Беллманның оңтайлау принципі. Динамикалық программалау есебін шешудің әдісі
Пән: Информатика, Программалау, Мәліметтер қоры
Жұмыс түрі: Курстық жұмыс
Тегін: Антиплагиат
Көлемі: 22 бет
Таңдаулыға:
Жұмыс түрі: Курстық жұмыс
Тегін: Антиплагиат
Көлемі: 22 бет
Таңдаулыға:
Қазақстан Республикасының Білім және Ғылым министрлігі
КУРСТЫҚ ЖҰМЫС
Тақырыбы:
Беллманның оңтайлау принципі. Динамикалық программалау есебін шешудің
әдісі
Орындаған:
Тексерген:
Орал, 2013ж.
Мазмұны
Кіріспе ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ..
... ... ... ... ... ... ... ... ... ... ... ... ...3
1. Математикалық модельдеу туралы жалпы түсінік
1.1.Математикалық модельдер және
түрлері ... ... ... ... ... ... ... ... ... ... ... ... ... ... 5
1.2. Динамикалық программалау туралы
түсінік ... ... ... ... ... ... ... ... ... ... ... ... .9
2. Динамикалық программалау есебі және Беллманның оңтайлау принципі
2.1.Динамикалық программалау есебінің қойылуы
... ... ... ... ... ... ... ... ... ... ...11
2.2. Р.Беллманның оңтайлау принципін пайдаланып есеп
шығару ... ... ... ... ..16
Қорытынды ... ... ... ... ... ... .. ... ... ... ... ... ... ... ... ... ... ..
... ... ... ... ... ... ... ... ... ... ..25
Пайдаланылған әдебиеттер
тізімі ... ... ... ... ... ... ... . ... ... ... ... ... ... ... ... ... ... ..
..27
Кіріспе
Математикалық модельдеу пәнін оқытудағы мақсат сызықтық және
сызықтық емес бағдарлама есептерінің модельдерін құру, олардың максимум
және минимум мәндерін табу, екіжақты, транспорттық, вариациалау және ойын
теориясының есептерін шешіп, математикалық статистика элементтерімен
танысып, көпшілікке қызмет ету жүйесінің модельдерін шешуге үйрену болып
табылады.
Модельдер теориясының негізгі есебі — ол теориялардың жəне олардың
модельдер кластарының екі негізгі ұғымның классификациясын өткізу.
Бекітілген теориялардың модельдері əр түрлі əдістермен өзара
классификацияланады, мысалы, изоморфизм, элементарлы эквиваленттік.
Динамикалық бағдарламалау математика, компьютер ғылымы, және экономика
ғылымдарында күрделі есепті қарапайым кіші есептерге бөлу арқылы
шығарылатын метод. Динамикалық бағдарламалау əр алуан экстремалды есептерді
шешудің сандық тəсілдерін талдаумен жəне жасаумен айналысатын қолданбалы
математиканың жаңа тарауы екендігі көрсетілген.
Экономикалық үдерістерді жеке қадамдарға бөліп көрсету күрделі
есептерді едəуір оңайлатуға мүмкіндік беретіндігі дəлелденген. Динамикалық
бағдарламалау есептері Ричард Беллманның оңтайлылық принципін дəл
бейнелейтін функционалды теңдеулерді қолдануға болатындығы көрсетілген. Кен
өнеркəсібінде ресурстарды оңтайлы бөлу есептерін шешу үшін динамикалық
бағдарламалауды қолдану мүмкіндігі ашылған. Динамикалық бағдарламалау
тəсілдерімен көмір өндіру кəсіпорындары арасында күрделі қаржыны оңтайлы
бөлу есебін шешу алгоритмі ұсынылған.
Математикалық модельдеу үрдісінің негізгі бөлігі аппроксимация
(жуықтау) – математикалық амалдарды (функция, теңдеу т.с.с.) басқа
қарапайым шамалар арқылы жуықтап табу болып табылады. Аппроксимацияның
көмегімен күрделі есептерді жай есептерге, сызықтық емес теңдеулерді
сызықтық теңдеулерге келтіреді.
Динамикалық бағдарламалау - оптималды бағдарламалау есептерінің бір
тарауы, көп сатылы, көп адымды есептердің оптималды шешімін табатын әдіс.
Бұл әдіс уақыты көрсетілмеген есептерде де қолданылады. Яғни динамика
шығарылатын есептерде емес оның шығарылу әдістерінде.
Курстық жұмыстың мақсаты: динамикалық программалау есебі Ричард
Беллманның оңтайлылық принципімен танысу.
Курстық жұмыстың міндеттері: Математикалық модельдер ұғымына түсінік
беру және динамикалық бағдарламалау әдісін қолдану арқылы есептер шығару,
динамикалық бағдарламалауға түсінік беру. Ричард Беллманның оңтайлылық
принципіне түсінік беру.
Курстық жұмыстың құрылымы: кіріспеден, екі бөлімнен және қорытынды мен
әдебиеттер тізімінен тұрады.
1. Математикалық модельдеу туралы жалпы түсінік
1.1.Математикалық модельдер және түрлері
Математикалық модельдермен зерттелетін объекті мен үрдістің
қасиеттері, ерекшеліктері және сипаттамалары теңдеулер жүйелері,
теңсіздіктер және функция арқылы көрсетіледі.
Көптеген математикалық модельдер универсалды болып келеді, яғни
әртүрлі жүйелерді зерттеуге қолданылады. Математикалық модельдер
қарастырылатын құбылыстар мен үрдістердің сандық заңдылықтарын анықтауға,
сипатталатын факторлардың тәуелділігі мен өзара байланысын табуға мүмкіндік
береді. Математикалық модельдердің дамуына өте күрделі есептеулерді
жүргізетін электронды-есептегіш машиналарының көбеюі зор ықпал етті.
