болуы да мүмкін. Бірақ тығыздық келесі екі шартты қанағаттандыруы тиіс: 1) ; 2) .

Үзіліссіз кездейсоқ шамасының математикалық күтімі немесе орта мәні дегеніміз .

Айталық, жоғарғыдай кездейсоқ шамасының тығыздығы болсын. Кез келген үзіліссіз функциясын алып, кездейсоқ шамасын қарастырайық. Онда . Осындай формуланы дискретті кездейсоқ шамаға да жазуға болады . Бір жағынан, жалпы жағдайда, .

Тығыздығы -ге тең, интервалында анықталған, кездейсоқ шамасы интервалында бірқалыпты үлестірілген деп аталады.

Шынында да, интервалында жатқан қандайда да бір интервалын алсақ, онда кездейсоқ шамасы осы интервалында жату ықтималдылығы , яғни осы интервалдың ұзындығына тең. Егер интервалын ұзындықтары бірдей, кез келген интервалдарға бөлсек, онда кездейсоқ шамасының осы иентервалдардың кез келген біреуінде жату ықтималдылықтары бірдей.

, .

Нормальды кездейсоқ шамалары. Нормальды немесе Гаусс кездейсоқ шамасы дегеніміз, барлық осінде анықталған және тығыздығы -ға тең кездейсоқ шамасы, мұндағы мен - сандық параметрлер.

параметрі қисығының формасын өзгертпейді: тек қана оны осі бойымен жылжытады, ал параметрі өзгерсе, онда қисықтың да формасы өзгереді. .

Кез келген ықтималдылығы - ықтималдылықтар интегралы деп аталатын функциясының таблицалық мәндерімен анықталады. Ықтималдылықты табу ережесі бойынша . Енді осы интегралда ауыстыруын жасасақ, онда , мұндағы . Бұдан шығатын , .

Ықтималдық қателігі. шамасы үшін мәндерін алайық. Онда болады және немесе . Бұған қарама қарсы теңсіздіктің де ықтималдылығы 0. 5 болады, яғни ( , себебі кездейсоқ шамасы үзіліссіз) .

Осы, соңғы формулалардан алатынымыз: -дің -ден -ға үлкен немесе -ға кіші болып ауытқулары бірдей ықтималды. Сондықтан да -ді ықтималдық қателігі дейміз.

Кездейсоқ сигналдар - белгілі бір заңдылықпен өзгермейтін, белгіленген уақытта қандай болатынын алдын ала айтуга болмайтын сигнал. Кездейсоқ сигналдар тұрақты және тұрақсыз, эргодикалық немесе эргодикалық емес және Марковтық немесе Марковтық емес болып бөлінеді.

Тұрақты кездейсоқ сигналдар - ықтималдық тығыздыгы уақыт өлшемінің басталатын жеріне байланысты болмайтын кездейсок сигналдар. Тұрақты кездейсоқ сигналдардың сипаттамалары уақыт бойынша тұрақты болады.

Эргодикалық кездейсоқ сигналдар. Тұрақты кездейсоқ сигналдардың біразы эргодикалық қасиетте болады. Егер барлық тұрақты кездейсоқ сигналдардың (ансамбль бойынша) орта шамасы оған қатысатын мүшелердің біреуінің ұзақ уақыт бойынша орта шамасына тең болса, онда оны эргодикалық деп атайды. Эргодикалық сигналда көп сигналдарды бақылап талдаудың орнына тек бір сигналды ғана ұзақ уақыт бақылап шешім шығаруга болады.

Кездейсоқ сигналдарды жіктеу. Кездейсоқ сигнал деп, мәні алдын ала белгілі және тек кейбір ықтималдықпен ғана болжануы мүмкін уақыт функциясын атайды. Кездейсоқ сигнал кездейсоқ физикалық шаманы немесе физикалық процесті бейнелейді, оның үстіне бірлік бақылауда тіркелген сигнал қайталанған бақылаулар кезінде жаңғыртылмайды және айқын математикалық тәуелділікпен сипаттала алмайды. Кездейсоқ сигналды тіркеу кезінде кездейсоқ процестің ықтимал нұсқаларының (нәтиже) бірі ғана жүзеге асырылады, ал процесті тұтастай жеткілікті түрде толық және дәл сипаттауды тек бақылауды көп рет қайталағаннан және сигналды жүзеге асыру ансамблінің белгілі бір статистикалық сипаттамаларын есептеп шығарғаннан кейін жүргізуге болады. Кездейсоқ сигналдардың негізгі статистикалық сипаттамалары ретінде төмендегілерді қабылдайды:

а) мәндерінің белгілі бір аралығында сигнал шамасын табу ықтималдығын үлестіру заңы;

б) сигнал қуатын спектрлік үлестіру.

