Тұтас орта механикасы


Жұмыс түрі:  Дипломдық жұмыс
Тегін:  Антиплагиат
Көлемі: 64 бет
Таңдаулыға:   
Бұл жұмыстың бағасы: 1900 теңге
Кепілдік барма?

бот арқылы тегін алу, ауыстыру

Қандай қате таптыңыз?

Рақмет!






Кіріспе
Қазақстан Республикасы білім беру стандартының, базистік оқу жоспарының қабылдануы пәнді оқыту мазмұнына, құрылымына, әдістемесіне елеулі өзгерістердің енгізілуін талап етеді. Қазіргі кезде физиканы оқытуда оқушылардың болашақта қандай мамандықты таңдап алуына тәуелсіз, олардың пән бойынша міндетті дайындық деңгейін қамтамасыз ету физиканы оқытудың өзекті міндеттерінің бірінен саналады. Ал физикалық білім берудің ерекшелігіне әрбір оқушының, оның ішінде пәнге ерекше ықылас пен қабілеттілік байқатқан оқушылардың қажеттілігін қанағаттандыруға мүмкіндік туғызатын оқытудың деңгейлік және бағдарлы саралауға бағытталуын жатқызуға болады.
Физиканың жаратылыстану ғылымдары жүйесіндегі жетекші рөлі, жалпы адамзаттық мәдениеттің маңызды құраушысы ретіндегі ауқымды гуманитарлық потенциалының болуы, сондай-ақ оның оқушыларды тәрбиелеу мен дамытудағы мүмкіндіктері физиканы мектепте жалпы білім беретін міндетті пән ретінде оқытылуы тиіс екендігін көрсетеді.
Оқушыларды қазіргі заманғы ақпараттар ағымының жеделдеп артуымен техника дамуы жағдайындағы өмірге дайындауда және олардың дүниетанымын қалыптастыруда мектепте физиканы жалпы білім беретін пән ретінде зерделеудің үлкен мәні бар. Қоғам өмірінің барлық саласына дерлік компьютерлер енуде, денсаулық сақтау, тамақ өнеркәсібі, құрастыру, күрделі ғылыми, өндіріс, әскери құрал-жабдықтарды жасау мен өңдеу сияқты адам қызметінің көптеген салаларына үнемі өзгеру үстіндегі жаңа технологиялар қарқынды енгізілуде, көптеген мамандықтар лазерлермен, роботтармен байланысты. Сондықтан физика сияқты іргелі ғылымның негіздерімен қаруланудың оқушылар үшін шешуші мәні бар.
Бүгінгі таңда еліміздегі және әлем кеңістігіндегі физикалық білім берудің басым бағыттары ретінде:
+ оқушыларды іргелі физикалық теориялардың негіздерімен таныстыру, игерілген білімдерін бақыланатын құбылыстар мен процестерді түсіндіруге қолдана алу біліктілігін қалыптастыру;
+ оқушылардың ғылыми ойлауын және дүниетанымын, әлемнің ғылыми бейнесін қалыптастыру;
+ оқушыларды болашақ кәсіпті таңдап алуға дайындау, олардың шығармашылық қабілеттіліктерін дамыту, білім алуға ынталандыру, қазіргі заманғы өркениеттегі физиканың рөлін ашу;
+ оқушылардың ақпаратты сын көзімен ой елегінен өткізе алу, түсіндіре алу, түрлендіре алу, игеру, оның ғылыми сапасын бағалай алу сияқты қабілеттіліктерін дамыту болып табылады.
Физиканың білім берудің бұл мақсаттарына жетудегі мүмкіндіктері жеткілікті, ол оның қоршаған ортаны, қоғам өмірінің әлеуметтік-экономикалық және мәдени өмірін танып-білудегі мәнімен анықталады.
Қазақстан Республикасы 2015ж. дейінгі білім берудің дамуы тұжырымдамасына, білім беру стандартына сәйкес барлық оқушылар үшін негізгі мектеп міндетті болып табылатындықтан, физика курсының логикалық межеде аяқтағандық сипаты болады, яғни оған физиканың Механика бөлімінен бастап, атомдық және атом ядросы физикасына дейінгі бөлімдер, сондай-ақ астрономияның негіздері де кіреді. Сондықтан негізгі мектепте қарастырылатын физикалық теориялар мен ұғымдардың аясы да кеңейе түседі.
Физика - жеке тұлғаның ақыл-ой қабілетінің көзін ашу және оның үздіксіз дамуы мен жетілуін қамтамасыз ететін пәннің бірі.
Физиканы оқыту механикадан басталады.
Механика-механикалық қозғалыстың заңдылықтарын, осы қозғалыстың пайда болу және өзгеру себептерін қарастыратын бөлім. Механикалық қозғалыс-уақыт өтуіне қарай денелер мен оны құрайтын бөлшектердің өзара орналасуының өзгерісін айтады.
Галилей-Ньютон механикасы классикалық механика деп аталады. Осы бөлімде жылдамдықтары вакуумдегі жарық жылдамдығымен салыстырғанда аз болатын макроскопиялық денелердің қозғалыс заңдары оқытылады. Жылдамдықтары жарық жылдамдығына жуық болатын макроскопиялық денелердің қозғалыс заңдары салыстырмалы теорияға негізделген релятивистік механикада оқытылады. Микроскопиялық денелердің (жекелеген атомдар және элементар бөлшектер) қозғалысын сипаттау үшін кванттық механика заңдары қолданылады.
Механика үш бөлімге бөлінеді: 1) кинематика; 2) динамика; 3) статика.
Кинематика дененің қозғалысын оқытады, оның болу себептерін қарастырмайды.
Динамика дененің қозғалыс заңдарын және осы қозғалысты болдыратын немесе өзгертетін себептерді қарастырады.
Статика денелер жүйесінің тепе-теңдік заңдарын оқытады. Егер дене қозғалысының заңдары белгілі болса, онда олардан тепе-теңдік заңдарын да шығарып алуға болады. Сондықтан да статика заңдары да динамика заңдарынан бөлек қарастырылмайды.
Дипломдық жұмысымның мақсаты: Механика бөліміне есептерді шығару әдістерін ұсыну. Бұл мақсатқа жету үшін мен алдыма мынадай міндеттерді қойып отырмын:
1) Мектеп курсындағы механика бөлімін оқыту деңгейін зерделеу.
2) Физикалық есептерді шығару әдістемесімен танысу.
3) Оқушыларға механика тарауының есептерін шығару әдіс-тәсілдерін ұсыну.

