Шамалардың және сандардың қатынасы


Мазмұны:
Кіріспе . . . 3 І Тарау. Шама ұғымына жалпы сипаттама . . . 5 1. 1. Шамалардың қатынасы, сандардың қатынасы . . . 7 1. 2. Қатынас мүшелерінің қасиеттері, кері қатынастар . . . 8 II Тарау. Математика сабағында шамалар және олардың өлшем бірліктерін оқыту әдістемесі . . . 11
2. 1. Ұзындықты өлшеу . . . 11 2. 2. Ауданды өлшеу . . . 18
2. 3. Уақыт туралы түсінік . . . 25
Қорытынды . . . 32
Әдебиеттер тізімі . . . 36
Кіріспе
Қазақстан Республикасының мектепке дейінгі білім беру жүйесін жетілдіру стратегиясы мектеп жасына дейінгі балаларды жеке тұлға ретінде жан-жақты қалыптастыру мәселелерінің ұлттық даму стратегиясымен үздіксіз байланысты екендігін және мемлекеттік саясаттың ажырамас бөлігі болып табылатындығын ескере отырып, басты қажеттілік ретінде қабылданған.
Қазақстан Республикасында білім беруді дамытудың 2011 - 2020 жылдарға арналған мемлекеттік бағдарламасында «Мектепке дейінгі тәрбие мен оқытудың» мақсаты төмендегідей анықталған: «Балаларды мектепке дейінгі сапалы тәрбиемен және оқытумен толық қамтуды, оларды мектепке даярлау үшін мектепке дейінгі тәрбиелеудің және оқытудың әртүрлі бағдарламаларына тең қол жеткізуді қамтамасыз ету»
Қазақстан Республикасының мемлекеттік жалпыға міндетті мектепке дейінгі тәрбие мен оқыту стандарты мектепке дейінгі тәрбие мен оқытуды қадағалауды ұйымдастырып, педагогикалық кадрларға қойылатын талаптармен, олардың біліктілігін арттырып және қайта даярлап, бала дамуының деңгейін жүйелі бағалауды қамтамасыз етеді. Мектепке дейінгі тәрбие мен оқытудың негізгі мазмұны білім беру қызметінің негізгі нәтижесі ретінде баланың құзіреттілігін қалыптастыруға бағытталған
Мемлекет басшысының 2010 жылғы 29 қаңтардағы «Жаңа онжылдық - жаңа экономикалық өрлеу - Қазақстанның жаңа мүмкіндіктері» атты Жолдауында Үкіметке әкімдермен бірлесіп үстіміздегі жылдың бірінші жартысында-ақ балаларды мектеп жасына дейінгі оқытумен және тәрбиемен қамтамасыз етуді арттыруға бағытталған «Балапан» арнайы бағдарламасын әзірлеп, іске асыруға кірісу тапсырылды. Бұл - еліміздегі әлеуметтік мәселені, балаларды балабақшамен қамтамасыз ету мәселесін шешуді нақты жүзеге асыру болып табылады.
Математика - өркениет тудырған және оны барлық кезеңінде дамытуға ықпал етіп келе жатқан маңызды ғылым саласы. Қазіргі кез келген ғылым саласы математикалық әдістерді қолданып қана қоймай, математикалық заңдылықтар арқылы құрылады. Қазірігі ғылым мен техникаға жол тек қана математика арқылы өтеді. Математикалық білім беру математика ғылымның бір бөлігі ғана емес, жалпы адамзаттық мәдениет құбылысы. Ол адамзат ойының даму тарихының бейнесін береді. Сондықтан адамның мәдени дамуында математикалық білім беру үнемі маңызды роль атқарып келе жатыр.
