Фракталдар туралы
Фракталдар.
Табиғатта кездесетін өлшемдері атомдық масштабтан әлемдік кеңістікке дейін созылып жатқан обьектілердің (нысандардың) геометриясы біздің оны зерттеп түсіну үшін құратын, идеалдандырылған моделдерімізде басты орын алады. Бірақ дәстүр бойынша табиғат геометриясын индуктивті түсінудің негізі ретінде осы уақытқа дейін евклидтік геометрияның түсініктері: сызықтар, шеңберлер, сфералар мен тетраэдрлар қолданылады.
Күрделі жүйелерде болатын процестерді, құрылымды - стохастикалық құбылыстарды барынша қарапайым түрде сипаттауға, түсіну мен түсіндіруге мүмкіндік беретін ғылым - фракталдар теориясы [1 - 5].
Фрактал түсінігі алғаш математикалық түрде күрделі геометриялық формаларды сипаттау үшін енгізіледі. Ғылымның дамуы және компьютерлік техниканы қолданудың алуан түрлі мүмкіндіктері фрактал түсінігінің табиғаттың ең жалпы, түбегейлі заңдылықтарымен байланысты екенін көрсетті. Физика - математика ғылымдарының бұл жаңа бағытының күрт дамуына француз ғалымы Б. Мандельброттың 1982 жылы жарық көрген "Табиғаттың фракталдық геометриясы" атты кітабының шығуы тікелей себеп болды.
Б. Мандельброт бұл кітабында табиғатта кездесетін фракталдық нысандардың көптеген мысалдарын келтірді және оған ғылыми көпшіліктің назарын аударды. Оның дамытқан геометриясы сан түрлі обьектілердің формасын сипаттауға қолданылуымен қатар, заңдылығы бар, масштабты - инварианты құрылымдарның моделін салуға мүмкіндік береді. Осы үлгілерді қолдану ретсіз құрылымдарды зерттеп білудің жаңа жолдары болып табылады.
Аспандағы бұлттар, тау сілемдері, терезе шынысына қатқан қыраулар, полимерді түзетін молекулар, тірі клеткалар және тағы сол сияқты нысандар мен құрылымдардың бәріне ортақ бір қасиеті - олардың бөліктерінің бір - біріне ұқсастығы. Әртүрлі уақыт мезетінде түсірілген, үлкен және кіші бұлттардың суреттерін салыстыру олардың өзгеру заңдылығының бірдей болатынын көрсетеді. Осы сияқты заңдылықты - әртүрлі масштабта түсірілген жағалау сызықтарының фрагменттерін (мысалы, Британия аралының, Арал теңізінің, Балқаш көлінің) салыстыру арқылы да байқауға болады.
Осындай өзұқсас нысандар үшін француз математигі Б. Мандельброт жаңа фрактал (латыншадан аудармасы - бөлшектік, кескіленген) ұғымын енгізді. Ол құрылымдық, өзіне - өзі ұқсас иерархиялық ішкі құрылысы бар обьектілер. Фракталдық қасиет бейсызық процестер мен құбылыстарды сипаттайтын фазалық кеңістіктерде, күрделі жүйенің функционалды характерінде, адрондардың әсерлесуінің, қоғамның экономикалық көрсеткішінің өзгерістерінде және т. б. байқалады.
Фракталдардың дәл және қатаң анықтамасы әзірге жоқ. Б.Мандельброт алғаш рет фрактал анықтамасының мынадай түрін ұсынған: фрактал деп тұтас күйіне белгілі бір мағынада ұқсас бөліктерден тұратын құрылымды айтамыз.
Математикада өзұқсас геометриялық обьекттер ретінде бір-біріне ұқсас, саны шекті бірдей элементтерге бөлуге болатын денелер саналады
Жалпы өлшемділік ұғымы кеңістіктегі нүктенің орнын анықтауға мүмкіндік беретін, ең аз тәуелсіз координаталар санын анықтаумен тығыз байланысты. Физикада бұл геометриялық обьектіні бейнелеуге мүмкіндік беретін тәуелсіз айнымалылар санымен - параметрлік өлшемділікпен сәйкес келеді. Евклид кеңістігіндегі көлемді анықтауға керекті бұндай айнымалылардың саны үшке тең (x, y, z), жазықтықтың ауданын өлшеуге оның екеуі (x, y) болса, ал сызық үшін бір координата x болса да жеткілікті. Нүктенің өлшемділігі нөлге тең. Осы жағынан кеңістік үш өлшемді, жазықтық екі өлшемді, ал сызық бір өлшемді деп тұжырымдалады, яғни, параметрлік өлшемділіктің мәндері бүтін сандар 0, 1, 2, 3.