ҚР жалпыға орта білім берудің мемлекеттік стандарты.
Механика. Материялық нүктенің түзу бойымен қозғалысы; координата, жылдамдық, үдеу. Бірқалыпты және бірқалыпты үдемелі қозғалыс; координата мен жылдамдықтың уақытқа тәуелділігі. Бірқалыпты және қисық сызықты қозғалыс.
Механикалық тербелістер: гармониялық тербелістер; амплитуда, жиілік және период. Еркін және еріксіз тербелістер. Резонанс. Серпімді толқындар, олардың таралу жылдамдығы. Дыбыстың қаттылығы. Тонның жоғарылығы. Денелердің өзара әсерлесуі. Масса. Күш. Ньютон заңдары. Дене импульсі, импульстің сақталу заңы. Реактивті қозғалыс. Жұмыс және қуат. Потенциалдық және кинетикалық энергия. Механикалық энергияның сақталу заңы. Жай механизмдердің пайдалы әсер коэффициенті.
Бүкіләлемдік тартылыс заңы. Ауырлық күші. Еркін түсу. Салмақ. Салмақсыздық. Қатты денелердің серпімді және пластикалық деформациялары. Серпімділік күші. Гук заңы. Үйкеліс. Үйкеліс күші. Заттың тығыздығы. Сұйықтар мен газдардың қысымы. Паскаль заңы. Архимед күші. Денелердің жүзуі. Сұйықтар мен газдардың қозғалысы. Бернулли теңдеуі. [2]

бірақ қиын пәнді балалар жақсы көріп, қажетті екенін түсінуіне қандай жағдай жасау керек? Білім беру ісін ізгілендіру туралы жиі айтылуда. Бұл көкейкесті мәселе. Бұл сұрақтың шешімін табу мақсатында мен дипломдық жұмысымда механика тарауының есептерін шығару әдістемесін ұсынып отырмын.