Математиканың негізгі ұғымдарының бірі - шама туралы және мектепке дейінгі мекемелерде қарастырылатын шамалар жайында көптеген ғалымдар, педагогтар зерттеген болатын. Оларды атап өтсек: классик педагогтар: Ф. Фребель, М. Монтессори, О. Декроли, Е. И. Тихеева т. б [4, 65] ; Ресей педагог - ғалымдары: Б. Г. Ананьев, З. М. Богусловская, Л. Георгиев, Р. Л. Березина, В. К. Котырло, Т. Г. Васильева, И. М. Сеченов, Л. А. Венгер, А. М. Леушина, Е. И. Щербакова, А. А. Люблинская, З. Е. Лебедина, Л. В. Глаголева, Ф. Н. Блехер, Л. С. Метлина т. б [5, 208] ; Қазақстандық зерттеушілер мен әдіскерлер: М. С. Сәтімбекова, Н. Құлжанова, Ф. Н. Жұмабекова, Б. Б. Баймұратова, Ә. С. Әмірова, С. Ғ. Бәтібаева, Ж. Ж. Әкімбаева, Г. Х. Дүкенбаева, Г. Е. Өтебаева, А. Қ. Әбілдаева, т. б.
Мектепке дейінгі мекемелердің тәрбиешілері қарапайым математикалық түсініктерді қалыптастыру ұйымдастырылған оқу іс - әрекетінде шама ұғымын түсіндіру барысында заттың түріне, түсіне, пішініне қарай салыстырып қана қоймай, әр затты қолдарымен ұстап, мән беру арқылы ішкі сезімдерге әсер ету керек екендігін түсіне бермейді.
Сондықтан қарапайым шамалар туралы математикалық түсінік қалыптастыру барысында ғылыми-теориялық тұрғыдан қарап, оның педагогикалық-әдістемелік мүмкіншіліктерін аша түсу - бұл жұмыстың көкейкестілігі болып табылады.
Шамалар туралы түсінік қалыптастырудың теориясы мен оларды жүзеге асырудың практикасы арасында қарама-қайшылық туып отыр. «Шама деген не?», «Шаманың қандай түрлері бар?», «Шама ұғымына қандай ұғымдар жатады?», «Шаманы оқытуды үйрету қандай әдістемеге негізделеді», «Балаларға шама ұғымын түсіндіру үшін қандай әдіс-тәсілдерді қолдануға болады?» деген сияқты сұрақтарға жауап іздеу барысында мен осы курстық жұмысымның тақырыбын «Бастауыш мектеп математикасындағы шамалар және оны оқыту әдістемесі» деп алдым.
Зерттеу жұмысының мақсаты болып бастауыш мектеп математикасындағы шамалар және оны оқыту әдістемесіне шолу жасау және оларды қарастыру.
Осы мақсаттан мынадай міндеттер туындайды:
1. Педагогикалық және ғылыми-математикалық әдебиеттердегі «шама», «шамалардың өлшем бірліктері» жайлы мәселелерге талдаулар жасау;
2. Бастауыш мектеп математикасындағы шамаларды анықтау және олар жайлы түсінік қалыптастырудың әдістемесін көрсетіп беру.
Егер бастауыш мектеп ұстаздары балаларға қарапайым математикалық түсініктер қалыптастыруда шама туралы материалдарды жас ерекшеліктеріне сай іріктеп, оларды қарастырудың әдістемесін оқу-тәрбие үдерісінде, тәжірибе жүзінде тиімді пайдалана алатын болса, онда балаларда шама туралы қарапайым түсінік қалыптасады, бастауыштағы математиканы оқытуға негіз қаланады.
І Тарау. Шама ұғымына жалпы сипаттама
Шама ұғымы математикадағы негізгі ұғым ретінде қарастырылады. Ол ерте заманда пайда болды да, қоғамның даму тарихы барысында жалпылана және нақтылана түсті. Шама - бұл ұзындық та, көлем де, масса да, сан да, т. б.