Көптеген математикалық модельдер параметрлер мен айнымалылардан
тұратын теңдеулер мен теңсіздіктер жүйелерінен тұрады. Айнымалы шамалар,
мысалы, өндірілген өнім көлемі, капитал жұмсау, тасымалдау т.с.с., ал
параметрлер өнімді өндіруге жұмсалған материал, уақыт, шикізат шығынының
мөлшерін көрсетеді. Әрбір модельде айнымалылардың екі тобын көрсетуге
болады.
1) Сыртқы айнымалылар – олардың мәндері модельден тыс және берілген;
2) Ішкі айнымалылар, олардың мәндері берілген модельді зерттеу
қорытындысында анықталады.
Модельдеу үрдісінің нақты алгоритмі жоқ, бірақ модельдеу тәжірибесінде
басшылықққа алатын анықталған принциптер бар.
Құрылымдық модельді оқып үйрену үстінде объектінің мазмұнын туралы,
оның сыртқы жағдайларға әсері туралы информацияларды алуға болады. Ал
функционалдық модельді зерттегенде объектінің әртүрлі реакцияларының сыртқы
ортаға әсері туралы деректер алуға болады. Сонымен қатар объектінің
құрылымын талдауға және құрылымдық модельдерді құруға мүмкіндіктер туады.
Экономикалық-математикалық модельдер жүйе жағдайын болашақты жоспарлау
мен болжауға пайдаланады. Мұндай жағдайда модель оның негізінде қойылған
белгілі бір алғы шарттарға сәйкес экономикалық үрдістердің ағымын
көрсетеді. Жоспарлау мен болжау модельдерінде алғышарттарды дұрыс таңдау
ерекше маңызды роль атқарады. Модель есептің шарты дұрыс қойылған кезде
ғана нақты жүйелердің құрылысы мен функциясын дұрыс сипатайды.
Экономикалық-математикалық модельдер сипаттаулы және оптималды болып
бөлінеді.
Экономикалық жүйелердің сипаттаулы моделі есептерді математикалық
формула түрінде көрсетеді және жүйе жағдайы мен оның элементтерінің
байланысын тереңірек ұғып үйренуге қолданылады.
Математикалық модельдерде сызықтық және сызықтық емес тәуелділіктердің
әртүрлі түрлері қолданылады.
Математикалық модельдеу үрдісінің негізгі бөлігі аппроксимация
(жуықтау) – математикалық амалдарды (функция, теңдеу т.с.с.) басқа
қарапайым шамалар арқылы жуықтап табу болып табылады. Аппроксимацияның
көмегімен күрделі есептерді жай есептерге, сызықтық емес теңдеулерді
сызықтық теңдеулерге келтіреді.
Модельденетін обьектінің белгілі бір уақытқа немесе уақыт аралығына
сәйкес қасиеттерін сипаттайтын математикалық модельдер статикалық деп
аталады.
Үрдістердің белгілі бір уақыт аралығындағы өзгерістерін зерттейтін
модельдер динамикалық деп аталады.
Детерминистикалық (латынша determino – анықтау) модельдер дегеніміз
барлық параметрлері және сыртқы айнымалылары бірге тең ықтималдықпен
анықталатын модельдер.
Ықтималдық модельдерінде параметрлер мен сыртқы айнымалылар немесе
олардың белгілі бір бөлігі тиісті ықтималдықтың үлестіруімен сипатталады.
Анықталмағандықты есепке алатын модельдерге ықтималдық теориясының
заңдарын қолдануға болмайды.
Математикалық модель жасау процесі өзара байланысқан бірнеше кезеңнен
тұрады.
Бірінші кезең – есептің қойылуы. Бұл кезең зерттеудің мақсатын
анықтаудан басталады.
Мысалы, кәсіпорын үшін өнім өндіру немесе жүк тасымалдаудың оптималды
жоспарын құру немесе берілген материалды кесіп-пішудің оптималды нұсқасын
табу қажет т.с.с. Зерттеудің мақсатына сәйкес жүйелерді жан-жақты талдап,
оның құрылымы мен қызметін, ерекшелктерін ескеру керек.
Жүйелерді модельдеген кезде модельге есептің шешіміне әсер ететін,
яғни қойылған мақсатқа қол жеткізетін факторлардың енуі шарт.
Екінші кезең – таңдалып алынған жүйелерге математикалық модельдер
құру. Бұл кезеңде есепті формула түріне келтіру – математикалық
тәуелділіктерді теңдеулер, теңсіздіктер түрінде құру жүргізіледі.
Алдағы уақытта есептердің математикалық формула түрінде жазылған
өрнектерін есептің моделі деп атаймыз.
Үшінші кезең – құрылған модельге сәйкес есептің шешімін алу.
Бұл кезеңнің негізгі есептерін қарастырайық. Біріншіден, модельге
қажетті алғашқы ақпараттарды жинау, параметрлер мен сыртқы айнымалылардың
сандық мәндерін анықтау қажет. Екіншіден, есептің шешімін алатын әдісті
таңдап алу керек. Сандық экономикалық-математикалық әдістердің арасында
кеңінен тарағандары симплекс әдісі және потенциал әдісі. Олар көптеген
экономикалық есептерді шығаруға қолданылады. Бұл әдістермен шығаруға
келмейтін есептер де кездеседі. Мұндай жағдайларда жүйелерді зерттеудің
эвристикалық және имитациялық әдістері қолданылады.
Эвристика (грек сөзінен – табамын, ойлап табамын, ашамын) –
зерттеушінің интуициясы мен жүргізген тәжірибесіне сәйкес шешілетін
әдістердің жиынтығы. Имитация – модельдеудің мүмкіндігін кеңейтетін жаңа
бағыт болып табылады. Имитациялық модельдеуді нақты жүйелердің модельдеріне
жүргізілген эксперимент ретінде түсінуге болады, ал жеке алғанда
математикалық модельдеудің көмегімен алғашқы шарттарын өзгерте отырып
жүргізілетін есептеу эксперименті.
Имитация (латынша - еліктеу) – жасанды құралдардың көмегімен бір
нәрсені жаңадан ендіру немесе еске түсіру.