1 тарау. Механика бөлімінің педагогика-психологиялық негіздері
1.1 Механика - физиканың іргетасы
Механика мәселелерінің, механика-ғылымының мәселелеріне қарағанда аясы әрі тар, әрі кең. Тар болатын себебі, мектепте тек қана механика ғылымынан әдейілеп сұрыпталып алынған аз ғана материал оқытылады. Кең болатын себебі, осы материалды оқыту барысында көптеген педагогикалық мәселелер шешімін табады. Атап айтқанда: оқушылардың ой-өрісін дамыту, дүниетанымын қалыптастыру, оқушыларды механика әдістерімен және оның негізгі түсініктерімен, шамаларымен, заңдарымен және тағы басқаларымен таныстыру.
Механиканың негізгі мәселесі - тек қана дененің орнын кез-келген уақыт мезетінде анықтауға келіп тірелмейді. Бұл механиканың қолданбалы мәселелерінің бір дербес қана жағдайы. И.Ньютонның қайтыс болғанына 200 жыл деген еңбегінде А.Эйнштейн былай деп жазды: Егер материялық нүктеге әсер ететін күш белгілі болса, онда... оның жылдамдығын және кез келген уақыт кезеңіндегі орнын табу физикалық емес, таза математикалық мәселе болып саналады. Механика табиғатта және техникада болып жатқан механикалық құбылыстарды, оның ішінде ең алдымен , механикалық өзара әсерді және денелердің қозғалысын зерттейді.
Механика ғылымы - макроскопиялық денелердің қозғалысы мен өзара әсерлесуін зерттейтін ғылым. Механика гректің mechanike деген сөзінен шыққан. Бұл машиналар жайындағы, оларды құрастыру өнері жайындағы ғылым дегенді білдіреді.
Қазігі кезде қарапайым механизмдер деп аталып жүрген алғашқы қарапайым машиналар - рычаг, сына, дөңгелек, көлбеу жазықтық және тағы басқалар өте ерте заманда пайда болған. Адамның алғашқы қаруы таяқтың өзі - рычаг. Тас балта - рычаг пен сынаның үйлесімінен тұрады. Дөңгелек қола дәуірінде пайда болған, ал одан сәл кейінірек, көлбеу жазықтық пайдаланыла бастады.
Тіпті б.э.д. Ү ғасырдың өзінде-ақ афин әскерлері (Пелопоннес соғысы) қорғанды қиратқыш машиналар - таранды, лақтыру құралдары - баллист пен катапульттарды қолданған. Бөген, пирамида, кеме және басқа құрылыстар салу, бір жағынан, механикалық құбылыстар туралы білім қорын жинақтауға себін тигізсе, екінші жағынан жаңа білімді қажет етті. Міне, осы жаңа практикалық қажеттілікке жауап ертінде жаңа білім - механика дүниеге келді.
Қарапайым машиналардың құрылысы мен қасиеттерін баяндайтын механика туралы жазылған алғашқы шығармалар - трактаттар Ежелгі Грекия ғалымдарына тиесілі. Олардың қатарында Аристотельдің (б.э.д. ІҮ ғасырда) Физика деп аталатын еңбегі жатады, мұнда алғаш рет ғылымға механика термині енгізілді. Аристотель бұл еңбегінде механикалық құбылыстар жөніндегі өзіне дейінгі ғалымдардың еңбектерін бір жүйеге келтірді.
Б.э.д. ІІІ ғасырда ежелгі грек ғалымы Архимед механикалық құбылыстарды талдау және сипаттау үшін алғаш рет математиканы пайдаланды. Архимед рычагтың тепе-теңдігі мен денелердің жүзу заңдарын тұжырымдады. Осы кезден бастап механика ғылым ретінде дами бастады.
Механиканың дамуындағы жаңа бір кезең Г.Галилейдің инерция заңын тұжырымдап, дененің құлап түсуі және маятник тербелісінің заңдарын тағайындаған еңбегімен тікелей байланысты.
Галилей және онымен замандас ғалымдардың еңбектерінде, сондай-ақ өз зерттеулерінің нәтижелеріне сүйене отырып, ағылшын ғалымы И.Ньютон денелердің механикалық қозғалысы мен өзара әсерлесуі жайында классикалық механика деп аталатын біртұтас ілімді құрды.
Механика туралы ілім ең алдымен бізді қоршаған дүниені танып білу үшін қажет, олай дейтініміз, кез келген құбылыс қозғалыспен тікелей байланысты. Шын мәнінде механика білімінсіз табиғатта болып жатқан құбылыстарды ұғыну тіпті де мүмкін емес.
Көптеген техникалық обьектілердің ( мейлі шаңсорғыш болсын, немесе ғарышкеме болсын және т.с.с.) құрылысын және жұмыс принциптерін түсіну үшін, оларды ойлап табу үшін, дұрыс және тиімді пайдалану үшін механика білімі қажет.
Сонымен қатар, механика білімінің қажеттілігі сонда, ол ғылым ретінде физиканың басқа салаларынан және басқа ғылымдардан бұрын пайда болды, оның құбылыстарды оқып-үйрену әдістері, негізгі ұғымдары физиканың басқа салаларында және физикаға жақын ғылымдарда (астрономия, электро - және радио - техника, космонавтикада және басқаларда) пайдаланылады. Механика - физиканың және көптеген басқа ғылымдардың іргетасы десек, артық айтқандық емес. Осы айтылғандардан механика білімінің кез келген мамандық иесіне қажет екенін көреміз. [1]
Адам әр кезеңде де өзін қоршаған ортамен күрделі өзара әсерге түседі және түсе де бермек. Осындай өзара әсерлесудің бір белгісі - ол өзін қоршаған ортаны зерттеу болып саналады.
Табиғатты зерттейтін бірнеше ғылымдар бар, оларды жалпы айтқанда жаратылыстану деп атайды. Жаратылыстану ғылымдарының ішінде ерекше орын алатыны - физика. Ал физиканың ішінде-механика ерекше орын алады. Механиканың мұндай жағдайға ие болуының бірнеше себебі бар:
oo біріншіден, адам ерте заманда өзін қоршаған ортаны тани бастағанда механикалық құбылыстарды зерттеу аса қажет болды. Механиканы білу үшін, үйлер салу үшін, қарулар жасау үшін және т.б. қажет болды. Сондықтан алғашында физика негізінен механикадан ғана тұрды;
oo екіншіден, физиканың жаңадан ашылған барлық бөлімдері механикаға сүйеніп, оның әдістері мен ұғымдарын пайдалана отырып, дүниеге келген. Қазіргі физиканың іргетасы ретінде механиканы пайдаланып отыр деуге әбден болады.
Физикалық құбылысты зерттеу бақылаудан басталады, яғни осы құбылысты табиғи жағдайда зерттеуден басталады. Айталық, бізге денелердің еркін түсу заңдары белгісіз екен делік. Егер осы заңдарды анықтағымыз келсе, онда ең алдымен, денелердің еркін түсуін бақылауға тиістіміз.
Алайда, құбылысты құр ғана бақылау, ол туралы ешқандай білім бермейді. Галилейге дейінгі өмір сүрген миллиондаған адамдар денелердің еркін түсуін бақылаған болар, алайда олардың біреуі де ол құбылысты зерттеген жоқ. Кездейсоқ және шашыраңқы бақылауларды бір жүйеге келтіріп, ойланып және барлық денелер бостықта бірдей құлауы тиіс деген болжамды айту үшін Галилей сияқты ұлы ақыл иесі керек болды. Ол тек қана болжам айтып қойған жоқ, сонымен қатар оын тексерудің жолын айқындап берді.
Демек, физикалық құбылысты зерттеудің екінші кезеңі оны сапалық талдау болып саналады. Бұл талдау барысында құбылыстың мәні туралы болжам (гипотеза) айтылады және айтылған болжамды эксперимент жүзінде тексерудің жоспары құрылады.
Физикалық эксперимент-құбылысты зерттеудің екінші кезеңі. Зерттеу әдісі ретінде физикалық эксперимент бақылаумен байланысты болғанымен, одан мәнді айырмашылығы бар. Бақылау тек қана құбылыстың бетінде жатқандарды тіркейді. (Мысалы, Галилейге дейінгі адамдар жеңіл денелер ауыр денелерге қарағанда жайырақ түсетінін бақылады. Бірақ, олардың біреуі де неге осылайша болады дегенді анықтауға тырыспады). Эксперимент барысында құбылыс қайталанып қана қоймай, сонымен қатар оның қандай шарттарға және параметрлерге байланысты екендігі зерттеледі, қажетті өлшемдер жүргізіледі.
Сонымен, экспериментті өткізген уақытта құбылыстың мәнін анықтау үшін оның жүру барысында белсенді түрде араласып отырамыз. Экспериментті өткізу кезінде құбылыс анық та, айқын білінетіндей жағдай жасалуы керек. Мысалы, денелердің еркін түсуін зерттегенде Галилей еркін түсіп келе жатқан денелер ретінде өлшемі бірдей шарлар алған.
Эксперимент барысында ғылымға қажетті жаңа фактілер ащылады, алайда олар шындықты дәл білдіре қоя алмауы мүмкін. Құбылыстың мәнін тереңінен түсіну үшін алынған эксперименттік фактілерді теориялық ой елегінен өткізу қажет. Осы кезде қажетті математикалық және ұғымдық аппарат пайда болады. Бұл құбылысты зерттеудің ең қиын сатысы болып есептеледі, өйткені бұнсыз дәл білім жинақтауға болмайды және физикалық теория тұжырымдалмайды. Атақты физик Макс Борн былай деп жазған: Физиканың алдында мынадай мәселе тұр: құрал-жабдықтарды пайдалана отырып, біздің сезім мүшелеріміз арқылы бақыланып отырған нақты құбылыстарды дәл өлшейтін және оңай тұжырымдалатын заңдарға қалай айналдыруға болады? Қозғалыстың жылдамдығы туралы ұғым Аристотельдің өзіне белгілі болған, ал үдеу терминін тек 1841 жылы Понселе енгізді.
Физикалық құбылыстарды зерттеудің бұл кезеңінде физиктер математиканы пайдаланған және математикалық операциялар арқылы жаңа енгізілген шаманы бұрыннан белгілі шамалар арқылы өрнектеген. Бұл арқылы шамаларды өлшеуге қажетті алғышарттар жасалынды.
Эксперимент нәтижелерін теориялық талдау зерттеушіге эксперименттік заң тағайындауға мүмкіндік береді және осы заңды өзі тұрған физикалық теорияға енгізеді.
Зерттеген құбылыстарды түсіндіретін физикалық теория:
1) физикалық теорияны түсіндіретін және оның негізін құратын эксперименттік фактілерден;
2) теорияның негізгі заңдарын өз тілінде тұжырымдайтын математикалық аппараттан;
3) алынған формулалардың физикалық мағынасын ашып беретін ұғымдық аппараттан тұрады.
Айтылғандардан көріп отырғанымыздай, ғылыми зерттеу барысында, физиктер бірімен бірі тығыз байланысқан екі әдісті-эксперименттік және теориялық - пайдаланады. Теория мен эксперименттің бірлігін қатып қалған тұрғыдан қарастыруға болмайды. Зерттеудің бір кезеңінде эксперимент теорияны басып озатын болса, енді бір кезеңінде, керісінше, экспериментті теория басып озады немесе эксперимент пен теория дамуында уақытша параллелизм болуы да мүмкін. Теория мен эксперименттің бірлігі деп адамдар өзін қоршаған ортаны танып-білуде бірі-бірін толықтырып отыратын, бірімен -бірі тығыз байланысқан екі әдісті айтамыз.
Білімді қандай әдіспен (эксперименттік немесе теориялық) алса да, ол бірдей болады. Ғылым үшін де, адамзат үшін де ғылыми фактілер мен осы фактілерді түсіндіретін білімнің бағалылығы бірдей.
Физика ғылым ретінде қоғамдық өндірістің қажеттілігінен туды. Қажеттілік пайда болған сайын, физиканың әрбір сәйкес саласы пайда болып отырды. Мысалы, өзінің ерте кездегі дамуында адам баласы негізінен мал және жер шаруашылығымен айналысты, сондықтан мал бағатын және жер өңдейтін халықтар үшін жыл мезгілінің ауысуы туралы заңдылықтарды білу өте қажет болды. Бұл кейінірек астрономия болып бөлініп кеткен физиканың бір бөлімінің пайда болуына әсер етті. Алайда, астрономия тек қана математика көмегімен дами алған болар еді. Осыдан барып математика біліміне қажеттілік туды да, математиканың дамуына жағдай жасалынды. Ендеше, механиканың пайда болуы, оның дамуы, өндірістің қажеттілігінен туған нәрсе екен.
Механика пайда болған заманнан бастап, ол техникалық проблемелерды шешумен айналысады.
Бүгінгі механика-космонавтиканың, авиацияның, су үстіндегі және су астындағы транспорттың, машина жасаудың, құрылыстың, қорғаныс және медицина техникасының ғылыми негізі. (Жасанды жүрек, жасанды бүйрек, жүректің жасанды құлақшалары т.б.-ды еске алайық). Қазіргі кезде механика білімін қажет етпейтін бірде-бір өндіріс жоқ.
Табиғат құбылысының механикалық жағын зерттемесек, онда оны жан-жақты танып-білдік деп айтуға болмайды. Бұның ешқандай да таңданарлығы жоқ: бізді қоршаған ортаға көптеген құбылыстар механикалық қозғалыспен байланысты болады. Күннің, Жердің және басқа планеталардың қозғалысы, су мен ауаның қозғалысы, денелердің құлауы, адамдардың, жануарлардың, балықтардың, құстар мен жәндіктердің орын ауыстыруы, жануарлар денесіндегі қан, өсімдіктегі тұздар ерітіндісінің қозғалысы, адамдар мен жануарлардың жүрек, бауыр және басқа мүшелерінің қызметі, клеткалардың бөлінуі - сияқты құбылыстарды механика білімінсіз түсіндіруге болмайды. Механика табиғатты танудың негізі десек, артық айтқандық болмайды. Механика білімінсіз бізді қоршаған ортаны зерттеуге болмайды.
Ньютонның заңдары (принцинтері) 1687 жылы шыққан Ньютонның Натурал философияның математикалық бастамалары деген кітабында тұжырымдалғанды. Ньютон механикадағы өзіне дейінгі табыстарды жалпылай отырып, механика- ғылымның тамаша сарайын тұрғызды.
Механиканың принциптері (заңдары) логикалық тұрғыдан да, эксперименттік тұрғыдан да қорытылмайтынын тағы да еске сала кетейік. Бұл заңдардың дұрыстығын адамзат баласы жинақтаған фактілер жүйесі өте үлкен дәлдікпен дәлелдеп береді. Ньютон механикасын көбінесе классикалық механика деп атайды. Сол арқылы оның негізіне, оны тудырушыға деген құрметін білдіреді.
Классикалық механика заңдары бізді күнделікті өмірде қоршаған денелер үшін, яғни аса көп молекулалар мен атомдардан тұратын денелер үшін тағайындалған.
Классикалық механика заңдарын атомдардың, молекулалардың, элементар бөлшектердің қозғалысына пайдалануға бола ма? деген сұрақ туады. Қазіргі кезде классикалық механиканың заңдары микродененің бөлшектерінің қозғалысына тек шектеулі түрде ғана қолданылатыны әбден айқын болып отыр.
Жер және ғарыш жағдайларында аса үлкен емес жылдамдықтармен қозғалған денелер үшін Ньютон механикасының заңдары тағайындалған. Бұл жылдамдықтар жарық жылдамдығынан әлдеқайда аз. Алайда осы заңдар жылдамдықтары жарық жылдамдықтарымен шамалас шапшаң қозғалыстар дүниесіне қолданыла ма? Есептеулерге қарағанда жылдамдығы секундына бірнеше жүз километр болатын денелердің қозғалысы классикалық механиканың заңдарымен дәл бейнеленеді екен. Сондықтан ғарышкемелерді ұшыруда жасалатын зерттеулер оның заңдарымен жүзеге асырылады.
Сонымен, жылдамдықтары жарық жылдамдығынан әлдеқайда аз макроскопиялық денелердің қозғалысын классикалық механика бейнелей алады. Ұлы физик Альберт Эйнштейн Ньютонның классикалық механикасының маңызын былайша бағалады: Ньютонның ұлы туындысын салыстырмалылық теориясы немесе басқа теория жоққа шығарады деп ешкім де ойламасын. Біздің қазіргі физикалық түсінігіміздің іргетасы болып саналатын Ньютонның айқын және ауқымды идеялары өз маңызын өмірбақи сақтап қалады.