Шама ұғымы тек математикада ғана емес, физикада, биологияда, астрономияда және басқа да ғылымдарда кеңінен қолданылады. Математиканы оқыту әдістемесінде бұл ұғым әркез өз орнында қолданылмайды: «шама» мен «сан» терминдер синонимдер ретінде есептеледі, «шама» мен «шаманың мәні» ұғымдары аралас қолданылады. Мұны шама ұғымының таза математикалық емес екендігімен түсіндіруге болады. Оның ғылымның әр түрлі салалаларында қолданылуы оны әр түрлі ұғымда қолдануға, әр түрлі түсінуге әкеп соқтырды. Шама ұғымы ғылымның көптеген салаларында бастапқы, яғни анықталмайтын ұғым ретінде қабылданады.
Қазақстан ұлттық энциклопедиясында «шама деп - мәні математикалық дамуына байланысты жапыланып отырылған негізгі математикалық ұғымдардың бірін» айтады
Шаманың екі түрі болады: «шектеулі шама» және «шектеусіз шама».
Шектеулі шама дегеніміз қатаң түрде реттелген, бір бірінен бөлінген элементтер құрайтын жиын, яғни шама. Мұндай жиын негізінен санаудың көмегімен анықталады.
Шектеусіз шама өлшеудің негізінде анықталады. Мүндай шаманы құрайтын элементтерді (сусымалы, сұйық заттар, ұзындық, көлем) бір-бірінен бөліп алу және санау мүмкін емес.
Дегенмен, қазіргі таңда да педагогикалық тәжірибе шаманың әлдеқайда сипаттамалы белгілеріне ерекше назар аударып келеді. Бұл шаманы өлшем ұғымымен шатастыруға жиі әкеп соқтырды. Өлшем - қандай да бір өлшем бірлігін таңдап алғаннан кейін шаманы білдіретін сан.
Математикада «Шама деген не?» сұрағына жауап анықтама ретінде кездеспейді. Алайда шаманы сипаттайтын бастапқы қасиеттердің көмегімен шама жайлы түсінік пен ұғым қалыптастырудың теориясы мен тәжірибесі жасалады.
Біздің санамызда заттар мен құбылыстардың бейнеленуі барысында қандай да бір ұғым қалыптасады. Ұзындық, аудан, масса, уақыт, сыйымдылық (көлем), жылдамдық, температура, баға және т. б. шамалардың мысалдары болып табылады. Жоғарыда айтқанымыздай, бұл ұғымдар тек математикада ғана емес, сондай-ақ физика, химимя және тағы басқа ғылымдарда да қолданылатын негізгі ұғымдардың бірі болып табылады. Бұл жағдайда шама ұғымына айқын түрде сипаттама беру өте қиын, өйткені әр түрлі ғылым салалаларында, тіптен бір ғана ғылым саласының әр тарауларында да шама ұғымы әр түрлі мағынада қарастырылады.
О. М. Жолымбаев, Г. Е. Берікханованың «Математика» атты кітабында шама жайында былай деп жазған екен: «Жиын жөніндегі ұғым сияқты, шама жөніндегі ұғым да бастапқы деп саналады, сондықтан шамаға анықтама бермей, тек мысалдар қарастыру арқылы ол ұғым жөнінде түсінік берумен қанағаттанамыз». Біздің санамызда заттар мен құбылыстардың бейнеленуі барысында қандай да бір ұғым қалыптасады. Ұзындық, аудан, масса, уақыт, сыйымдылық (көлем), жылдамдық, температура, баға және т. б. шамалардың мысалдары болып табылады. Жоғарыда айтқанымыздай, бұл ұғымдар тек математикада ғана емес, сондай-ақ физика, химимя және тағы басқа ғылымдарда да қолданылатын негізгі ұғымдардың бірі болып табылады. Бұл жағдайда шама ұғымына айқын түрде сипаттама беру өте қиын, өйткені әр түрлі ғылым салалаларында, тіптен бір ғана ғылым саласының әр тарауларында да шама ұғымы әр түрлі мағынада қарастырылады.
Шамалар жайындағы жалпы түсініктер оларға тән ерекшеліктерді сипаттауға мүмкіндік береді.
