Характеристика радиоактивных излучении


Тип работы:  Реферат
Бесплатно:  Антиплагиат
Объем: 17 страниц
В избранное:   
Казахский Национальный Аграрный Исследовательский Университет
некоммерческое акционерное общество
Кафедра Ветеринарная санитарная экспертиза и гигиена

РЕФЕРАТ
Тема: Характеристика радиоактивных излучении

Выполнила: студентка группы ВС-317
Насипова Л. Е.
Проверила: Аскарова М. О.

Алматы, 2021 г.
Содержание:
Введение
Основная часть
Краткая история радиоактивности
Радиоактивные излучения и его виды
Теория радиоактивного распада
Меры защиты
Заключение
Использованная литература

Введение
Радиация играет огромную роль в развитии цивилизации на данном историческом этапе. Благодаря явлению радиоактивности был совершен существенный прорыв в области медицины, ветеринарии и в различных отраслях промышленности, включая энергетику.
Но одновременно с этим стали всё отчётливее проявляться негативные стороны свойств радиоактивных элементов: выяснилось, отрицательное влияния радиации на здоровье. Подобный факт не мог пройти мимо внимания общественности. И чем больше становилось известно о действии радиации на человеческий организм и окружающую среду, тем противоречивее становились мнения о том, насколько большую роль должна играть радиация в различных сферах человеческой деятельности.
К сожалению, отсутствие достоверной информации вызывает неадекватное восприятие данной проблемы. Радиоактивность следует рассматривать как неотъемлемую часть нашей жизни, но без знания закономерностей процессов, связанных с радиационным излучением, невозможно реально оценить ситуацию.
Таким образом, проблема радиационного загрязнения стала одной из наиболее актуальных проблем нашего времени.

Краткая история радиоактивности
В 1895 г. Вильгельм Рёнтген открыл рентгеновские лучи, а в 1896 г. Антуан Беккерель открыл радиоактивность.
В 1903 г. Джозеф Томсон зафиксировал радиоактивность колодезной воды. Позже оказалось, что воды многих известных курортных источников тоже радиоактивны.
В 1898 г. Пьер и Мария Кюри открыли радий. Радиоактивность целебной воды была объяснена "эманацией радия" (радиоактивным газом, который мы сегодня называем радоном). Врачи перечисляли болезни, которые лечит эта живая вода: различных форм подагры и ревматизма, невралгию, желудочную диспепсию, хронический понос, хронические поражения кожи. Радиоактивность предотвращает безумие, вызывает благородные эмоции, замедляет приход старости и позволяет радоваться жизни.
Однако воду из целебных источников приходилось использовать на месте. Радон из бутылок улетучивался в атмосферу и довольно быстро распадался. Решение было найдено. Например, в продажу поступили бутылочки с раствором радия (в основном радия-226). В каждой бутылочке 60 см2 воды с растворенным в ней 2 мкг радия. Радий постоянно распадался, образовывался радон.
В 1920-х и начале 1930-х, в продажу, например, в США, поступили содержащие радий мази, косметические кремы, зубные пасты (считалось, что они помогают против кариеса и улучшают пищеварение), беруши, шоколадные батончики, мыло, суппозитории, и даже противозачаточные средства.
Впервые природу воздействия радиации на живой организм установили в 1925 году русские ученые Р. С. Филиппов и Р.А Надсон, изучая дрожжи. Два года спустя их открытие подтвердил американский генетик Г. Д. Меллер на дрозофиле. Оказалось, что радиоактивное излучение оказывает сильное мутагенное воздействие на живые клетки, многократно ускоряя их спонтанные мутации.
Международный знак радиации впервые появился в 1946 году в радиационной лаборатории университета Калифорнии в Беркли. В то время знак был пурпурным на синем фоне. Современная версия - чёрный знак на жёлтом фоне. 19 февраля 2007 года IAEA и ISO анонсировали новый символ ионизирующей радиации в придачу к традиционному.
Радиоактивные излучения и его виды
В процессе распада вещества или его синтеза происходит выброс элементов атома (протонов, нейтронов, электронов, фотонов), иначе можно сказать происходит излучение этих элементов. Подобное излучение называют - ионизирующее излучение или что чаще встречается радиоактивное излучение, или еще проще радиация. К ионизирующим излучениям относится так же рентгеновское и гамма излучение.
Радиация - это процесс излучения веществом заряженных элементарных частиц, в виде электронов, протонов, нейтронов, атомов гелия или фотонов и мюонов. От того, какой элемент излучается, зависит вид радиации.
Ионизация - это процесс образования положительно или отрицательно заряженных ионов или свободных электронов из нейтрально заряженных атомов или молекул.
Радиоактивное (ионизирующее) излучение можно разделить на несколько типов, в зависимости от вида элементов из которого оно состоит. Разные виды излучения вызваны различными микрочастицами и поэтому обладают разным энергетическим воздействие на вещество, разной способностью проникать сквозь него и как следствие различным биологическим действием радиации.
Радиоактивность - отнюдь не новое явление; новизна состоит лишь в том, как люди пытались ее использовать. Радиоактивность - самопроизвольное превращение атомов одного элемента в атомы других элементов, сопровождающееся испусканием частиц и жесткого электромагнитного излучения. И радиоактивность, и сопутствующие ей ионизирующие излучения существовали на Земле задолго до зарождения на ней жизни и присутствовали в космосе до возникновения самой Земли. Около 20 миллиардов лет назад радиация стала постоянно наполняет космическое пространство. Радиоактивные материалы вошли в состав Земли с самого ее рождения. Даже животные слегка радиоактивны, так как во всякой живой ткани присутствуют в следовых количествах радиоактивные вещества. Но с момента открытия этого универсального фундаментального явления не прошло еще и ста лет.
Излучение радиоактивных веществ. Естественные радиоактивные элементы испускают три вида излучений: альфа, бета и гамма. В 1899 Резерфорд идентифицировал альфа- и бета-излучение; спустя год П. Вийар открыл гамма-излучение.
Резерфорд и английский физик Ф. Содди указали, что испускание α-лучей сопровождается превращением химических элементов, например, превращением радия в радон. В 1913 американский учёный К. Фаянс и Содди независимо сформулировали т. н. правило смещения, характеризующее перемещение нуклида в периодической системе элементов при α- и β-распадах.
Альфа-излучение. В воздухе при атмосферном давлении альфа-излучение преодолевает лишь небольшое расстояние, как правило, от 2,5 до 7,5см. В условиях вакуума электрическое и магнитное поля заметно отклоняют его от первоначальной траектории. Направление и величина отклонений указывают на то, что альфа-излучение - это поток положительно заряженных частиц, для которых отношение заряда к массе (em) в точности соответствует дважды ионизированному атому гелия (He++). Эти данные и результаты спектроскопического исследования собранных альфа-частиц позволили Резерфорду сделать вывод о том, что они являются ядрами атома гелия.