Төртінші кезең – модель бойынша алынған қорытындыны тәжірибеде
қолдану. Математикалық әдістердің көмегімен алынған шешімдер талданып,
белгілі бір аралықта алғашқы ақпараттарға тигізетін әсері тексеріледі.
Уақыттың өзгеруіне сәйкес алғашқы ақпараттар өзгереді, сол
өзгерістердің алынатын шешімдерге тигізетін әсерін білу аса маңызды.
1.2. Динамикалық программалау туралы түсінік
Сызықтық және бейсызықтық бағдарламалау есептерінде экономика-лық
үдеріс статикалық, яғни уақыттан тәуелсіз деп қарастырылатындықтан, тиімді
шешімі жоспарлаудың бір ғана кезеңіне анықталатын. Бұндай есептер бір
кезеңдік немесе бір қадамдық делінеді.
Динамикалық бағдарламалау есептерінде экономикалық үдеріс уақыттан
тәуелді, бірнеше уақыт кезеңінен тұратындықтан әрбір кезеңдерінің тиімді
шешімдері анықталады, осы негізде бүкіл үдерістің тиімді ұласуы
қалыптасады. Осы себепті динамикалық бағдарламалау есептері көп кезеңді
немесе көп қадамды деп аталады.
Экономикалық үдеріс басқарылымды делінеді, егер оның дамуына әсер ету
мүмкін болса. Әрбір кезеңде үдеріс барысына әсер ететін шешімдер жиынтығы
басқару деп аталады.
Көп кезеңді үдерісті жоспарлағанда, тұтас үдерістің талаптарынан
шығатындай етіп, жеке кезеңдегі шешімдер қабылданады.
жүйесінің уақытындағы қызметі жоспарлансын, мұндағы
– кәсіпорындары, – әрбір кезең (шаруашылық жылы). Т периодының
басталуында бөлінген негізгі қаржы , жүйенің бастапқы жағдайы ,
соңғы жағдайы . Т периодының ақырында кәсіпорындар жүйесінің қосынды
кірісі максималды болатындай етіп, негізгі қаржы
кәсіпорындарына әрбір кезеңге қалай бөлінеді?
-шы жыл басында -ші кәсіпорынға бөлінетін қаржы
десек, басқару анықталады, яғни кәсіпорнына ,
кәсіпорнына , ... , кәсіпорнына үлестері бөлініп,
басқару векторы анықталады.
Бөлінген қаржылар жиынтығы k қадамдарында n-өлшемді кеңістіктің
келесі векторлар жүйесімен анықталады
... ... ... ... ... ... ... ... .
Сонымен k жылдарындағы қосынды кіріс басқарулар жиынтығынан тәуелді,
яғни
Онда есеп былай қойылады: әрбір кезеңдегі басқаруды, кәсіпорындар
жүйесінің қосынды кірісі максималды болатындай етіп таңдау қажет.
Математикалық моделі
; , ;
2. Динамикалық программалау есебі және Беллманның
оңтайлау принципі
2.1.Динамикалық программалау есебінің қойылуы
Математикалық бағдарламалау есептерінің кез келгенінде айнымалыларға
қойылған шектеулерге сәйкес мақсатты функцияның экстремумын табу қажет.
Осыған дейін мақсатты функция мен шектеулері сызықтық болып келген
есептер қарастырылды. Ал нақты есептерде сызықтық емес тәуелділіктер көптеп
кездесетіндіктен сызықтық емес бағдарламалау теориясының жасалу қажеттігі
туды.
Қазіргі кезде сызықтық емес бағдарламалау есептері жылдам дамып
келеді. Математикалық бағдарламалау есептерінің мақсатты функциясы мен
шектеулері сызықтық емес болса, онда ондай есептер сызықтық емес
бағдарламалау есептері деп аталады.
Басқарылатын физикалық жүйе бастапқы жағдайынан уақыт өте
келе ақырғы жағдайына келтіріледі. Жағдайлардың өзгеріс үдерісімен
сандық белгі байланысты. Үдерісті осы сандық белгі тиімді
(оптималды) мәнін қабылдайтындай етіп ұйымдастыру қажет.
Мүмкін болатын басқарулар жиынын деп белгілейміз. Онда есеп
былай қойылады: жүйесін бастапқы жағдайынан, ақырғы
жағдайына белгі тиімді мәнін қабылдайтындай етіп келтіретін,
басқаруын анықтау керек.
Математикалық түрде
, , , .
Динамикалық бағдарламалау көп қадамды үдерісті кезеңдермен
жоспарлайтындықтан, үдерістің тұтас дамуын ескере отырып, әрбір қадамын
келешекті ескере отырып тиімді етеді.
Әрбір үдерістің соңғы k-ші қадамы бар, онда шешімді қабылдау
келешектен тәуелсіз. Осы себепті бұл қадамда ең үлкен әсер басқару
қабылданады. Бұл қадамды жоспарлап алып, оның алдынғы (k-1)-қадам
тіркеледі, ал оған өз кезегінде (k-2)-қадам тіркеледі т.с.с. Ақырында
бастапқы жағдайына келеді. Динамикалық бағдарламалау осылайша
ақырынан бастапқы жағдайға оралатындай болып түзіледі.
k-ші қадамды жоспарлау үшін жүйенің (k-1)-ші қадамындағы жағдайын білу
керек. Егер жүйенің (k-1)-ші қадамындағы жағдайы белгісіз болса, үдерістің
сипатында, осы қадамдағы жағдайына мүмкін болатындай әр түрлі болжамдар
жасалады. Соңғы k-ші қадамда әрбір болжамға тиісті тиімді басқару
анықталады. Мұндай тиімді басқару шартты тиімді делінеді.
k қадамды үдеріс жоспарланады. Жүйенің (k-1)-ші қадамдағы мүмкін
болатын жағдайларды делік. Соңғы қадамда олардың әрқайсысына шартты
тиімді басқаруларын
табамыз. Осылайша k-ші қадамы жоспарланады. Шындығында, соңғы қадам алдында
жүйе қандай жағдайда болмасын, алдын ала белгілі соңғы қадамда қандай
басқару қабылданатыны. Дәл осылайша (k-1)-ші қадамда да шартты тиімді қадам
басқаруы k-ші қадамдағы шартты тиімді қортындыда жүйенің бастапқы
жағдайына келеміз.