Біріншіден, шамалар - нақты объектілер мен құбылыстардың ерекше қасиеттері. Мысалы, ұзындық дегеніміз заттардың бойлылық қасиеті. Бұл сөзді нақты объектілердің бойлылығы (созымдылығы) жайында әңгіме болғанда қолданамыз. Сондықта нақтылы объектілердің ұзындықтары туралы айтқанда, бұл шамалардың тегі бір деп түсініледі. Жалпы алғанда, біртекті шамалар қандай да бір жиын объектілерінің бір ғана ортақ қасиетін, әр текті шамалар объектілердің әрқилы қасиеттерін сипаттайды. Мысалы, ұзындық пен аудан - әр текті шамалар.
Екіншіден, шама - заттар мен құбылыстардың, оларды салыстыруға мүмкіндік беретіндей қасиеттері. Сондай-ақ осы қасиеті арқылы оған бірдей деңгейде ие болатын объектілер жұбын тағайындауға болады. мысалы, ұзындығы болу қасиетіне ие болатын барлық заттар жиынында ұзындығы бірдей заттар эквиваленттілік класын құрайды.
Үшіншіден, шама - заттарды немесе құбылыстарды салыстыруға мүмкіндік беретіндей қасиет болумен бірге, осы қасиеттің көмегімен екі эквивалентті емес заттардың қайсысы бұл өасиетке көбірек ие болатындығын тағайындауға болады. Мысалы, «ұзындығы бар» қасиетіне ие болатын барлық заттар жиынында ұзындығы әр түрлі екі заттың қайсысы ұзынырақы болатындығын тағайындауға болады.
- Шамалардың және сандардың қатынасы
Бір текті екі шаманың қатынасы деп бір шаманың екінші шамадан неше есе артық екендігін немесе ол, осы екінші шаманың қандай бөлігі екендігін көрсететін санды атайды. Мысалы; 4 километрдің 2 километрге қатынасы 2-ге тең, ал 20 сантиметрдің 1 метрге қатынасы 0, 2-ге тең.
Бірінші жағдайда қатынас бір текті екі шаманың біреуі (4 км) екіншісінен (2 км-ден) неше есе артық екендігін көрсетеді, ал екінші жағдайда 0, 2 қатынасы бірінші шама (20 см) екінші шаманың (1 л/-дің) қандай бөлігі екендігін көрсетеді.
Бұл анықтамаға карағанда бір текті шамалардың қатынасы дерексіз сан екендігі көрінеді.
Әдетте шамалардың орнына олардың сан мәндері алынады. Бұдан қашан болса да шамалардың қатынасының орнына осы шамалардың мәндерін көрсететін сандардың қатынасын алуға болады деп қорытынды шығаруға болады.
Сандардың қатынасы . Сандарды бөлуді қарастырғанымызда біз екі санның қатынасы бір санды екіншісіне бөлгенде шығатын бөлінді екендігін тағайындаған едік. Бөлшектерді енгізуге байланысты бөлуді барлық жағдайларда (әрине, бөлуден басқаларында) орындауға мүмкіншілік туды.
Олай болса, екі санның арасындағы қатынасты анықтау дегеніміз бірінші сан екінші саннан неше есе артық екендігін немесе бірінші сан екіншінің қандай бөлігі екендігін білу деген сөз деп айтуға болады.
Екі санның қатынасы (бөлінді) бірге тең болса, онда бұл - осы екі санның тең екендігін көрсетеді; егер қатынас бірден үлкен болса, онда ол - бірінші сан екінші саннан неше есе артық екендігін көрсетеді, егер қатынас бірден кіші болса, онда ол - бірінші сан екіншінің қандай бөлігі екендігін көрсетеді.
Жоғарыда айтылған анықтамадан, берілген а мен а сандарының b қатынасы, оны q-ға көбейткенде а шығатын сан деп айтуымызға болады.
Әдетте қатынас былай жазылады: a:b=q; a саны қатынастың алдыңғы мүшесі, Ь саны оның жалғас мүшесі, ал - қатынас деп аталады.
