Жасуша- элементарлы тірі жүйе



Пән: Биология
Жұмыс түрі:  Материал
Тегін:  Антиплагиат
Көлемі: 15 бет
Таңдаулыға:   
ЖОСПАРЫ:
I.КІРІСПЕ БӨЛІМ
II.НЕГІЗГІ БӨЛІМ
1.1.Цитологияның зерттеу әдістері
1.2.Жасуша- элементарлы тірі жүйе
1.3.Микроэлементтердің ағзадағы маңызы
III.ҚОРЫТЫНДЫ БӨЛІМ
ПАЙДАЛАНЫЛҒАН ӘДЕБИЕТТЕР

КІРІСПЕ
Цитология - жасуша туралы ғылым. Цитологияның зерттеу нысаны болып көпжасушалы жануарлар мен өсімдіктердің жа-сушалары, сондай-ақ, қүрамына бактериялар, қарапайымдылар жэне бір жасушалы балдырлар кіретін жалғыз жасушалы ағ-залар табылады. Цитология жасушалардың құрылысын, олар-дың химиялық құрамын, жасуша ішіндегі қүрылымдардың атқаратын қызметін, жануарлар мен өсімдіктер ағзаларының жасушаларының қызметтерін зерттейді.Цитология - биологиялық пәндердің арасында алдыңғы орынды алатын экспериментальді ғылымдардың бірі. Қазіргі кезде цитология тек қана жасушаның қүрылымын зерттеп қоймай, оның ішінде жүретін физикалық жэне химиялық үдерістерді де зерттейді. Цитология молекулярлы биологияның негізі бола оты-рып, оның цитохимия, цитогенетика, цитоэкология сияқты жэне тағы да басқа салаларының жетілуіне себеп болды.

1.1. ЦИТОЛОГИЯНЫҢ ЗЕРТТЕУ ӘДІСТЕРІ
Цитологияның зерттеу әдістері. Қазіргі кезде цитологияның зерттеу тәсілдері мен әдістері әр алуан. Цитологиялық әдістерді оптикалық, цитофизикалық, ультрақүрылымды зерттеу, цитохимиялық, гистохимиялық жэне т.б. әдістерге топтастыруға болады. Жасуша органоидта-рының қүрылысы, ультрақүрылымы мен қызметі жарық және электронды, қараңғы өрісті, фазалы-контрасты, поляризациялы, люминесцентті микроскопия жэне тағы басқа әдістер арқылы зерттеледі.
Жарық жэне электронды, қараңғы өрісті, фазалы-контрас - ты, поляризациялы, люминесцентті микроскопия әдістері фиксацияланған жасушалардың қүрылысы мен ультрақүрылымын зерттеуге қолданылатын болса, дифференциалды центрифугалаудың көмегімен алынған жеке органоидтар цитохимиялық, биохимиялық, биофизикалық жэне т.б. әдістермен зерттеледі.
Цитологияда негізгі қолданылатын әдістердің бірі - жарық микроскопы тәсілі. Жарық микроскопия әдістерінде объект арқылы жарық шоғы өтіп, объектив линзалар жүйесіне түсіп, алғашқы сурет пайда болады да, окуляр линзаларының көмегімен үлғаяды.
Оптикалық жүйе ретінде микроскоптың басты сипаты - шешушілік қасиеті, яғни бір-біріне жақын орналасқан екі объектіні жеке-жеке корсету. Микроскоптың шешуші қабілеті жарық толқынның үзындығымен есептеледі: толқынның ұзындығы неғүрлым қысқа болса, соғүрлым шешуші қабілеті жоғары. Жарық микроскопта көбінесе спектрдің көру облы-сындағы жарық көзі (400-700 нм) қолданылады, сондықтан бүл жағдайда микроскоптың максималь шешуші қабілеті 200-350 нм-ден жоғарыламайды (0,2-0,35 мкм). Яғни жарық микроскопының шешуші қабілетінің соңғы деңгейі жарықты көру аймағын пайдаланғанда 0,2-0,3 мкм тең.
Қараңғы өрісті микроскопия. Қараңғы өрісте препараттарды арнайы конденсордың көмегімен қарастырады. Қараңғы өрісте бақылау кезінде объектіге жарық шоғының сәулелері түспейді, оның орнына шоктың шеттік сэулелері қолданысын табады.