Басқа қадамдарға қарағанда жүйенің бірінші қадамда мүмкін болатын
жағдайлар қарастырылмайды, себебі бастапқы жағдай біреу ғана, екінші
қадамдағы шартты тиімді басқарулар ескеріле отырып , тиімді басқару
бірден анықталады. -ден -ға дейін өтіп, тұтас үдерістің
ізделініп отырған тиімді басқаруы алынады.
Р.Беллманның [1] көрсетуіндей, көп кезеңді үдерістің тиімді шешімін
табу функционалдық теңдеудің шешімін табуға келтіріледі.
Шамасы х қаржы екі түрлі кәсіпорнын дамытуға жұмсалады делік. Егер
бірінші кәсіпорнына у, екіншісіне х-у қаржы бөлінсе, онда кіріс тиісінше
g(y) және h(x-y)-ті құрасын. Жалпы кіріс J максималды болатындай етіп
қаржыны бөлу қажет. Қойылған есеп мақсат функциясының максималды мәнін
табуға келтіріледі.
, , (1)
Егер g және h функциялары мәндерінде үздіксіз болса,
мақсат функциясының максималды мәні барлық уақытта бар екендігі белгілі.
Сонымен max бір кезеңді үдерістегі мүмкін болатын максималды
кірісті анықтайды. Кірістің бірлік өлшемі қаржының бірлік өлшемінен өзгеше
болуы да мүмкін. Мысалы х теңге болса, g(y) адам-сағат мөлшері, машина
қолданғанда үнемделген нәтижесі болуы да мүмкін.
Екі кезеңді үдерісті қарастырайық. Бастапқы қаржы у кіріс g(y)-ті
алуға жұмсалған шығыннан соң шамасына дейін кемиді , сол сияқты
(х-у)-те һ(х-у) кірісінен соң b(x-y)-ке дейін кемиді делік. Онда бір
кезеңді үдерістен соң қалған қаржы үшін бөлісті қайта жалғастырамыз
, , .
Бұл бөліс нәтижесіндегі кіріс , онда толық кіріс
.
Демек, максималды толық кіріс осы функцияның және
айнымалылары бойынша алынатын максимумынан турады
.
, .
N кезеңнен тұратын үдерісте операция N рет қайталанады, толық кіріс
функциясы былай анықталады
, (2)
мұндағы бірінші, екінші, ... , (N-1)-ші кезеңдерде әрі қарай бөлініске
түсетін шамалар келесі қатынастармен анықталады:
,;
, ;
... ... ... ... ... ... ... ... ... ... . (3)
,
, .
Есепті кезеңдерге бөліп, тиімділік қағидасымен N кезеңді үдерісте
шешеміз. N кезеңді үдерістегі толық кірістің максималды мәні тек N-нен және
бастапқы х шамасынан тәуелді болатындықтан
деп аламыз. Онда бір кезеңді үдерісте
. (4)
Екі кезеңдік үдерісте алғашқыдан қалған шамасын тиімді етіп бөлу
қажет. Демек тиімді таңдалғандағы кіріс , ал екі кезеңді үдеріс
үшін толық кіріс және функцияларын байланыстыратын
(5)
рекурентті қатынасымен өрнектеледі.Осылайша тұжырымдай отырып, N кезеңді
үдеріс үшін негізгі функцио-налдық теңдеуді аламыз:
, (6)
Мұнда әрбір кезең есептеулерінде мен бірге -те анықталады.
Сонымен динамикалық бағдарламалау есебін функционалдық теңдеулер
әдісімен шешкенде N өлшемді есепті N тізбектен тұратын бір өлшемді
есептерге келтіреміз.
Динамикалық бағдарламалауда үдеріс соңғы жағдайдан бастапқы жағдайына
қарай өрбитіндіктен, бұған тән дискретті үдерісті өрнектейтін функционалдық
теңдеу:
, (7)
f-үдеріс мақсаты (кіріс, пайда т.б); N-кезеңдер саны; х-айнымалы,
жүйенің N-ші қадамдағы сипаттаушысы; - белгінің нәтижелік мәні,
тиімділік қағидасымен алынған; - басқарушы айнымалы, нәтижелік
белгінің мәні тәуелді болатын; - белгінің шамасы; N-ші кезеңде
алынған, 0 мен х аралығында; - нәтижелік белгінің тиімді мәні
жағдайынан бастап қалған N-1 кезеңдерден өткеннен соңғы.
N-ші кезеңдегі тиімді басқару делік. Онда жүйенің (N-1)-ші
кезеңдегі жағдайының функционалдық теңдеуі:
, (8)
,
себебі шамасын N-ші кезеңде таңдауға байланысты бастапқы х
шамасы -ге дейін кеміген.
2.2. Р.Беллманның оңтайлау принципін пайдаланып
есеп шығару
Бүтін сандық программалау есептерінің бірі болып табылатын,
ізделінетін есептің экстремалдық шешімін ... жалғасы
КУРСТЫҚ ЖҰМЫС
Тақырыбы:
Беллманның оңтайлау принципі. Динамикалық программалау есебін шешудің
әдісі
Орындаған:
Тексерген:
Орал, 2013ж.
Мазмұны
Кіріспе ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ..