Сандарды әріптермен белгілегенде а:Ь жазуы кейде бөлу амалын орындауды емес, бөлудің нәтижесін көрсететінін өскерте кетейік. Осыған сәйкес а:Ь жазуына а санының Ь санына қатынасының белгісі деп карауға болады.
1. 2. Қатынас мүшелерінің қасиеттері, кері қатынастар.
Қатынастың алдынғы мүшесі бөлінгіш, жалғас мүшесі бөлгіш, ал қатынас бөлінді болатындықтан, а:б = q қатынастың қасиеттері бөлу амалы компоненттерінің қасиетіндей болады, атап айтқанда, ол қасиеттер мынадай:
1) Алдыңғы мүше жалғас мүше мен қатынастың көбейтіндісіне тең:
a = bq.
- Жалғас мүше алдыңғы мүшені қатынаска бөлгендегібөліндіге тең:b=a:q.
- Егер алдыңғы мүшені бірнеше есе арттырса немесежалғас мүшені сонша есе кемітсе, онда қатынас сонша есе артады:(ав) :Ь=(де) ; (а:е) : Ь= (q :в) ; бұл жағдайлардыц екеуінде де қатынасеесе артты.
- Егер апдыңғы мүшені бірнеше есе кемтісе немесе жалғасмүшені сонша есе арттырса, онда қатынас сонша есе кемиді:(а:с) : b=(q:e) немесеa:(be) = (q:e) ; бұл жағдайлардың екеуінде де қатынас еесе кеміді.
5) Егер алдыңғы мүшені де, жалғас мүшені де бірдей сан есе
арттырса немесе кемітсе, онда қатынас езгермейді: (ас) :( be) - bнемесе (а:е) :( b-e) -q; бұл жағдайлардың екеуінде де қатынас өзгерген жоқ. Қатынастың қасиеттеріне сүйеніп: 1) қатынастың кез келген мүшесін табуға, 2) бөлшек сандардын қатынасын бүтін сандардың қатынасымен алмастыруға, 3) қатынастың мүшелерін қысқартуға болады.
6) Алдыңғы мүше кез келген сан бола алады; жалғас мүше
нольдөн басқа кез келген сан бола алады; ноль бола алмайтын себебі
- нольге бөлуге болмайды.
Кері қатынастар . Егер екі қатынастың біреуінін алдыңғы мүшесі екіншісінін жалғас мүшесі, ал біріншісінің жалғас мүшесі екіншісінің алдыңғы мүшесі болып табылса, онда мұндай қатынастар кері қатынастар деп аталады; мысалы, 16:8 = 2 мен 8:16=1/2 кері қатынастар.
Берілген қатынасқа кері қатынас шығарып алу үшін, бірді осы берілген қатынасқа бөлу керек.
Бөлімдері немесе алымдары, бірдей болған жағдайларда, бөлшек сандардың қатынасын бүтін сандардың қатынасымен оңай алмастыруға болады.
Бірінші жағдайда, бөлшек сандардың қатынасын бүтін сандардың қатынасымен алмастырудағыдай, бөлшектердін қатынасы олардың тікелей алымдарының қатынасына тең болады; екінші жағдайда бөлшектердің қатынасы олардың бөлімдерінің кері қатынасына тең болады.
Екі қатынастың теңдігі пропорция деп аталады Мысалы, егер a: b-q және c:d=q болса, онда a:b=c:d теңдігі пропорция деп аталады. Пропорция жасайтын төрт сан пропорционал сандар деп аталады; бұлардың біріншісі мен төртіншісі (а мен d) пропорцияның шеткі мүшелері, ал екіншісі мөн үшіншісі (Ь мен с) орта мүшелері деп аталады.
Тура пропорционал шамалар. Егер А мен В екі шама бұлардың біреуінің кез келген екі мәнінің қатынасы екіншісінің бұларға сәйкес мәндерінің қатынасына тең боларлықтай байланыста болса, онда мұндай шамалар тура пропорционал шамалар деп аталады. Мысалы, егер а ] , а 2 , а 2 . . . әріптерімен А шаманың мәндерін, ал Ь Х , Ь 2 , Ъ У . . . әріптерімен В шаманың оларға сәйкес мәндерін белгілесек, онда А мен В шамалар а, b, a, b болғанда тура пропорционал болады.