Ықтималдық теориясында зерттелетін барлық кездейсоқ құбылыстарды үш топқа бөлуге болады: кездейсоқ оқиғалар; кездейсоқ

Кездейсоқ шамаларды сипаттайтын сандық, статистикалық сипаттамалар мыналар болып табылады:

Ықтималдықтың үлестірім функциялары.

http://lib.kstu.kz:8300/tb/books/2015/TSS/Mehtiev%20i%20dr%205/teory/img/2f53.gif

(2. 16)

Берілген функция Х кездейсоқ шамасы нақты таңдап алынған х мәнінен аспау ықтималдығын көрсетеді. Егер Х кездейсоқ шамасы дискретті болып табылатын болса, онда F(x) солай дискретті функция болып табылады, егер Х үздіксіз шама болса, онда F(x) үздіксіз функция.

Ықтималдықтың үлестірім тығыздығы.

http://lib.kstu.kz:8300/tb/books/2015/TSS/Mehtiev%20i%20dr%205/teory/img/2f54.gif (2. 17)

Берілген сипаттама кездейсоқ шама мәнінің х’ нүктесі төңірегінде dx кіші аралығына, яғни штрихталған аймаққа түсу ықтималдығын көрсетеді.

Математикалық үміт.

http://lib.kstu.kz:8300/tb/books/2015/TSS/Mehtiev%20i%20dr%205/teory/img/2f55.gif

(2. 18)

мұнда хi - кездейсоқ шама мәні; Р(хi) - осы мәндердің пайда болу ықтималдығы; n - кездейсоқ шаманың ықтимал мәндерінің саны.

http://lib.kstu.kz:8300/tb/books/2015/TSS/Mehtiev%20i%20dr%205/teory/img/2f56.gif

(2. 19)

мұнда р(х) - үздіксіз кездейсоқ шаманың ықтималдық тығыздығы. Өзінің мағынасы бойынша математикалық үміт кездейсоқ шаманың орташа және анағұрлым ықтимал мәнін көрсетеді, яғни осы мәнді кездейсоқ шама анағұрлым жиі қабылдайды. (2. 17) өрнегі, егер кездейсоқ шама дискретті болып табылатын болса, ал (2. 18) өрнегі, егер ол үздіксіз болып табылатын болса, қолданылады. M[X] белгісі, квадрат жақшаларда көрсетілген кездейсоқ шаманың математикалық үміті үшін арнайы болып табылады, алайда кейде mх немесе m белгілері пайдаланылады.

Дисперсия.

http://lib.kstu.kz:8300/tb/books/2015/TSS/Mehtiev%20i%20dr%205/teory/img/2f57.gif

(2. 20)

... жалғасы

Сіз бұл жұмысты біздің қосымшамыз арқылы толығымен тегін көре аласыз.
Ұқсас жұмыстар
Байланыс арналарының сипаттамалары
Тропосфералық радиорелейлік байланыс
Радио және оның шығу тарихы
Сигналдық каналдарды ұйымдастыру туралы
Ұялы байланыстың радиосигналдарын тарату
Информатиканың философиялық негіздері
Сигналды каналдарды ұйымдастыру
Сигналдық каналдарды ұйымдастыру
Радиобайланыс регламенті Радио байланыс түсінігі және тарихы
Байланыстың спутниктік жүйелері
Пәндер



Реферат Курстық жұмыс Диплом Материал Диссертация Практика Презентация Сабақ жоспары Мақал-мәтелдер 1‑10 бет 11‑20 бет 21‑30 бет 31‑60 бет 61+ бет Негізгі Бет саны Қосымша Іздеу Ештеңе табылмады :( Соңғы қаралған жұмыстар Қаралған жұмыстар табылмады Тапсырыс Антиплагиат Қаралған жұмыстар kz