... ... ... ... ... ... ... ... ... ... ... ... ...3
1. Математикалық модельдеу туралы жалпы түсінік
1.1.Математикалық модельдер және
түрлері ... ... ... ... ... ... ... ... ... ... ... ... ... ... 5
1.2. Динамикалық программалау туралы
түсінік ... ... ... ... ... ... ... ... ... ... ... ... .9
2. Динамикалық программалау есебі және Беллманның оңтайлау принципі
2.1.Динамикалық программалау есебінің қойылуы
... ... ... ... ... ... ... ... ... ... ...11
2.2. Р.Беллманның оңтайлау принципін пайдаланып есеп
шығару ... ... ... ... ..16
Қорытынды ... ... ... ... ... ... .. ... ... ... ... ... ... ... ... ... ... ..
... ... ... ... ... ... ... ... ... ... ..25
Пайдаланылған әдебиеттер
тізімі ... ... ... ... ... ... ... . ... ... ... ... ... ... ... ... ... ... ..
..27
Кіріспе
Математикалық модельдеу пәнін оқытудағы мақсат сызықтық және
сызықтық емес бағдарлама есептерінің модельдерін құру, олардың максимум
және минимум мәндерін табу, екіжақты, транспорттық, вариациалау және ойын
теориясының есептерін шешіп, математикалық статистика элементтерімен
танысып, көпшілікке қызмет ету жүйесінің модельдерін шешуге үйрену болып
табылады.
Модельдер теориясының негізгі есебі — ол теориялардың жəне олардың
модельдер кластарының екі негізгі ұғымның классификациясын өткізу.
Бекітілген теориялардың модельдері əр түрлі əдістермен өзара
классификацияланады, мысалы, изоморфизм, элементарлы эквиваленттік.
Динамикалық бағдарламалау математика, компьютер ғылымы, және экономика
ғылымдарында күрделі есепті қарапайым кіші есептерге бөлу арқылы
шығарылатын метод. Динамикалық бағдарламалау əр алуан экстремалды есептерді
шешудің сандық тəсілдерін талдаумен жəне жасаумен айналысатын қолданбалы
математиканың жаңа тарауы екендігі көрсетілген.
Экономикалық үдерістерді жеке қадамдарға бөліп көрсету күрделі
есептерді едəуір оңайлатуға мүмкіндік беретіндігі дəлелденген. Динамикалық
бағдарламалау есептері Ричард Беллманның оңтайлылық принципін дəл
бейнелейтін функционалды теңдеулерді қолдануға болатындығы көрсетілген. Кен
өнеркəсібінде ресурстарды оңтайлы бөлу есептерін шешу үшін динамикалық
бағдарламалауды қолдану мүмкіндігі ашылған. Динамикалық бағдарламалау
тəсілдерімен көмір өндіру кəсіпорындары арасында күрделі қаржыны оңтайлы
бөлу есебін шешу алгоритмі ұсынылған.
Математикалық модельдеу үрдісінің негізгі бөлігі аппроксимация
(жуықтау) – математикалық амалдарды (функция, теңдеу т.с.с.) басқа
қарапайым шамалар арқылы жуықтап табу болып табылады. Аппроксимацияның
көмегімен күрделі есептерді жай есептерге, сызықтық емес теңдеулерді
сызықтық теңдеулерге келтіреді.
Динамикалық бағдарламалау - оптималды бағдарламалау есептерінің бір
тарауы, көп сатылы, көп адымды есептердің оптималды шешімін табатын әдіс.
Бұл әдіс уақыты көрсетілмеген есептерде де қолданылады. Яғни динамика
шығарылатын есептерде емес оның шығарылу әдістерінде.
Курстық жұмыстың мақсаты: динамикалық программалау есебі Ричард
Беллманның оңтайлылық принципімен танысу.
Курстық жұмыстың міндеттері: Математикалық модельдер ұғымына түсінік
беру және динамикалық бағдарламалау әдісін қолдану арқылы есептер шығару,
динамикалық бағдарламалауға түсінік беру. Ричард Беллманның оңтайлылық
принципіне түсінік беру.
Курстық жұмыстың құрылымы: кіріспеден, екі бөлімнен және қорытынды мен
әдебиеттер тізімінен тұрады.
1. Математикалық модельдеу туралы жалпы түсінік
1.1.Математикалық модельдер және түрлері
Математикалық модельдермен зерттелетін объекті мен үрдістің
қасиеттері, ерекшеліктері және сипаттамалары теңдеулер жүйелері,
теңсіздіктер және функция арқылы көрсетіледі.
Көптеген математикалық модельдер универсалды болып келеді, яғни
әртүрлі жүйелерді зерттеуге қолданылады. Математикалық модельдер
қарастырылатын құбылыстар мен үрдістердің сандық заңдылықтарын анықтауға,
сипатталатын факторлардың тәуелділігі мен өзара байланысын табуға мүмкіндік
береді. Математикалық модельдердің дамуына өте күрделі есептеулерді
жүргізетін электронды-есептегіш машиналарының көбеюі зор ықпал етті.
Көптеген математикалық модельдер параметрлер мен айнымалылардан
тұратын теңдеулер мен теңсіздіктер жүйелерінен тұрады. Айнымалы шамалар,
мысалы, өндірілген өнім көлемі, капитал жұмсау, тасымалдау т.с.с., ал
параметрлер өнімді өндіруге жұмсалған материал, уақыт, шикізат шығынының
мөлшерін көрсетеді. Әрбір модельде айнымалылардың екі тобын көрсетуге
болады.
1) Сыртқы айнымалылар – олардың мәндері модельден тыс және берілген;
2) Ішкі айнымалылар, олардың мәндері берілген модельді зерттеу
қорытындысында анықталады.
Модельдеу үрдісінің нақты алгоритмі жоқ, бірақ модельдеу тәжірибесінде
басшылықққа алатын анықталған принциптер бар.
Құрылымдық модельді оқып үйрену үстінде объектінің мазмұнын туралы,
оның сыртқы жағдайларға әсері туралы информацияларды алуға болады. Ал
функционалдық модельді зерттегенде объектінің әртүрлі реакцияларының сыртқы
ортаға әсері туралы деректер алуға болады. Сонымен қатар объектінің
құрылымын талдауға және құрылымдық модельдерді құруға мүмкіндіктер туады.