1.2 Механиканың бөлімдері
Механика - денелердiң механикалық қозғалысын және өзара әсерлесуiн зерттейтiн физиканың бөлiмi. Механика екi бөлiмнен тұрады: кинематика және динамика.
Зерттелетiн денелердiң сипатына қарай механика үшке бөлiнедi.
Материялық нүктенiң механикасы. Берiлген жағдайда көлемiн, пiшiнiн ескермеуге болатын дененi - материялық нүкте деп атайды. Егер дененiң өлшемдерiне қарағанда оның жүрiп өткен ара қашықтығы көп есе үлкен болса, бұл дененi материялық нүкте деп қарастыруға болады.
Қатты дене механикасы. Кез-келген екi нүктесiнiң ара қашықтығы өзгермейтiн дененi абсолют қатты дене деп атайды.
Тұтас орта механикасы. Газдардың, сұйықтардың тепе-теңдiгiн және қозғалысын зерттегенде оларды үздiксiз тұтас орта түрiнде қарастырады.
Физиканың табиғатты зерттеуi - құбылыстар табиғи жағдайда бақылаудан немесе арнаулы қойылған тәжiрибеден басталады. Осы бақылаулардың немесе тәжiрибелердiң нәтижелерiн жинақтай келе болжам (гипотеза) жасалады. Болжам тексерулерден өтiп дәлелденуi қажет. Ал тексерiлген және дәлелденген болжам ғылымға заң немесе физикалық теория түрiнде енгiзiледi.
Егер денелердiң қозғалыс жылдамдығы вакуумдегi жарық жылдамдығынан көп аз болса, бұл қозғалысты қарастыратын механика - классикалық деп аталады. Классикалық механиканың негiзiне Ньютонның қозғалыс заңдары жатады. Сондықтан кейде классикалық механиканы- Ньютон механикасы деп атайды.
Егер дененiң қозғалыс жылдамдығы вакуумдегi жарық жылдамдығымен шамалас болса, бұл дененiң қозғалысы -релятивистiк механиказаңдылықтарына бағынады. Релятивистiк механиканың негiзiне Эйнштейннiң салыстырмалы теориясы жатады.
Егер қозғалыстағы денелердiң өлшемдерi (элементар бөлшектер) аз болған жағдайда олардың қозғалысы кванттық механиказаңдылықтарына жатады. Кванттық механиканың негiзiне Шредингер теңдеуi жатады.
Материялық нүктенiң механикасы. Дененiң таңдап алынған санақ жүйесiндегi жасайтын үздiксiз сызығын траектория деп атайды. Траекториясына байланысты қозғалыс түзу сызықты және қисық сызықты болып екіге бөлiнедi.
Дененiң траектория бойымен жүрiп өткен ара қашықтығын жол деп атайды.
Дененiң бастапқы және соңғы орындарын қосатын векторды орын ауыстыру деп атайды.