Шеттік сәулелер объективке түспейді, сондықтан микроскоптың көру аумағы қараңғы болады да, шашыраңқы жарықпен көрінген объект ашык түсті болып көрінеді. Жасуша препараттарын-да түрлі оптикалық тығыздықтағы қүрылымдар болады. Жалпы қараңғы өрісте бұл қүрылымдар түрлі жарықтандырулардың көмегімен анық көрінеді. Жарықтандыру кезінде жасушада жарық сәулелеріндегі тозаңға үқсас (Тиндаль эффектісі), өте үсақ, кішкентай бөлшектер (0,2 мкм-нен кем) жарқырайды, шағылысқан жарык сәулесі микроскоп объективіне түседі.
Бүл эдіс тірі жасушаларды зерттеуде жиі қолданылады.
Фазалы-контрасты (фазасы царама-царсы) микроскопия әдісі. Жасушаның кейбір бөліктері жұқа болғанымен, бір-бірінен тығыздыктары мен жарықсындырғыштықтарымен ерекшеленеді, жасушалардың осындай қасиетіне фазасы қарама-ңарсы микроскопия әдісі негізделген. Фазалы-контрастық микроскоптың объективіне арнайы пластинка қондырылған, сол пластинка арқылы жарық сәулесі тербеліс фазасының қосымша жылжуын сезеді. Суретті қалыптастыру кезінде бір фазада немесе қарама-қарсы фазада болатын, бірақ эр түрлі амплитудалы сәулелер өзара қарым-қатынасқа түседі, соның салдарынан объектінің ашық қою түсті контрасты суреті пайда болады. Фазалы контрасты микроскоптың ерекшелігі - тірі жасушаларды, боял-маған объектілерді зерттеуге мүмкіндік береді.
Интерференциялы микроскопия әдісі жарықтың екі полярланған сәулелерінің бірі объект арқылы, енді біреуі объектінің қасынан өтуіне негізделген. Бүл жағдайда бірінші сәуленің фазасының кешігуі туындайды. Осы сәулелердің қабаттасуы (интерференциясы) суреттің пайда болуын туғызады. Егер екі полярланған сәулелердің екі толқынының аралығындағы арақашықтық толқын үзындығының толык санына тең болса, сурет ақшыл өрісте кара түсті дақ ретінде көрінеді, ал егер де екі толқын арасындағы арақашықтық жартылай толқындардың тақ санына тең болса, сурет қараңғы өрісте ақшыл дақ ретінде суреттеледі.
Интерференциялы микроскопта сәулені екі перпендикуляр жазықтықта поляризациялау конденсордыц фокальды жазық - тығында орналасқан поляризатор мен кварцтан жасалған Волластон призмасының көмегімен жүреді. Волластонның екінші призмасы осы екі сәулені объективтің артқы фокальды жазықтығында жинақтайды.
Интерференциялы микроскоп көмегімен тірі объектілерді бақылауға болады, сондай-ақ жасуша құрылымдарының кұрғақ салмағы, жасушадағы қүрғақ затпен судың концентрациясы, құрылымдардың қалыңдығы туралы мәліметтер алуға болады. Мүндай мэліметтер алу үшін микроскоптың тубусының жоғар-ғы жағында орналасқан компенсатор қолданылады.
Рентген сәулелерін сіңіру тэсілі. Әр түрлі заттар тол-қындардың белгілі бір ұзындықтарында рентген сэулелерін эрқалай сіңіреді, міне осы қасиетке рентген сэулелерін сіңіру эдісі негізделген. Спектрорентгенограмма көптеген заттар үшін белгілі. Рентген сэулелерін үлпадан жасалған препарат арқылы өткізе отырып, сіңіру спектрі көмегімен оның химиялық құра-мын анықтауға болады. Осы эдістің көмегімен микрофотогра-фиялардан жасушадағы қүрғақ заттардың қүрамы анықталады. Фотосуретке түсіретін қүрылымда заттың концентрациясы неғүрлым көп болса, соғүрлым эмульсия аз жарқырайды. Сіңі-рілуші заттың концентрациясы сол заты бар қүрылымның су-ретінің қараюымен анықталады. Оптикалық тығыздык форму-ланың көмегімен есептелінеді.