Пропорционал шамалардың мысалы: заттың бағасы тұрақты болғандағы қүны оның массасына тура пропорционал; шеңбердің ұзындығы оның радиусына немесе диаметріне тура пропорционал; бір қалыпты қозғалатын дененің жүретін жолы қозғалыс уақытына тура пропорционал.
Тура пропорционалдықтың белгісі. Егер берілген екі шаманың біреуінің қандай да болса бір мәні бірнеше есе артқанда немесе кемігенде, екіншісінің сәйкес мәні сонша есе артатын немесе кемитін болса, онда бұл екі шама тура пропорционал шамалар болады. Яғни біреуінің кез келген екі мәнінің қатынасы екіншісінің сәйкес екі мәнінің қатынасына тең болады.
Кері пропорционал шамалар. Егер А мен В шамалары біріне - бірі біріншісінің екі мәнінің қатынасы екіншісінің сәйкес екі мәнінің кері қатынасына тең боларлықтай түрде тәуелді болса, онда мұндай шамалар кері пропорционал шамалар деп аталады.
Егер Мысалы, егер а х , а 2 , а г . . . әріптерімен А шаманың мәндерін, ал b l , b 2 , b r . . . әріптерімен В шаманың оларға сәйкес мәндерін белгілесек, онда А мен В шамалар кері пропорционал болу үшін а ] b 2 a x b 3 . Кері пропорционал шамалардың мысалы: арақашықтық тұрақты болғанда, бір қалыпты қозғалыстың жылдамдығы жүріс уақытына кері пропорционал; температура тұрақты болғанда, газдың көлемі қысымға кері пропорционал; ауданы өзгермейтін тік төртбұрышты участоктың табаны мен ені өзара кері пропорционал.
Кері пропорционалдықтың белгісі. Егер екі шаманың біреуінің бір мәндерін бірнеше есе арттырғанда немесе кеміткенде, екінші шаманың сәйкес мәндері бірінші жағдайда сонаш есе кемісе, ал екінші жағдайда сонша есе артса, онда мұндай шамалар кері пропорционал болады.
Пайыздар. Бір санның жүзден бір бөлігі осы санның пайызы деп аталады. Пайыздың анықтамасынан пайзы бөлімі 100 болып келген бөлшектерді өрнектеудің айрықша тәсілі екендігі көрінеді. Пайыз ұғымының түрлендірудің екі түрімен байланысы бар:
Пайыздық есептеулер күнделікті тұрмыста кең түрде қолданылады. Пайыздар, әсіресе жинақ кассаларындағы, банкалардағы, сауда орындарындағы ақша есептерінде басқа да есеп - қисап жұмыстарында жиі қолданылады.
Қаржылық операцияларының қайсыларында болса да есептеулер жүргізілетін шамаларға арнаулы атаулар қолданылады. Мысалы, банк немесе жинақ кассасына салынған ақша бастапқы капитал деп аталады; бастапқы капитал бір жылдың ішінде неше пайызға артуы (немесе кемуі) керек екендігін көрсететін сан пайыздық такса деп аталады; бастапқы капиталдың белгілі бір уақыттың ішінде берген өсімі пайыздық ақша неиесе тек, пайыз деп аталады. Пайыздық ақшамен қоса есептегенде бастапқы капитал өскен капитал деп аталады. Қаржылық есеп - қисаптарда бір жылда 360 күн, ал бір айда 30 күн бар деп есептеледі.
Егер пайыз тек бастапқы капиталдан (бір рет) есептелетін болса, онда оны жай пайыз дөп, ал егер ол өскен капиталдан (бірнеше рет) есептелетін болса, онда оны күрделі пайыз деп атайды. Күрделі пайыздар финанстық есептеулерде, халықтың өсуін, жануардың немесе өсімдіктің т. с. с. бір түрінің көбеюін есептегенде жиі қолданылады.