Өлшемділіктің екінші түріне топологиялық өлшемділік d жатады. Топологиялық өлшемділіктің анықтамасы келесідей беріледі: кез - келген жиынның топологиялық өлшемділігі оны екі, өзара байланыссыз бөліктерге ажырататын қиманың өлшемділігіне бірді қосқанға тең. Түзуді екі байланыссыз кескіндерге бөлу оның бір нүктесін алып тастау арқылы жүзеге асырылады. Ал шекті нүктелер жиынының өлшемділігі нөлге тең болғандықтан, сызық бір өлшемді, яғни Жазықтық екі өлшемді, себебі, оны екіге бөлуді өлшемді, екіге тең, яғни, Демек, топологиялық өлшемділіктер де бүтін сандар.
Бірақ, табиғатта кездесетін кейбір нысандарды өлшеу үшін, бұл өлшемділіктер жеткіліксіз болып шықты. Себебі, адамның сезім мүшелерінің қабылдау шегін әртүрлі сезімтал құралдар (микраскоптар, телескоптар және т.б.) арқылы басқа деңгейге ауыстыруға болады, бірақ барлық масштабты бір мезгілде қадағалау және нысандардың өлшемдерінің әртүрлі масштабта қандай қатынастарда болатынын тағайындау қиын. Информация қорының молаюы мен ғылыми - техникалық прогресс бұл қиындықты жеңуге мүмкіндік берді.
Алғаш рет күрделі нысандарды өлшеуді ағылшын физигі Л. Ричардсон жүзеге асырды. Ол фракталдық құрылымдардың бәріне ортақ маңызды ерекшеліктерінің бірі - олардың аддитивті еместігін, яғни, өлшенетін шама (ұзындық, аудан, көлем, масса, заряд, және т. б.) мәндерінің кеңістікте жүргізілген өлшеулердің дәлдігіне тәуелділігін пайдаланды. Мысалы, аса күрделі, шым - шытырық броундық бөлшектің траекториясының ұзындығы L, өлшеу бірлігіне (масштабын(а) байланысты. Масштаб кішірейген сайын өлшенген обьектінің ұзындығы арта береді.
Л. Ричардсон Британия аралының әртүрлі масштабта түсірілген карталарын алып, оның А және С нүктелерінің арасын қосатын жағалау сызығының ұзындығын анықтау үшін қадамы - ға тең ашамен өлшеулер жүргізді. (2.1 - сурет ). А нүктесінен С нүктесіне дейін жүріп өткендегі аша қадамының санын білу арқылы Л. Ричардсон өлшенетін жағалау сызығының ұзындығын мына өрнекпен анықтады.
(2.1)
Бұл кезде масштабтың ішіне кіретін кіші иілулер, ойыстар мен дөңестер есептелмейтіні белгілі. Л. Ричардсон өлшеу масштабын кеішірейтіп, өлшеулерді қайталады. Енді бұрынғы көптеген иілулер, дөңестер есептелгендіктен, өлшенген ұзындық біршама өсті. Сөйтіп ол ашаның қадамын үнемі кішірейтіп отыру - жағалау сызығының ұзаруына әкелетін шексіз өзгертулер енгізуге мүмкіндік беретінін байқады. Сонымен, ... жалғасы
Табиғатта кездесетін өлшемдері атомдық масштабтан әлемдік кеңістікке дейін созылып жатқан обьектілердің (нысандардың) геометриясы біздің оны зерттеп түсіну үшін құратын, идеалдандырылған моделдерімізде басты орын алады. Бірақ дәстүр бойынша табиғат геометриясын индуктивті түсінудің негізі ретінде осы уақытқа дейін евклидтік геометрияның түсініктері: сызықтар, шеңберлер, сфералар мен тетраэдрлар қолданылады.
Күрделі жүйелерде болатын процестерді, құрылымды - стохастикалық құбылыстарды барынша қарапайым түрде сипаттауға, түсіну мен түсіндіруге мүмкіндік беретін ғылым - фракталдар теориясы [1 - 5].