Кеңiстiк - материямен байланысты және шексiз, шетсiз. Кеңiстiктiң негiзгi қасиеттерi: объективтi бар болуы, материямен бiртұтастығы, шексiздiгi, ұзындығы, үш өлшемдiлiгi (барлық физикалық объектiлердiң ұзындығы, енi және биiктiгi болады).
Дене қозғалады, яғни өз орнын тек кеңiстiкте өзгертiп қана қоймай, уақыт бойынша да өзгертедi.
Уақыттың негiзгi қасиеттерi:объективтi бар болуы, үздiксiздiгi, бiр қалыптылығы, бiр ырғақтылығы (уақыт тек алға өткеннен болашаққа қарай жылжиды).
Уақыт материямен, қозғалыспен және кеңiстiкпен тығыз байланысты.
Санақ жүйесi деп - санақ денесiмен байланысқан координаттар жүйесiн және уақытты айтады.
Ілгерiлемелi қозғалыс. Дене оның кез-келген екi нүктесiн қосатын түзу сызық орын ауыстыра келiп, өзiнiң бастапқы бағытына параллель болып қалатындай қозғалуы мүмкiн. Қатты дененiң осындай қозғалысын iлгерiлемелi қозғалыс деп атайды. Ілгерiлемелi қозғалыс кезiнде дененiң барлық нүктелерi бiрдей траектория сызады және бiрдей уақыт iшiнде бiрдей орын ауыстырады.
Дене кез-келген бiрдей уақыт аралығында бiрдей қашықтық өтетiн болса, ондай қозғалысты бiр қалыпты қозғалыс деп атайды.
Қозғалыс жылдамдығы. Қозғалыстың екпiндiлiгiн, шапшаңдығын және бағытын анықтайтын физикалық векторлық шаманы жылдамдық деп атайды. Өлшем бірлігі

Жылдамдықтың бағыты орын ауыстырудың бағытына сәйкес келедi. Ал қисық сызықты қозғалыс кезiнде жылдамдықтың бағыты траекторияға жанама бойымен бағытталады.

Түзу сызықты бiр қалыпты қозғалыстағы орын ауыстыру формуласы:
.
Дененiң белгiлi уақыт аралығында жасаған орын ауыстыруының уақытқа қатынасын орташа жылдамдық деп атайды.
.
Дәл сол уақыт мезетiндегi, кеңiстiктiң сол нүктесiндегi дененiң жылдамдығын лездiк жылдамдық деп атайды.

мұндағы: - яғни, лездiк жылдамдық радиус вектордан уақыт бойынша алынған бiрiншi туындысына тең болады.
Бiр қалыпты айнымалы қозғалыс. Кез-келген бiрдей уақыт аралығында қозғалыс жылдамдығы сәйкес бiрдей шамаға өзгерiп отыратын қозғалысты бiр қалыпты айнымалы қозғалыс деп атайды.
Егер жылдамдық бiрдей шамаға артатын болса, онда қозғалысты бiр қалыпты үдемелi деп, ал егер жылдамдық бiрдей шамаға кемитiн болса, онда қозғалысты бiр қалыпты кемiмелi деп атайды. Олай болса, бiр қалыпты айнымалы қозғалыстар бiр-бiрiнен жылдамдықтың өзгеру шапшаңдығына қарай ажыратылады. Қозғалыстың осы қасиетiн сипаттау үшiн физикалық векторлық шама үдеу енгiзiлген.
Үдеу қозғалыс жылдамдығының өзгеруiнiң осы өзгерiс болып өткен уақытқа қатынасымен өлшенедi.Өлшем бірлігі .

Үдеудiң бағыты жылдамдықтың өзгерiсiнiң бағытына сәйкес келедi, сондықтан үдеу векторлық шама.
Үдеу жылдамдықтың уақыт бойынша бiрiншi туындысына немесе радиус вектордың уақыт бойынша екiншi туындысына тең болады.
.
Бiр қалыпты айнымалы қозғалыстың лездiк жылдамдығы ,
ал қозғалыс теңдеуi .
Жазық қозғалыс кезiнде дененiң үдеуiн нормаль және тангенциал деп аталатын екi құраушыға жiктейдi.
.
Толық үдеудiң модулi: .

Жылдамдықтың модулi бойынша өзгеру шапшаңдығын сипаттайтын үдеу құраушысын тангенциал немесе жанама үдеу деп атайды.
.
Тангенциал үдеу траекторияға жанама бойымен бағытталады.
Дененiң жылдамдығының бағытының өзгеру шапшаңдығын сипаттайтын үдеудi нормаль үдеу деп атайды.
.
Жазық қозғалыс кезiндегi дененiң толық үдеуiнiң модулi:
.
Шеңбер бойымен бiр қалыпты қозғалыс. Дененiң шеңбер бойымен қозғалысын бұрыштық жылдамдықпен сипаттайды. Шеңбердiң центрiнен материялық нүктеге жүргiзiлген радиус осы уақыт iшiнде бұрыш сызады, оны бұрыштық ығысу немесе бұрыштық орын ауыстыру деп атайды.
Бұрыштық жылдамдық бұрыштық орын ауыстырудың осы орын ауыстыруға кеткен уақытқа қатынасына тең. Өлшем бірлігі .
.
Бұрыштық жылдамдықтың бағыты бұрыштық орын ауыстырудың бағытымен сәйкес келедi.