II Тарау. Математика сабағында шамалар және олардың өлшем бірліктерін оқыту əдістемесі
2. 1. Ұзындықты өлшеу
«Шамалар және оларды өлшеу» мазмұндық-әдістемелік желі материалдарын оқыту технологиясы. Желінің негізгі нысандары: ұзындық, масса, сыйымдылық, уақыт, аудан, көлем; шамалардың өлшем бірліктері мен арақатынасы; сан шаманы өлшеудің нәтижесі ретінде, шамалар мәніне амалдар қолдану; шаманың үлесі және оларды салыстыру; шамалардың өзара байланысы және тәуелділік. Шамалар мен оларды өлшеуді кезеңдер бойынша оқыту және қарапайым шамалар мен олардың бірліктері жайлы түсініктерді пайдалану құзыреттіліктерін қалыптастыру, шамалардың мәндеріне (қысқаша шамаларға) амалдар қолдану технологиясы.
1-4 сыныптарға арналған математика оқулықтарының әрқайсысында дамыта оқыту және білімнің дидактикалық бірлігін ірілендіру техналогиясы басқа да әдіс-тәсілдер үйлесімін табатындай ара-қатынаста қолдану арқылы дамыта оқыту идеясын жүзеге асыруға бағыттайды және оның бағдарлануына міндеттейді. Сонда дамыта оқыту техналогиясы жетектеуші; ал дәстүрлі оқытудың және білімнің дидактикалық бірлігін ірілендірудің технологиялары бағындырылған және жетектелуші ретінде пәнді оқыту процесінде көрініс табуы тиіс.
Шаманы оқытудың міндеттері төмендегіше :
1) Кесіндінің ұзындығы туралы нақтылы білім қалыптастыру ;
2) Ұзындық бірлігімен, олардың арасындағы қатынаспен таныстыру .
3) Өлшеу дағдыларын қалыптастыру (сызғыш) ;
4) Ұзындықты қосу және азайту ( санға көбейту және бөлу ) ;
5) Дененің массасы және ыдыстың сыйымдылығы туралы нақты түсінік қалыптастыру ;
6) Оқушыларды масса бірліктері (кг, г, т, ц ) және олардың арасындағы қатынаспен, сыйымдылық бірлігі литрмен таныстыру .
... жалғасы- Іс жүргізу
- Автоматтандыру, Техника
- Алғашқы әскери дайындық
- Астрономия
- Ауыл шаруашылығы
- Банк ісі
- Бизнесті бағалау
- Биология
- Бухгалтерлік іс
- Валеология
- Ветеринария
- География
- Геология, Геофизика, Геодезия
- Дін
- Ет, сүт, шарап өнімдері
- Жалпы тарих
- Жер кадастрі, Жылжымайтын мүлік
- Журналистика
- Информатика
- Кеден ісі
- Маркетинг
- Математика, Геометрия
- Медицина
- Мемлекеттік басқару
- Менеджмент
- Мұнай, Газ
- Мұрағат ісі
- Мәдениеттану
- ОБЖ (Основы безопасности жизнедеятельности)
- Педагогика
- Полиграфия
- Психология
- Салық
- Саясаттану
- Сақтандыру
- Сертификаттау, стандарттау
- Социология, Демография
- Спорт
- Статистика
- Тілтану, Филология
- Тарихи тұлғалар
- Тау-кен ісі
- Транспорт
- Туризм
- Физика
- Философия
- Халықаралық қатынастар
- Химия
- Экология, Қоршаған ортаны қорғау
- Экономика
- Экономикалық география
- Электротехника
- Қазақстан тарихы
- Қаржы
- Құрылыс
- Құқық, Криминалистика
- Әдебиет
- Өнер, музыка
- Өнеркәсіп, Өндіріс
Қазақ тілінде жазылған рефераттар, курстық жұмыстар, дипломдық жұмыстар бойынша біздің қор #1 болып табылады.

Ақпарат
Қосымша
Email: info@stud.kz