Флуоресценциялыц микроскопия. Тірі жасушаларды зерттеу-ге флуоресценциялы бояғыш заттар жэне флуоресценциялык микроскопия эдісі кеңінен қолданылады. Бүл эдістің негізінде кейбір заттардың ультракүлгін сэулелерінде флуоресценцияла-ну қасиеті жатыр. Мүндай флуоресценцияны үлпадан шығаруға болады, ол үшін үлпа арқылы ультракүлгін сэулелерінің шоғын өткізу керек. Бүл мақсатта конденсорда жалпы жарық шоғынан көк жэне ультракүлгін сэулелерді бөлетін жарық фильтрі орналасқан арнайы ультракүлгінді микроскоп қолданылады. Бақылаушының көзінің алдында орналасқан басқа жарық фильтрі препарат шығаратын флуоресценция сэулелерін өткізе отырып, кок жэне ультракүлгін сэулелерді сіңіреді. Жарық көзі ретінде күшті ультракүлгін сэулесін бөлетін сынап шамдары жэне қыздыру шамдары қолданылады.
Жарық энергиясын сіңіру кезінде бірқатар заттарға жарқы-рау (флуоресценттік, люминесценттік) қасиеті тэн. Флуоресцен - ция спектрі флуоресценцияны қоздыратын сэулелерге қатысты үлкен толқындар жағына қарай ығысады. Бұл принцип қысқа толқындардың аймағында флуоресценциялаушы объектілері анықталып, қарауды қамтамасыз етеді. Мүндай микроскоптар-дың көкшіл-күлгін аймағында жарық беретін фильтрлер пайда-ланылады.
Цитологиялық зерттеулерде ультракүлгін люминесцентті микроскоптар да пайдаланылады. Бүл эдісте тірі жасушаларға флуоресценттеуші заттарды енгізеді. Ол заттар жасушаның бел-гілі бір күрылымдарымен байланысқа түсіп, олардың қайта лю-минесценциялануын туғызады.
Ультракүлгін микроскоптарында жеке флуоресценциялы объек-тілерді бақылауға болады.
Радиоавтография әдісі жасушадағы зат алмасу үдерісін зерттеуде қолданылады. Ол үшін фосфор, көміртегі, сутегі ра-диоактивті элементтер немесе олардың қосындылары пайдала - нылады. Зерттеліп отырған ортаға немесе ағзаға метаболизм үдерісі кезінде, жасушалармен сіңірілетін радиоактивті изотоп енгізіледі. Изотоптардың радиоактивті сэулеленуі салдарынан олардың орныққан жерін анықтауға болады. Бүл эдісті қолдану кезінде жасушалардың жүқа кесінділерін үлбірге салады. Ра-диоактивті изотоптар бар жерлерде үлбір қараяды.
Изотопты енгізгеннен кейін біраз уақыт өткеннен соң, яғни метаболизмнің белгілі бір кезеңдері өткеннен кейін препарат даярланады. Заттардың таралуы нақты анықталады. Заттардың тек қана жасушада емес, сондай-ақ жасуша мембраналарына орналасуларын анықтауда бұл эдістің мэні зор.
Поляризациялық микроскоптың көмегімен изотропты объек-тілерді (бөліну үршығының талшыктарын, микрофибрилдерді жэне т.б.) зерттейді.
Мүндай микроскоптың конденсорынын алдында поляри - затор орналастырылады, ол белгілі полярлану жылдамдығы бар жарық толқындарын өткізеді. Препарат пен объективтен кейін полярланудың сол жазықтығымен жарық өткізе алатын анализатор орналастырылады. Қиыскан призмалар ортасында сэулені екі есе сындыратын объекті орналасқаннан кейін, объект қараңғы аумақта жарқырап көрінеді. Поляризаторлық микроскоп көмегімен өсімдік жасушасының қабықшасында мицеллийлердің орналасуын қарастыруға болады.
Рентген сәулелерін дифракциялау әдісі. Рентген сәулелері кристалдар арқылы өткен кезде дифракцияға ұшырайды. Олардың осы қасиеті рентген сэулелерін дифракциялау эдісінің негі-зін қалайды. Егер кристалдардың орнына биологиялық объекті-лер, мысалы, сіңір, целлюлоза немесе тағы басқа объектілерді қолданған кезде, олар тура сондай дифракцияға үшырайды. Бұл жағдайда экранда немесе фотоүлбірде дактар мен жолақтардан түзілген сақиналар қатары пайда болады.