Фрактал түсінігі алғаш математикалық түрде күрделі геометриялық формаларды сипаттау үшін енгізіледі. Ғылымның дамуы және компьютерлік техниканы қолданудың алуан түрлі мүмкіндіктері фрактал түсінігінің табиғаттың ең жалпы, түбегейлі заңдылықтарымен байланысты екенін көрсетті. Физика - математика ғылымдарының бұл жаңа бағытының күрт дамуына француз ғалымы Б. Мандельброттың 1982 жылы жарық көрген "Табиғаттың фракталдық геометриясы" атты кітабының шығуы тікелей себеп болды.
Б. Мандельброт бұл кітабында табиғатта кездесетін фракталдық нысандардың көптеген мысалдарын келтірді және оған ғылыми көпшіліктің назарын аударды. Оның дамытқан геометриясы сан түрлі обьектілердің формасын сипаттауға қолданылуымен қатар, заңдылығы бар, масштабты - инварианты құрылымдарның моделін салуға мүмкіндік береді. Осы үлгілерді қолдану ретсіз құрылымдарды зерттеп білудің жаңа жолдары болып табылады.
Аспандағы бұлттар, тау сілемдері, терезе шынысына қатқан қыраулар, полимерді түзетін молекулар, тірі клеткалар және тағы сол сияқты нысандар мен құрылымдардың бәріне ортақ бір қасиеті - олардың бөліктерінің бір - біріне ұқсастығы. Әртүрлі уақыт мезетінде түсірілген, үлкен және кіші бұлттардың суреттерін салыстыру олардың өзгеру заңдылығының бірдей болатынын көрсетеді. Осы сияқты заңдылықты - әртүрлі масштабта түсірілген жағалау сызықтарының фрагменттерін (мысалы, Британия аралының, Арал теңізінің, Балқаш көлінің) салыстыру арқылы да байқауға болады.
Осындай өзұқсас нысандар үшін француз математигі Б. Мандельброт жаңа фрактал (латыншадан аудармасы - бөлшектік, кескіленген) ұғымын енгізді. Ол құрылымдық, өзіне - өзі ұқсас иерархиялық ішкі құрылысы бар обьектілер. Фракталдық қасиет бейсызық процестер мен құбылыстарды сипаттайтын фазалық кеңістіктерде, күрделі жүйенің функционалды характерінде, адрондардың әсерлесуінің, қоғамның экономикалық көрсеткішінің өзгерістерінде және т. б. байқалады.
Фракталдардың дәл және қатаң анықтамасы әзірге жоқ. Б.Мандельброт алғаш рет фрактал анықтамасының мынадай түрін ұсынған: фрактал деп тұтас күйіне белгілі бір мағынада ұқсас бөліктерден тұратын құрылымды айтамыз.
Математикада өзұқсас геометриялық обьекттер ретінде бір-біріне ұқсас, саны шекті бірдей элементтерге бөлуге болатын денелер саналады
Жалпы өлшемділік ұғымы кеңістіктегі нүктенің орнын анықтауға мүмкіндік беретін, ең аз тәуелсіз координаталар санын анықтаумен тығыз байланысты. Физикада бұл геометриялық обьектіні бейнелеуге мүмкіндік беретін тәуелсіз айнымалылар санымен - параметрлік өлшемділікпен сәйкес келеді. Евклид кеңістігіндегі көлемді анықтауға керекті бұндай айнымалылардың саны үшке тең (x, y, z), жазықтықтың ауданын өлшеуге оның екеуі (x, y) болса, ал сызық үшін бір координата x болса да жеткілікті. Нүктенің өлшемділігі нөлге тең. Осы жағынан кеңістік үш өлшемді, жазықтық екі өлшемді, ал сызық бір өлшемді деп тұжырымдалады, яғни, параметрлік өлшемділіктің мәндері бүтін сандар 0, 1, 2, 3.
Өлшемділіктің екінші түріне топологиялық өлшемділік d жатады. Топологиялық өлшемділіктің анықтамасы келесідей беріледі: кез - келген жиынның топологиялық өлшемділігі оны екі, өзара байланыссыз бөліктерге ажырататын қиманың өлшемділігіне бірді қосқанға тең. Түзуді екі байланыссыз кескіндерге бөлу оның бір нүктесін алып тастау арқылы жүзеге асырылады. Ал шекті нүктелер жиынының өлшемділігі нөлге тең болғандықтан, сызық бір өлшемді, яғни Жазықтық екі өлшемді, себебі, оны екіге бөлуді өлшемді, екіге тең, яғни, Демек, топологиялық өлшемділіктер де бүтін сандар.