рис.1 Схема эксперимента, иллюстрирующего отклонение разных видов радиоактивного излучения в магнитном поле
Бета-излучение. Это излучение обладает большей проникающей способностью, чем альфа-излучение. Как и альфа-излучение, оно отклоняется в магнитном и электрическом полях, но в противоположную сторону и на большее расстояние. Это указывает на то, что бета-излучение является потоком отрицательно заряженных частиц малой массы. По отношению em Резерфорд идентифицировал бета-частицы как обычные электроны.
Гамма-излучение. Гамма-излучение проникает в вещество гораздо глубже, чем альфа- и бета-излучения. Оно не отклоняется в магнитном поле и, следовательно, не имеет электрического заряда. Гамма-лучи были идентифицированы как жесткое (т.е. имеющее очень высокую энергию) электромагнитное излучение. Разделение радиоактивного излучения в магнитном поле на альфа-, бета- и гамма-лучи схематично показано на рисунке.
В 1934 французские физики И. и Ф. Жолио-Кюри открыли искусственную радиоактивность, т. е. радиоактивность ядер -- продуктов ядерных реакций, которая впоследствии приобрела особенно важное значение. Из общего числа (~2000) известных радиоактивных нуклидов лишь около 300 -- природные, а остальные получены в результате ядерных реакций. Между искусственной и естественной радиацией нет принципиального различия. Изучение искусственной радиации привело к открытию новых видов β - распада - позитронному β+-распаду и электронному захвату. В 1939 был обнаружен распад с испусканием запаздывающих нейтронов. В 1940 К. А. Петржак и Г. Н. Флёров открыли спонтанное деление ядер.
Для процессов радиоактивного распада характерен экспоненциальный закон уменьшения во времени среднего числа радиоактивных ядер. Продолжительность жизни радиоактивных ядер характеризуют периодом полу распада T 12, (промежутком времени, за который число радиоактивных ядер уменьшается в среднем вдвое).
Во многих случаях продукты радиоактивного распада сами оказываются радиоактивными, и тогда образованию стабильных нуклидов предшествует цепочка из нескольких актов радиоактивного распада. Характерными примерами систем, в которых происходят сложные радиоактивные превращения, являются радиоактивные ряды изотопов тяжёлых элементов. Многие радиоактивные ядра могут распадаться по двум или нескольким из перечисленных выше основных типов радиации. В результате конкуренции разных путей распада возникают разветвления радиоактивных превращений. Для природных радиоактивных изотопов характерны разветвления, обусловленные возможностью α- и β- распадов. Для трансурановых элементов наиболее типичны разветвления, связанные с конкуренцией α- (реже β-) распадов и спонтанного деления. У нейтронодефицитных ядер часто наблюдается конкуренция β+-распада и электронного захвата. Для многих ядер с нечётными Z (число протонов) и чётными А (массовое число) оказываются энергетически возможными два противоположных варианта β-распада: β -распад и электронный захват или β - и β +-распады.
Главным объектом исследования ученых был сам атом, вернее его строение. Мы знаем теперь, что атом похож на Солнечную систему в миниатюре: вокруг крошечного ядра движутся по орбитам планеты - электроны. Размеры ядра в сто тысяч раз меньше размеров самого атома, но плотность его очень велика, поскольку масса ядра почти равна массе всего атома. Ядро, как правило, состоит из нескольких более мелких частиц, которые плотно сцеплены друг с другом (рис. 2).