Экономикалық-математикалық модельдер жүйе жағдайын болашақты жоспарлау
мен болжауға пайдаланады. Мұндай жағдайда модель оның негізінде қойылған
белгілі бір алғы шарттарға сәйкес экономикалық үрдістердің ағымын
көрсетеді. Жоспарлау мен болжау модельдерінде алғышарттарды дұрыс таңдау
ерекше маңызды роль атқарады. Модель есептің шарты дұрыс қойылған кезде
ғана нақты жүйелердің құрылысы мен функциясын дұрыс сипатайды.
Экономикалық-математикалық модельдер сипаттаулы және оптималды болып
бөлінеді.
Экономикалық жүйелердің сипаттаулы моделі есептерді математикалық
формула түрінде көрсетеді және жүйе жағдайы мен оның элементтерінің
байланысын тереңірек ұғып үйренуге қолданылады.
Математикалық модельдерде сызықтық және сызықтық емес тәуелділіктердің
әртүрлі түрлері қолданылады.
Математикалық модельдеу үрдісінің негізгі бөлігі аппроксимация
(жуықтау) – математикалық амалдарды (функция, теңдеу т.с.с.) басқа
қарапайым шамалар арқылы жуықтап табу болып табылады. Аппроксимацияның
көмегімен күрделі есептерді жай есептерге, сызықтық емес теңдеулерді
сызықтық теңдеулерге келтіреді.
Модельденетін обьектінің белгілі бір уақытқа немесе уақыт аралығына
сәйкес қасиеттерін сипаттайтын математикалық модельдер статикалық деп
аталады.
Үрдістердің белгілі бір уақыт аралығындағы өзгерістерін зерттейтін
модельдер динамикалық деп аталады.
Детерминистикалық (латынша determino – анықтау) модельдер дегеніміз
барлық параметрлері және сыртқы айнымалылары бірге тең ықтималдықпен
анықталатын модельдер.
Ықтималдық модельдерінде параметрлер мен сыртқы айнымалылар немесе
олардың белгілі бір бөлігі тиісті ықтималдықтың үлестіруімен сипатталады.
Анықталмағандықты есепке алатын модельдерге ықтималдық теориясының
заңдарын қолдануға болмайды.
Математикалық модель жасау процесі өзара байланысқан бірнеше кезеңнен
тұрады.
Бірінші кезең – есептің қойылуы. Бұл кезең зерттеудің мақсатын
анықтаудан басталады.
Мысалы, кәсіпорын үшін өнім өндіру немесе жүк тасымалдаудың оптималды
жоспарын құру немесе берілген материалды кесіп-пішудің оптималды нұсқасын
табу қажет т.с.с. Зерттеудің мақсатына сәйкес жүйелерді жан-жақты талдап,
оның құрылымы мен қызметін, ерекшелктерін ескеру керек.
Жүйелерді модельдеген кезде модельге есептің шешіміне әсер ететін,
яғни қойылған мақсатқа қол жеткізетін факторлардың енуі шарт.
Екінші кезең – таңдалып алынған жүйелерге математикалық модельдер
құру. Бұл кезеңде есепті формула түріне келтіру – математикалық
тәуелділіктерді теңдеулер, теңсіздіктер түрінде құру жүргізіледі.
Алдағы уақытта есептердің математикалық формула түрінде жазылған
өрнектерін есептің моделі деп атаймыз.
Үшінші кезең – құрылған модельге сәйкес есептің шешімін алу.
Бұл кезеңнің негізгі есептерін қарастырайық. Біріншіден, модельге
қажетті алғашқы ақпараттарды жинау, параметрлер мен сыртқы айнымалылардың
сандық мәндерін анықтау қажет. Екіншіден, есептің шешімін алатын әдісті
таңдап алу керек. Сандық экономикалық-математикалық әдістердің арасында
кеңінен тарағандары симплекс әдісі және потенциал әдісі. Олар көптеген
экономикалық есептерді шығаруға қолданылады. Бұл әдістермен шығаруға
келмейтін есептер де кездеседі. Мұндай жағдайларда жүйелерді зерттеудің
эвристикалық және имитациялық әдістері қолданылады.
Эвристика (грек сөзінен – табамын, ойлап табамын, ашамын) –
зерттеушінің интуициясы мен жүргізген тәжірибесіне сәйкес шешілетін
әдістердің жиынтығы. Имитация – модельдеудің мүмкіндігін кеңейтетін жаңа
бағыт болып табылады. Имитациялық модельдеуді нақты жүйелердің модельдеріне
жүргізілген эксперимент ретінде түсінуге болады, ал жеке алғанда
математикалық модельдеудің көмегімен алғашқы шарттарын өзгерте отырып
жүргізілетін есептеу эксперименті.
Имитация (латынша - еліктеу) – жасанды құралдардың көмегімен бір
нәрсені жаңадан ендіру немесе еске түсіру.
Төртінші кезең – модель бойынша алынған қорытындыны тәжірибеде
қолдану. Математикалық әдістердің көмегімен алынған шешімдер талданып,
белгілі бір аралықта алғашқы ақпараттарға тигізетін әсері тексеріледі.
Уақыттың өзгеруіне сәйкес алғашқы ақпараттар өзгереді, сол
өзгерістердің алынатын шешімдерге тигізетін әсерін білу аса маңызды.
1.2. Динамикалық программалау туралы түсінік
Сызықтық және бейсызықтық бағдарламалау есептерінде экономика-лық
үдеріс статикалық, яғни уақыттан тәуелсіз деп қарастырылатындықтан, тиімді
шешімі жоспарлаудың бір ғана кезеңіне анықталатын. Бұндай есептер бір
кезеңдік немесе бір қадамдық делінеді.
Динамикалық бағдарламалау есептерінде экономикалық үдеріс уақыттан
тәуелді, бірнеше уақыт кезеңінен тұратындықтан әрбір кезеңдерінің тиімді
шешімдері анықталады, осы негізде бүкіл үдерістің тиімді ұласуы
қалыптасады. Осы себепті динамикалық бағдарламалау есептері көп кезеңді
немесе көп қадамды деп аталады.