Дифракция бүрышы объектідегі молекулалар мен атомдар топтарының арақашықтығымен анықталады. Қүрылымдық бір-ліктер арасындағы қашықтық неғұрлым алшақ болса, дифрак - ция бұрышы согүрлым аз болады, немесе, керісінше, зерттеліп отырған заттың атомдары мен молекулаларының арасындағы арақашықтық аз болса, дифракция бұрышы үлкен болады. Ал экранда бүл қара түсті зоналар мен орталыктар арақашық-тықтарына сәйкес келеді.
Бүл эдістің атомдар мен молекулалардың топтарының кеңіс-тікте таралуын анықтауда жэне заттың ішкі қүрылымы туралы мэлімет алуда мэні зор.
Электронды микроскопия әдісі. Электронды микроскоптың құрылысы жарық микроскоп тэрізді, бірақ жарық шоғының ролін электронды шоқ атқарады, бүл шоқ линзалармен емес, электромагниттермен фокусталады. Дегенмен, электрондар шо-ғы үшін толқындар үзындығы көзге көрінетін жарық толқындар ұзындығына қараганда неғұрлым қысқа, осы қасиеті электронды микроскоптың шешуші қабілеттілігін арттырады. Қазіргі элек - тронды микроскоптардың шешуші қабілеті - 0,2-1 нм.
Электронды микроскоптың астында тірі емес объектілер, яғни препараттар қарастырылады, Объектілер тірі ағзалардың өлуін тудыратын вакуумға салынады. Вакуумда электрондар ша-шырамай, объектіге бірден түседі.
Электронды микроскоптан қарастырылатын объектілердің жүқалығы 400-500 А-нен қалың болмауы тиіс. Сондыктан жүқа препараттарды даярлау үшін ультрамикротом колданылады.
Вирустар, фагтер, нуклеин қышқылдары, жүқа мембраналар сияқты биологиялық объектілердің электрондарды шашырата-тын қасиеттері бар. Олардың контрастылығын ауыр металдармен - алтын, платина, хроммен жалату арқылы күшейтеді.
Контрастылықты (қарама-қарсылықты) осмий немесе воль - фрам қышқылдарының жэне ауыр металдардың кейбір түз-дарымен күшейтеді, олар препараттың кейбір жеке бөліктерімен қосылыстар түзе алады. Аталған заттар препаратқа фиксациялау немесе бояу кезінде енгізіледі.
Аталмыш эдіс құрылымдарды субмикроскопия (макромоле - кул ал ар) деңгейінде зерттеуді қамтамасыз етеді.
Трансмиссионды электронды микроскопта электрондар жа-рық микроскопындағы объект арқылы өтетін жарық секілді өтеді. Нэтижесінде, электрондар шоғы фотография тақтасында объектінің суретін көрсетеді. Электрондар жақсы өту үшін объект кесінділері өте жұқа болуы тиіс.
Сканерлеуші микроскопта электрондар объектінің бетімен шағылысады да, кері бағытта қозғалу кезінде суретті береді. Сканерлеуші микроскоптың шешуші қабілеті трансмиссион - ды электронды микроскопқа қарағанда томен. Сканерлеуші микроскоптың көмегімен қабығы қатты кейбір ағзаларды тірі күйінде зерттеп, кейбір тіршілік иелерінің жабынының үсақ де-тальдарын көрсететін тамаша фотосуреттер алуға болады.
Ақыргы бейненің нақтылыгын күшейту үшін барлық объек-тілерді бояйды. Жарық микроскопында бояғыш заттарды, ал трансмиссионды электронды микроскопында қүрамында элек - трондарды сіңіруге қабілетті ауыр металдары бар фиксаторлар (мысалы, осмийдің торт тотыгы, калий перманганат, қорғасын) қолданады. Сканерлеуші электрондық микроскоп үшін мүзбен жабылған бет алуға материалды жиі тоңазытады. Бүл жағдайда суда еритін заттардың суды жоғалтулары тоқтайды, сонымен қатар қүрылымдардың химиялық қүрамының өзгерулері азаяды. Электрондық микроскоптың көмегімен фиксациялайтын заттардың эсерінен цитоплазманың қозғалғыштығын тоқтату сэтінде жасушаның статикалық күйі зерттеледі.