Дененiң шеңбер бойымен бiр қалыпты қозғалысын сипаттау үшiн айналу жиiлiгi және периоды енгiзiлген.
Дененiң шеңбер бойымен толық айналымға кеткен уақытын айналу периоды деп айтады. Өлшем бірлігі .
,
мұндағы: уақыт ішінде жасалынатын N- айналым саны.
Айналу жиiлiгi деп дененiң айналу центрiнiң маңында бiр секунд iшiнде жасайтын айналым санын айтады. Өлшем бірлігі .
.
Сөйтiп, период пен жиiлiктiң бiр-бiрiне керi шама екенiн байқаймыз.
периодқа тең уақытта бұрыштық орын ауыстыру -ге тең болады. Сондықтан бұрыштық жылдамдық немесе ескерсек, .
Шеңбер бойымен бiрқалыпты қозғалған дененiң сызықтық жылдамдығы модулi жағынан тұрақты, ал бағыты бойынша үздiксiз өзгерiп отырады және траекторияның кез-келген нүктесiне жүргiзiлген жанаманың бойымен бағытталады. Бiрқалыпты қозғалыс кезiнде сызықтық жылдамдықтың модулi тұрақты болғандықтан, оның шамасын мына формуламен анықтауға болады:
.
Бiр айналым iшiнде (t=T) дене шеңбердiң доғасының ұзындығына тең ара қашықтықты жүрiп өтедi:
.
Сондықтан немесе екенiн ескерсек, .
Сызықтық және бұрыштық жылдамдықтар арасындағы байланыс:

Сонымен, , яғни шеңбер бойымен бiрқалыпты қозғалыс кезiндегi сызықтық жылдамдық бұрыштық жылдамдықпен радиустың көбейтiндiсiне тең болады.

1.2.2 Динамика бөлімі
Денелердiң өзара әсерлесуiн және осы әсерлесуден пайда болатын қозғалыстарды зерттейтiн механиканың бөлiмiн - динамика деп атайды. Динамиканың негiзiне 1687 жылы Ньютон тұжырымдаған қозғалыс заңдары жатады.
2.1.Ньютонның 1-шi заңы
Денеге басқа денелер әсер етпесе немесе олардың әсерлерi өзара теңессе дене тыныштық күйде болады немесе өзiнiң түзу сызықтық бiрқалыпты қозғалысын сақтайды.
Дененiң қозғалыс жылдамдығының бағыты мен шамасын сақтау құбылысын - инерция деп атайды, ал денелердiң бұл қасиетiн инерттiлiк дейдi.
Денелердiң инерттiлiгiнiң сандық мөлшерi ретiнде физикалық скаляр шама масса енгiзiлген .

Ньютонның 1-шi заңы орындалатын санақ жүйесiн инерциялық санақ жүйесi деп атайды. (и.с.ж.)
Мысалы инерциялық санақ жүйесiне - гелиоцентрлiк санақ жүйесi жатады.
Кез-келген үдеумен қозғалатын санақ жүйесi инерциялық санақ жүйесi болып табылмайды.
2.2.Күш
Денелердiң өзара әсерлесуiнiң сандық сипаттамасы ретiнде физикалық векторлық шама - күш енгiзiлген. Өлшем бірлігі ,
Денелер өзара әсерлескенде келесi құбылыстар байқалады:
1. Дене үдеу алады.
2. Денелер деформацияланады.
3. Жоғарыдағы екi құбылыс бiр мезгiлде жүредi.
Денеге бiрнеше күштер әсер еткен жағдайда денеге әсер ететiн тең әсерлi күш - жеке күштердiң векторлық қосындысына тең.
.

Мысалы, суреттегi F күшi шаңғышыға әсер ететiн ауырлық күшi мен нормаль қысым күштерiнiң векторлық қосындысы- тең әсерлi күшi болып табылады.
Бойымен күш әсер ететiн түзудi - күштiң әсер ету сызығы деп атайды.

2.3.Ньютонның екiншi заңы
Ньютонның екiншi заңы денелердiң өзара әсерлесуi және iлгерiлемелi қозғалысы кезiнде оларда болатын өзгерiстерiнiң байланысын сипаттайды. Сондықтан бұл заң iлгерiлемелi қозғалыс динамикасының негiзгi заңы бола отырып, былай тұжырымдалады: денеге әсер ететiн күш - дененiң массасы мен алатын үдеуiнiң көбейтiндiсiне тең болады.
Олай болса, бұл заң мына түрде жазылады:
.
Күштердiң тәуелсiздiк принципi.
Денеге бiрнеше күш әсер еткен жағдайда әрбiр жеке күштiң беретiн үдеуi басқа күштерге тәуелсiз болады.
Көптеген тәжiрибелердiң қорытындысы берiлген дененiң массасы неғұрлым үлкен болса, соғұрлым ол денеге белгiлi бiр үдеу беру үшiн көбiрек күшпен әсер ету керек екендiгiн дәлелдедi. Екiншi сөзбен айтқанда, дененiң массасы неғұрлым үлкен болса, ол соғұрлым инерттi деп есептелiп, оның қозғалыс күйiн өзгерту үшiн көбiрек күш қажет болатындығы байқалды. Сонымен, масса дененiң инерттiк мөлшерi болып және оның динамикалық сипатын бiлдiредi. Ендi Ньютонның екiншi заңын айтылған пiкiрлердi ескере отырып, былай тұжырымдауға болады: дененiң алған үдеуi әсер етушi күшке тура пропорционал, дене массасына керi пропорционал және әсер етушi күштiң бағыты бойынша өзгередi.
.
Ньютонның екiншi заңын басқа түрде де жазып көрсетуге болады. Ол үшiн кинематика бөлiмiндегi үдеудiң мәнiн ескеретiн болсақ, онда
,
немесе
.
Ньютонның осы түрдегi жазылған формулалары динамиканың негiзгi заңы және шын мәнiнде қозғалыстың динамикалық және кинематикалық сипатын көрсетедi. Сонымен қатар, қозғалыс теңдеуiн дифференциал түрде жазуға мүмкiндiк бередi.
Дененiң қозғалыс мөлшерi немесе дене импульсi деп - дене массасының жылдамдығына көбейтiндiсiне тең шаманы атайды. Дененiң импульсiнiң бағыты қозғалыс жылдамдығының бағытымен сәйкес келедi, яғни .
Сондықтан,
,
яғни, бұлНьютонның 2-шi заңының дифференциал түрi.
Денеге әсер ететiн күш дененiң импульсiнiң өзгеру жылдамдығына тең болады.
Ньютонның бiрiншi және екiншi заңын қолдану кезiнде бұл заңдылықтар тек инерциялық жүйеде ғана орындалатынын ескерген жөн. Байқап қарасақ, Ньютонның бiрiншi заңы екiншi заңының дербес түрi болып шығады, оны былайша түсiндiруге болады , егер болса, онда дене үдеу алмайды да, , дене өзiнiң бастапқы тыныштық немесе бiрқалыпты түзу сызықты қозғалыс күйiн сақтайды, яғни инерция заңына айналады.
Тағы бiр ескеретiн жай: Ньютонның екiншi заңдылығындағы күштi берiлген массасы денеге әсер етушi барлық күштердiң тең әсерлi күшi деп түсiну керек:
.
Сонымен, Ньютонның екiншi заңынан анықталатын масса денелердiң инерциялық қасиетiн сипаттайды.
2.4.Ньютонның 3-шi заңы
Ньютонның үшiншi заңы оның екiншi заңын толықтыра түседi және денелердiң қозғалыс күйлерiн өзгерiске ұшырататын өзара әсер екендiгiн көрсетедi. Бұл заң былай тұжырымдалады: әсерлесушi екi дененiң бiр-бiрiне әсерi әр уақытта сан жағынан тең, ал бағыттары жағынан қарама-қарсы болады, яғни
.
Мұнда сөз болып отырған және күштерi әр түрлi денелерге әсер ететiндiктен, олар бiр-бiрiне теңгерiлмейдi. Сондықтан оларды қосуға болмайтынын атап көрсету қажет. Бiрақ белгiлi бiр жүйенi қарастырғанда денелердiң арасындағы өзара әсерлесу күштерiн қосуға болады, әрi олардың қосындысы әрдайым нольге тең. Бұл жүйеге қатысты iшкi күштер болады, олар жүйенiң қозғалыс мөлшерiн өзгерте алмайды.
2.5.Бүкiл әлемдiк тартылыс заңы
Денелердiң бiр-бiрiне тартылыс күшi осы денелердiң массаларының көбейтіндісіне тура пропорционал және денелердiң ара қашықтықтарының квадратына керi пропорционал болады
,
мұндағы: - гравитациялық тұрақты деп аталады.
Тартылыс күшi - центрлiк күштерге жатады, яғни денелердiң центрлерiн қосатын түзудiң бойымен бағытталады.