Экономикалық үдеріс басқарылымды делінеді, егер оның дамуына әсер ету
мүмкін болса. Әрбір кезеңде үдеріс барысына әсер ететін шешімдер жиынтығы
басқару деп аталады.
Көп кезеңді үдерісті жоспарлағанда, тұтас үдерістің талаптарынан
шығатындай етіп, жеке кезеңдегі шешімдер қабылданады.
жүйесінің уақытындағы қызметі жоспарлансын, мұндағы
– кәсіпорындары, – әрбір кезең (шаруашылық жылы). Т периодының
басталуында бөлінген негізгі қаржы , жүйенің бастапқы жағдайы ,
соңғы жағдайы . Т периодының ақырында кәсіпорындар жүйесінің қосынды
кірісі максималды болатындай етіп, негізгі қаржы
кәсіпорындарына әрбір кезеңге қалай бөлінеді?
-шы жыл басында -ші кәсіпорынға бөлінетін қаржы
десек, басқару анықталады, яғни кәсіпорнына ,
кәсіпорнына , ... , кәсіпорнына үлестері бөлініп,
басқару векторы анықталады.
Бөлінген қаржылар жиынтығы k қадамдарында n-өлшемді кеңістіктің
келесі векторлар жүйесімен анықталады
... ... ... ... ... ... ... ... .
Сонымен k жылдарындағы қосынды кіріс басқарулар жиынтығынан тәуелді,
яғни
Онда есеп былай қойылады: әрбір кезеңдегі басқаруды, кәсіпорындар
жүйесінің қосынды кірісі максималды болатындай етіп таңдау қажет.
Математикалық моделі
; , ;
2. Динамикалық программалау есебі және Беллманның
оңтайлау принципі
2.1.Динамикалық программалау есебінің қойылуы
Математикалық бағдарламалау есептерінің кез келгенінде айнымалыларға
қойылған шектеулерге сәйкес мақсатты функцияның экстремумын табу қажет.
Осыған дейін мақсатты функция мен шектеулері сызықтық болып келген
есептер қарастырылды. Ал нақты есептерде сызықтық емес тәуелділіктер көптеп
кездесетіндіктен сызықтық емес бағдарламалау теориясының жасалу қажеттігі
туды.
Қазіргі кезде сызықтық емес бағдарламалау есептері жылдам дамып
келеді. Математикалық бағдарламалау есептерінің мақсатты функциясы мен
шектеулері сызықтық емес болса, онда ондай есептер сызықтық емес
бағдарламалау есептері деп аталады.
Басқарылатын физикалық жүйе бастапқы жағдайынан уақыт өте
келе ақырғы жағдайына келтіріледі. Жағдайлардың өзгеріс үдерісімен
сандық белгі байланысты. Үдерісті осы сандық белгі тиімді
(оптималды) мәнін қабылдайтындай етіп ұйымдастыру қажет.
Мүмкін болатын басқарулар жиынын деп белгілейміз. Онда есеп
былай қойылады: жүйесін бастапқы жағдайынан, ақырғы
жағдайына белгі тиімді мәнін қабылдайтындай етіп келтіретін,
басқаруын анықтау керек.
Математикалық түрде
, , , .
Динамикалық бағдарламалау көп қадамды үдерісті кезеңдермен
жоспарлайтындықтан, үдерістің тұтас дамуын ескере отырып, әрбір қадамын
келешекті ескере отырып тиімді етеді.
Әрбір үдерістің соңғы k-ші қадамы бар, онда шешімді қабылдау
келешектен тәуелсіз. Осы себепті бұл қадамда ең үлкен әсер басқару
қабылданады. Бұл қадамды жоспарлап алып, оның алдынғы (k-1)-қадам
тіркеледі, ал оған өз кезегінде (k-2)-қадам тіркеледі т.с.с. Ақырында
бастапқы жағдайына келеді. Динамикалық бағдарламалау осылайша
ақырынан бастапқы жағдайға оралатындай болып түзіледі.
k-ші қадамды жоспарлау үшін жүйенің (k-1)-ші қадамындағы жағдайын білу
керек. Егер жүйенің (k-1)-ші қадамындағы жағдайы белгісіз болса, үдерістің
сипатында, осы қадамдағы жағдайына мүмкін болатындай әр түрлі болжамдар
жасалады. Соңғы k-ші қадамда әрбір болжамға тиісті тиімді басқару
анықталады. Мұндай тиімді басқару шартты тиімді делінеді.
k қадамды үдеріс жоспарланады. Жүйенің (k-1)-ші қадамдағы мүмкін
болатын жағдайларды делік. Соңғы қадамда олардың әрқайсысына шартты
тиімді басқаруларын
табамыз. Осылайша k-ші қадамы жоспарланады. Шындығында, соңғы қадам алдында
жүйе қандай жағдайда болмасын, алдын ала белгілі соңғы қадамда қандай
басқару қабылданатыны. Дәл осылайша (k-1)-ші қадамда да шартты тиімді қадам
басқаруы k-ші қадамдағы шартты тиімді қортындыда жүйенің бастапқы
жағдайына келеміз.
Басқа қадамдарға қарағанда жүйенің бірінші қадамда мүмкін болатын
жағдайлар қарастырылмайды, себебі бастапқы жағдай біреу ғана, екінші
қадамдағы шартты тиімді басқарулар ескеріле отырып , тиімді басқару
бірден анықталады. -ден -ға дейін өтіп, тұтас үдерістің
ізделініп отырған тиімді басқаруы алынады.
Р.Беллманның [1] көрсетуіндей, көп кезеңді үдерістің тиімді шешімін
табу функционалдық теңдеудің шешімін табуға келтіріледі.