рис. 2
Некоторые из этих частиц имеют положительный заряд и называются протонами. Число протонов в ядре и определяет, к какому химическому элементу относится данный атом: ядро атома водорода содержит всего один протон, атома кислорода -8, урана -92. В каждом атоме число электронов в точности равно числу протонов в ядре; каждый электрон несет отрицательный заряд, равный по абсолютной величине заряду протона, так что в целом атом нейтрален. В ядре, как правило, присутствуют и частицы другого типа, называемые нейтронами, поскольку они электрически нейтральны. Ядра атомов одного и того же элемента всегда содержат одно и тоже число протонов, но число нейтронов в них может быть разным. Атомы, имеющие ядра с одинаковым числом протонов, но различающиеся по числу нейтронов, относятся к разным разновидностям одного и того же химического элемента, называемым изотопами данного элемента. Чтобы отличить, их друг от друга, к символу элемента приписывают число, равное сумме всех частиц в ядре данного изотопа. Так, уран-238 содержит 92 протона и 146 нейтронов; в уране-235 тоже 92 протона, но 143 нейтрона. Ядра всех изотопов химических элементов образуют группу нуклидов.
Некоторые нуклиды стабильны, т.е. в отсутствие внешнего воздействия никогда не претерпевают никаких превращений. Большинство же нуклидов нестабильны, они все время превращаются в другие нуклиды. В качестве примера возьмем хотя бы атом урана-238, в ядре которого протоны и нейтроны едва удерживаются вместе силами сцепления. Время от времени из него вырывается компактная группа из четырех частиц: двух протонов и двух нейтронов (α-частица). Уран-238 превращается, таким образом, в торий-234, в ядре которого содержатся 90 протонов и 144 нейтрона. Но торий-234 также нестабилен. Его превращение происходит, однако, не так, как в предыдущем случае: один из его нейтронов превращается в протон, и торий-234 превращается в протактиний-234, в ядре которого содержатся 91 протон и 143 нейтрона. Эта метаморфоза, произошедшая в ядре, сказывается и на движущихся по своим орбитам электронах: один из них становится неспаренным и вылетает из атома. Протактиний очень нестабилен, и ему требуется совсем немного времени на превращение. Далее следуют иные превращения, сопровождаемые излучениями, и вся эта цепочка в конце концов оканчивается стабильным нуклидом свинца (см. рис. 3). Разумеется, существует много таких цепочек самопроизвольных превращений (распадов) разных нуклидов по разным схемам превращений и их комбинациям.
При каждом таком акте распада высвобождается энергия, которая и передается дальше в виде излучения. Можно сказать, (хотя это и не совсем строго), что испускание ядром частицы, состоящей из двух протонов и двух нейтронов, - это альфа-излучение: испускание электрона, как в случае распада тория-234, - это бета-излучение. Часто нестабильный нуклид оказывается настолько возбужденным, что испускание частицы не приводит к полному снятию возбуждения; тогда он выбрасывает порцию чистой энергии, называемую гамма-излучением (гамма-квантом). Как и в случае рентгеновских лучей (во многом подобных гамма-излучению), при этом не происходит испускания каких-либо частиц.
Весь процесс самопроизвольного распада нестабильного нуклида называется радиоактивным распадом, а сам такой нуклид - радионуклидом. Но хотя все радионуклиды нестабильны, одни из них более нестабильны, чем другие.

Рис. 3
Например, протактиний-234 распадается почти моментально, а уран-238 - очень медленно. Половина всех атомов протактиния в каком-либо радиоактивном источнике распадается за время, чуть ... продолжение

Вы можете абсолютно на бесплатной основе полностью просмотреть эту работу через наше приложение.
Похожие работы
Ветеринарно-санитарная экспертиза и дезактивация при радиационном загрязнении животных
Ядерное оружие
Правила регистрации, ведения учета случаев профессиональных заболеваний и отравлений, а также ведения отчетности по ним
Радиоактивные отходы
Структура атома, изотопы и радиоактивность: основные понятия и явления в физике
Радиационное Загрязнение Окружающей Среды: Причины, Виды и Последствия
Расчет эффективного атомного номера элементов в сложных средах и оценка статистической погрешности ядерно-геофизических измерений
Радиоактивность и ее Влияние на Живые Организмы: Типы Распада, Физико-биологические Свойства и Биологическое Воздействие Ионизирующих Лучей
Воздействие ионизирующего излучения на организм человека: морфологические изменения и защита от радиации
Влияние Ионизирующих Лучей на Организм Животных: Морфологические и Биохимические Изменения
Дисциплины