Ньютонның бүкiл әлемдiк тартылыс заңымен анықталатын гравитациялық масса деген ұғым бар.
Бұл масса денелердiң тартылыс өрiстерiн қоздыру және тартылыс өзгерiстерiнiң әсерiн сезiну қабiлетiн сипаттайды. Сонда бұл қандай масса? Дәл өлшеулердiң нәтижесiнде инерттiк масса гравитациялық массаға тең екенi анықталды. Сондықтан оларды ерекше бөлудiң қажетi жоқ.
Денелердiң бiр-бiрiмен тартылу күшi материяның ерекше бiр түрi гравитациялық өрiс арқылы берiледi. Гравитациялық өрiстi сандық сипаттау үшiн гравитациялық өрiстiң кернеулігі деп аталатын шама енгiзiлген. Өлшем бірлігі .
.

Гравитациялық өрiстiң кернеулiгi осы өрiсте орналасқан бiрлiк массалы денеге әсер ететiн күшке тең болады.
2.6.Табиғаттағы күштер
Табиғатта денелердiң өзара әсерлесулерiнiң 4 түрi бар
1. Гравитациялық әсерлесулер.
2. Электромагниттiк әсерлесулер.
3. Күштi немесе ядролық әсерлесулер.
4. Әлсiз әсерлесулер.

2.7.Серпiмдiлiк күшi
Денелердiң кез-келген көлемi мен пiшiнiн өзгертуiн деформация деп атайды. Деформация серпiмдi және серпiмсiз болып екіге бөлiнедi
Егер денеге әсер ететiн күштiң әсерi тоқтағанда дене бастапқы күйге қайтып келетiн болса, онда мұндай деформация серпiмдi деп аталады.
Егер күштiң әсерi тоқтағанда дене бастапқы күйге қайтып келмесе деформация серпiмсiз немесе пластикалық деп аталады.

Серпiмдi деформация кезiнде дененiң абсолют деформациясы түсiрiлген күшке тура пропорционал болады.
,
мұндағы: -пропорционалдық коэффициент (қатаңдық), өлшем бірлігі .
Денелердiң қатаңдығы дененiң тегіне және өлшемдерi мен пiшiнiне тәуелдi болады.

Серпiмдiлiк күшi табиғаты жағынан электромагниттiк күштерге жатады. Серпiмдiлiк күшi әрқашан абсолют деформацияға қарама-қарсы бағытталады. - бұл Гук заңы деп аталады. Түсiрiлген күштiң күш түсетiн ауданға қатынасы- механикалық кернеу деп аталады. .
Осы өрнектi ескере отырып, Гук заңын келесi түрде жазуға болады:
,
мұндағы - Юнг модулi, заттың серпiмдi қасиетiн анықтайтын шама, өлшем бiрлiгi - Паскаль, - дененiң салыстырмалы деформациясы.
және екенiн ескере отырып, алатынымыз
.
Бұдан серпiмдiлiк коэффициентiнiң өрнегiн аламыз: .
2.8.Үйкелiс күшi
Бiр-бiрiне қатысты қозғалатын денелердiң арасында немесе бiр ғана денелердiң бөлшектерiнiң арасында пайда болатын және әрқашан қозғалысқа қарама-қарсы бағытталған күштi үйкелiс күшi деп атайды.
Үйкелiс күшi табиғаты жағынан электромагниттiк күштерге жатады. Қатты денелердiң арасында пайда болатын үйкелiс күшiн сыртқы үйкелiс күшi деп атайды.
Ал бiр ғана дененiң бөлшектерiнiң арасында болатын үйкелiс күшiн iшкi үйкелiс күшi деп атайды.
Егер бiр-бiрiне қатысты қозғалатын қатты денелер арасында сұйық қабаты болса, мұндай үйкелiс күшi - сұйық үйкелiс күшi деп, ал сұйық қабаты болмаса - құрғақ үйкелiс күшi деп аталады. Құрғақ үйкелiс күшi сырғанау және домалау үйкелiс күштерi болып екiге бөлiнедi.
Қозғалмай тұрған денелердiң арасында пайда болатын денелердiң күшiн тыныштық үйкелiс күшi деп аталады.
.
Үйкелiс күшi дененiң түсiретiн нормаль қысымына пропорционал. мұндағы: - үйкелiс коэффициентi.
Үйкелiс коэффициентi денелердiң тегіне және беттерiнiң тегiстiгiне тәуелдi болады.
2.9.Кедергi күшi
Қатты денелердiң сұйықтар мен газдарда қозғалғанда пайда болатын және дененiң қозғалысына қарсы бағытталатын күштi кедергi күшi деп атайды.
Кедергi күшi денелердiң пiшiнiне, дене бетiнiң тегiстiгiне және ортаның тегіне тәуелдi болады. Аз жылдамдықта кедергi күшi дененiң жылдамдығына тура пропорционал болады.
.
Өте үлкен жылдамдықтарда кедергi күшi жылдамдықтың квадратына тура пропорционал болады.
.
2.10.Ауырлық күшi және салмақ
Дененiң жерге тартылу салдарынан денеге түсетiн күштi ауырлық күшi деп атайды.
Ауырлық күшi дененiң қозғалысына тәуелсiз, әрқашан дененiң массасына тура пропорционал.
.
Дененiң жерге тартылу салдарынан тiрекке немесе аспаға түсiретiн күшiн салмақ деп атайды.
Дене түзу сызықты бiрқалыпты қозғалған жағдайда, салмақ: .
Дене тiк жоғары а үдеумен қозғалған жағдайда дененiң салмағы та-ға артады.
.