Шамасы х қаржы екі түрлі кәсіпорнын дамытуға жұмсалады делік. Егер
бірінші кәсіпорнына у, екіншісіне х-у қаржы бөлінсе, онда кіріс тиісінше
g(y) және h(x-y)-ті құрасын. Жалпы кіріс J максималды болатындай етіп
қаржыны бөлу қажет. Қойылған есеп мақсат функциясының максималды мәнін
табуға келтіріледі.
, , (1)
Егер g және h функциялары мәндерінде үздіксіз болса,
мақсат функциясының максималды мәні барлық уақытта бар екендігі белгілі.
Сонымен max бір кезеңді үдерістегі мүмкін болатын максималды
кірісті анықтайды. Кірістің бірлік өлшемі қаржының бірлік өлшемінен өзгеше
болуы да мүмкін. Мысалы х теңге болса, g(y) адам-сағат мөлшері, машина
қолданғанда үнемделген нәтижесі болуы да мүмкін.
Екі кезеңді үдерісті қарастырайық. Бастапқы қаржы у кіріс g(y)-ті
алуға жұмсалған шығыннан соң шамасына дейін кемиді , сол сияқты
(х-у)-те һ(х-у) кірісінен соң b(x-y)-ке дейін кемиді делік. Онда бір
кезеңді үдерістен соң қалған қаржы үшін бөлісті қайта жалғастырамыз
, , .
Бұл бөліс нәтижесіндегі кіріс , онда толық кіріс
.
Демек, максималды толық кіріс осы функцияның және
айнымалылары бойынша алынатын максимумынан турады
.
, .
N кезеңнен тұратын үдерісте операция N рет қайталанады, толық кіріс
функциясы былай анықталады
, (2)
мұндағы бірінші, екінші, ... , (N-1)-ші кезеңдерде әрі қарай бөлініске
түсетін шамалар келесі қатынастармен анықталады:
,;
, ;
... ... ... ... ... ... ... ... ... ... . (3)
,
, .
Есепті кезеңдерге бөліп, тиімділік қағидасымен N кезеңді үдерісте
шешеміз. N кезеңді үдерістегі толық кірістің максималды мәні тек N-нен және
бастапқы х шамасынан тәуелді болатындықтан
деп аламыз. Онда бір кезеңді үдерісте
. (4)
Екі кезеңдік үдерісте алғашқыдан қалған шамасын тиімді етіп бөлу
қажет. Демек тиімді таңдалғандағы кіріс , ал екі кезеңді үдеріс
үшін толық кіріс және функцияларын байланыстыратын
(5)
рекурентті қатынасымен өрнектеледі.Осылайша тұжырымдай отырып, N кезеңді
үдеріс үшін негізгі функцио-налдық теңдеуді аламыз:
, (6)
Мұнда әрбір кезең есептеулерінде мен бірге -те анықталады.
Сонымен динамикалық бағдарламалау есебін функционалдық теңдеулер
әдісімен шешкенде N өлшемді есепті N тізбектен тұратын бір өлшемді
есептерге келтіреміз.
Динамикалық бағдарламалауда үдеріс соңғы жағдайдан бастапқы жағдайына
қарай өрбитіндіктен, бұған тән дискретті үдерісті өрнектейтін функционалдық
теңдеу:
, (7)
f-үдеріс мақсаты (кіріс, пайда т.б); N-кезеңдер саны; х-айнымалы,
жүйенің N-ші қадамдағы сипаттаушысы; - белгінің нәтижелік мәні,
тиімділік қағидасымен алынған; - басқарушы айнымалы, нәтижелік
белгінің мәні тәуелді болатын; - белгінің шамасы; N-ші кезеңде
алынған, 0 мен х аралығында; - нәтижелік белгінің тиімді мәні
жағдайынан бастап қалған N-1 кезеңдерден өткеннен соңғы.
N-ші кезеңдегі тиімді басқару делік. Онда жүйенің (N-1)-ші
кезеңдегі жағдайының функционалдық теңдеуі:
, (8)
,
себебі шамасын N-ші кезеңде таңдауға байланысты бастапқы х
шамасы -ге дейін кеміген.
2.2. Р.Беллманның оңтайлау принципін пайдаланып
есеп шығару
Бүтін сандық программалау есептерінің бірі болып табылатын,
ізделінетін есептің экстремалдық шешімін ... жалғасы
Ұқсас жұмыстар
Пәндер
- Іс жүргізу
- Автоматтандыру, Техника
- Алғашқы әскери дайындық
- Астрономия
- Ауыл шаруашылығы
- Банк ісі
- Бизнесті бағалау
- Биология
- Бухгалтерлік іс
- Валеология
- Ветеринария
- География
- Геология, Геофизика, Геодезия
- Дін
- Ет, сүт, шарап өнімдері
- Жалпы тарих
- Жер кадастрі, Жылжымайтын мүлік
- Журналистика
- Информатика
- Кеден ісі
- Маркетинг
- Математика, Геометрия
- Медицина
- Мемлекеттік басқару
- Менеджмент
- Мұнай, Газ
- Мұрағат ісі
- Мәдениеттану
- ОБЖ (Основы безопасности жизнедеятельности)
- Педагогика
- Полиграфия
- Психология
- Салық
- Саясаттану
- Сақтандыру
- Сертификаттау, стандарттау
- Социология, Демография
- Спорт
- Статистика
- Тілтану, Филология
- Тарихи тұлғалар
- Тау-кен ісі
- Транспорт
- Туризм
- Физика
- Философия
- Халықаралық қатынастар
- Химия
- Экология, Қоршаған ортаны қорғау
- Экономика
- Экономикалық география
- Электротехника
- Қазақстан тарихы
- Қаржы
- Құрылыс
- Құқық, Криминалистика
- Әдебиет
- Өнер, музыка
- Өнеркәсіп, Өндіріс
Қазақ тілінде жазылған рефераттар, курстық жұмыстар, дипломдық жұмыстар бойынша біздің қор #1 болып табылады.
Ақпарат
Қосымша
Email: info@stud.kz