Жануарлар жасушалары мен үлпаларын зерттеу үшін жа - суша өсінділері (культуралары) әдісі пайдаланылады. Кейбір үлпаларды жеке-жеке жасушаларға бөлгеннен кейін, жекеленген жасушалар өз тіршіліктерін жалғастырады, тіпті көбею қасиетін жоғалтпайды. Эмбрион немесе кейбір жеке жасушалар қолайлы ортада ағзадан тыс өсіп, көбейе алатындығын алғаш рет амери-кан эмбриологы Р. Гаррисон (1879-1959) дэлелдеген. Жасушаны культуралау техникасын эрі қарай дамытқан француз биологы А. Каррель (1873-1959) болды.
Бүл эдістің ең қарапайым тэсілі келесідей: қоректік ортаға толы камераға тірі үлпаның үзігі салынады. Біраз уақыт өткеннен кейін ұлпа үзігінің шетіндегі жасушалар бөлініп өсе бастайды. Өзге жағдайда үлпаның кесілген кішкентай бөлігі трипсин ферменті немесе хелатон версен ферменті ерітінділерімен сэл өңделеді, бұл жасушалардың толық бытырап кетуіне экеп соғады. Содан соң жасушаларды шайып, қоректік ортаға салады, онда жасушалар түнбаға түседі де, шыныға жабысып көбейе бастайды, алдымен олар колониялар түзеді, соңынан жасушалық қабат түзеді. Осылай тірі кезінде бақылауға ың-ғайлы, бір қабатты жасушалар өсіндісі алынады. Өсінді өсіру кезінде қоректік ортадан баска температура, стерильділік сияқты факторлар ескерілген жөн. Культурада өсімдік жасушаларын өсіруге болады. Қазіргі кезде ағзадан тыс жасушаларды өсіру тек қана цитологиялық зерттеулерде қолданылмай, сондай-ақ генетикалык, вирусологиялық, биохимиялық зерттеулерде де қолданылады.
Тірі жасушаларды бақылау көбінесе фотосуреттерге тусі-ру арқылы тіркеледі. Бүл эдісте микроскопқа түрлі фотоқон-дырғылар қондырылады. Тірі жасушаны кинопленкаға да түсіруге болады. Ол үшін жылдамдатылған немесе баяулатыл-ған кинотүсіру (цейтраферлік түсіру) жүргізіледі. Бүл жағдайда жасушалардың бөлінуі, фагоцитоз, цитоплазманың қозғалысы, кірпікшелердің жылжуы сияқты маңызды үдерістерді бақылауға болады.
Дегенмен жасушаның қүрылымы мен кызметі туралы мэліметтер фиксацияланған жасушалардан көбірек алынады. Фиксащтның мэні - жасушаларды өлтіру, жасушаішіндік ферменттердің белсенділігін тоқтату, жасуша компоненттерінің ыдырауын токтату, сондай-ак, кұрылымдар мен заттарды жо-ғалтпау, тірі жасушаларға тэн емес қүрылымдардың пайда бо-луына жол бермеу. Фиксаторлар ретінде альдегидтер, олардың басқа заттармен қосындысы, спирттер, сулема, осмийдің төрт тотығы қолданылады. Фиксацияланған объектілер соңынан боялады. Бояу үшін түрлі табиғи (гематоксилин жэне кармин, ... жалғасы

Сіз бұл жұмысты біздің қосымшамыз арқылы толығымен тегін көре аласыз.
Ұқсас жұмыстар
Тірі жүйелердің ұйымдасу деңгейі туралы ұғым. Деңгейлер иерархиясы
Патогенді риккетсиялармен және хламидиялар зертханалық диагностикасы
Мембрана биофизикасы
Риккетсиялар,хламидиялар, микоплазмалар морфологиясы мен құрылысы
Зығыр талшығының жалпы сипаттамасы
Эволюциялык идеялар
Туберкулез. Алапес. Дифтерия, көкжөтел. Жалпы сипаттамасы. Диагностикасы, емі, алдын-алуы. Спирохеталар, микоплазма, хламидия, риккетсия. Жалпы сипаттамасы. Диагностикасы, емі, алдын-алуы
Лизосомалар мен рибосомалардың құрылысы
Биологиялық мембраналардың қызметтері. Мембраналардың иондық каналдары жайлы
Оқушылар білімін тексеру
Пәндер