Дене тiк төмен а үдеумен қозғалған жағдайда дененiң салмағы та-ға кемидi.
.

Дененiң тiрекке немесе аспаға салмақ түсiрмейтiн күйiн - салмақсыздық деп атайды.

§3.Сақталу заңдары

Бiр-бiрiмен әсерлесiп, жүйеге кiрмейтiн денелермен әсерлеспейтiн жүйенi тұйық немесе оқшауланған жүйе деп атайды.
Тұйық жүйедегi денелердiң өзара әсерлесуi кезiнде үш физикалық шама сақталады.
1. Импульс
2. Энергия
3. Импульс моментi
Сондықтан тұйық жүйелерде үш сақталу заңы орындалады.
1. Импульстiң сақталу заңы.
2. Энергияның сақталу заңы.
3. Импульс моментiнiң сақталу заңы.
Энергияның сақталу заңының негiзiне уақыттың бiртектiлiгi жатады, яғни кез-келген уақыт мезеттерiнiң бiрдейлiгi.
Импульстiң сақталу заңының негiзiне кеңiстiктiң кез-келген нүктелерiнiң қасиеттерiнiң бiрдейлiгi жатады.
Импульс моментiнiң сақталу заңының негiзiне кеңiстiктiң изотроптығы, яғни кеңiстiктiң бағыттарының қасиеттерiнiң бiрдейлiгi жатады.

3.1.Импульстiң сақталу заңы
Механикалық жүйенiң толық импульсi жүйеге кiретiн жеке денелердiң импульстарының векторлық қосындысына тең.
.
Тұйық жүйедегi денелердiң өзара әсерлесуінен пайда болатын iшкi күштерiнiң қосындысы нольге тең.
.
Тұйық жүйенiң толық импульсi тұрақты болады.
.
3.2.Энергияның сақталу заңы
Денелердiң әртүрлi қозғалыстарының және өзара әсерлесулерiнiң әмбебап сандық сипаттамасы ретiнде физикалық скаляр шама энергия енгiзiлген.
Табиғатта әртүрлi қозғалыстарға сәйкес энергияның механикалық, iшкi, электромагниттiк, атомдық, ядролық, биологиялық, химиялық және тағы басқа түрлерi кездеседi.
Денелердiң механикалық қозғалысын және оған сәйкес келетiн әсерлесулердiң сипаттамасы механикалық энергия болып табылады. Денелердiң қозғалыс жылдамдығы өзгергенде немесе денелердiң өзара әсерлесулерiнiң сипаты өзгергенде - энергиясы өзгередi.
Энергияның өзгерiсiн сипаттау үшiн физикалық шама жұмыс енгiзiлген.
Жұмыс деп - күш пен орын ауыстыру векторларының скаляр көбейтiндiсiн айтады.
Тұрақты күштің жұмысы келесі формуламен анықталады:
.
Айнымалы күштің жұмысы элементар орын ауыстыру кезінде келесі формуламен анықталады:
.
Ал айнымалы күштің толық жұмысы формуласымен есептелінеді.

Үйкелiс, кедергi күштерiнiң жұмысы әрқашан терiс болады(сурет).
Дене орын ауыстырмаған жағдайда немесе күш орын ауыстыруға перпендикуляр болса күш жұмыс атқармайды. Мысалы суретте көрсетілген жағдайда ауырлық күшінің жұмысы нольге тең болады.
Күш жұмысы суретте көрсетілгендей қисықпен шектелген ауданға тең болады.

Жұмыстың атқару жылдамдығын сипаттау үшiн физикалық шама қуат енгiзiлген. Өлшем бірлігі .
.
Атқарылған пайдалы жұмыстың толық жұмысқа қатынасын пайдалы әсер коэффициентi (ПӘК) деп атайды.
%.
Механикалық энергия кинетикалық және потенциалдық болып бөлiнедi.
Кинетикалық энергия - қозғалыстың сандық мөлшерi болып табылады. Қозғалыстағы дененiң энергиясын кинетикалық энергия деп атайды.
.
Ал потенциалды күштің жұмысы кинетикалық энергиясының өзгерісіне тең болады, яғни
.
Денелердiң өзара орналасуына тәуелдi әсерлесу энергиясын потенциалдық энергия деп атайды.
Потенциалды күштердiң атқаратын жұмысы - терiс таңбамен алынған потенциалдық энергияның өзгерiсiне тең.
немесе
Жұмысы дененiң траекториясына тәуелсiз, тек дененiң бастапқы және соңғы орындарына ғана тәуелдi күштердi потенциалды және консервативтi күштер деп атайды. Тұйық траекториядағы потенциалды күштердiң жұмысы нольге тең болады. Мысалы, а-в траеториясындағы ауырлық күшiнiң жұмысы нольге тең.

Потенциалдық энергияның математикалық өрнегi әсерлесулердiң сипатына тең болады.
1. Ауырлық күшi өрiсiндегi дененің потенциалдық энергия.

.

- дене Жердiң радиусымен салыстырғанда аз биiктiкте орналасқанда қолданылады.
2. Гравитациялық өрiстегi денелердiң әсерлесу энергиясы
.
3. Серпiмдi деформацияланған дененiң потенциалдық энергиясы
.
Толық механикалық энергия деп дененiң кинетикалық және потенциалдық энергияларының қосындысын айтады.
Тұйық жүйеге тек консервативті күштер әсер еткенде толық механикалық энергия тұрақты болады.
.

3.3.Импульс моментiнiң сақталу заңы
Дененiң белгiлi бiр нүктеге қатысты импульс моментi деп нүктенiң белгiлi бiр О нүктесiне қатысты радиус-векторының дененiң импульсiне векторлық көбейтiндiсiне тең шаманы айтады. Өлшем бірлігі .
.

Бөлшектердiң қозғалыс траекториясына тәуелсiз олардың импульс моментi болады.
1. Бөлшек түзу сызықпен қозғалыста болсын (сурет).

Импульс моментiнiң модулi тек бөлшектiң қозғалыс жылдамдығы өзгерген жағдайда өзгередi.

... жалғасы
Ұқсас жұмыстар
Тұтас орта жалпы мағұлмат
Кванттық механика, толқындық механика
Кванттық механика туралы
Күн жүйесі планеталарының қозғалысы
Ауырлық күші денелердің гравитациялық әсерлесуінен тұған күш
Аспан механикасы. Студенттерге арналған қосымша оқу құралы
Күн жүйесі қозғалысы заңдылықтарын оқытудың әдістемелік ерекшеліктері
Материалдар кедергісі ғылымының даму тарихы
Сыртқы күштер
Кеңістік және уақыт теориясының мәселелері
Пәндер