Бірақ, табиғатта кездесетін кейбір нысандарды өлшеу үшін, бұл өлшемділіктер жеткіліксіз болып шықты. Себебі, адамның сезім мүшелерінің қабылдау шегін әртүрлі сезімтал құралдар (микраскоптар, телескоптар және т.б.) арқылы басқа деңгейге ауыстыруға болады, бірақ барлық масштабты бір мезгілде қадағалау және нысандардың өлшемдерінің әртүрлі масштабта қандай қатынастарда болатынын тағайындау қиын. Информация қорының молаюы мен ғылыми - техникалық прогресс бұл қиындықты жеңуге мүмкіндік берді.
Алғаш рет күрделі нысандарды өлшеуді ағылшын физигі Л. Ричардсон жүзеге асырды. Ол фракталдық құрылымдардың бәріне ортақ маңызды ерекшеліктерінің бірі - олардың аддитивті еместігін, яғни, өлшенетін шама (ұзындық, аудан, көлем, масса, заряд, және т. б.) мәндерінің кеңістікте жүргізілген өлшеулердің дәлдігіне тәуелділігін пайдаланды. Мысалы, аса күрделі, шым - шытырық броундық бөлшектің траекториясының ұзындығы L, өлшеу бірлігіне (масштабын(а) байланысты. Масштаб кішірейген сайын өлшенген обьектінің ұзындығы арта береді.
Л. Ричардсон Британия аралының әртүрлі масштабта түсірілген карталарын алып, оның А және С нүктелерінің арасын қосатын жағалау сызығының ұзындығын анықтау үшін қадамы - ға тең ашамен өлшеулер жүргізді. (2.1 - сурет ). А нүктесінен С нүктесіне дейін жүріп өткендегі аша қадамының санын білу арқылы Л. Ричардсон өлшенетін жағалау сызығының ұзындығын мына өрнекпен анықтады.
(2.1)
Бұл кезде масштабтың ішіне кіретін кіші иілулер, ойыстар мен дөңестер есептелмейтіні белгілі. Л. Ричардсон өлшеу масштабын кеішірейтіп, өлшеулерді қайталады. Енді бұрынғы көптеген иілулер, дөңестер есептелгендіктен, өлшенген ұзындық біршама өсті. Сөйтіп ол ашаның қадамын үнемі кішірейтіп отыру - жағалау сызығының ұзаруына әкелетін шексіз өзгертулер енгізуге мүмкіндік беретінін байқады. Сонымен, ... жалғасы
Ұқсас жұмыстар
Пәндер
- Іс жүргізу
- Автоматтандыру, Техника
- Алғашқы әскери дайындық
- Астрономия
- Ауыл шаруашылығы
- Банк ісі
- Бизнесті бағалау
- Биология
- Бухгалтерлік іс
- Валеология
- Ветеринария
- География
- Геология, Геофизика, Геодезия
- Дін
- Ет, сүт, шарап өнімдері
- Жалпы тарих
- Жер кадастрі, Жылжымайтын мүлік
- Журналистика
- Информатика
- Кеден ісі
- Маркетинг
- Математика, Геометрия
- Медицина
- Мемлекеттік басқару
- Менеджмент
- Мұнай, Газ
- Мұрағат ісі
- Мәдениеттану
- ОБЖ (Основы безопасности жизнедеятельности)
- Педагогика
- Полиграфия
- Психология
- Салық
- Саясаттану
- Сақтандыру
- Сертификаттау, стандарттау
- Социология, Демография
- Спорт
- Статистика
- Тілтану, Филология
- Тарихи тұлғалар
- Тау-кен ісі
- Транспорт
- Туризм
- Физика
- Философия
- Халықаралық қатынастар
- Химия
- Экология, Қоршаған ортаны қорғау
- Экономика
- Экономикалық география
- Электротехника
- Қазақстан тарихы
- Қаржы
- Құрылыс
- Құқық, Криминалистика
- Әдебиет
- Өнер, музыка
- Өнеркәсіп, Өндіріс
Қазақ тілінде жазылған рефераттар, курстық жұмыстар, дипломдық жұмыстар бойынша біздің қор #1 болып табылады.
Ақпарат
Қосымша
Email: info@stud.kz