Магнитное обогащение полезных ископаемых


Тип работы:  Отчет по практике
Бесплатно:  Антиплагиат
Объем: 18 страниц
В избранное:   
Министерство образования и науки Республики Казахстан
НАО ВОСТОЧНО-КАЗАХСТАНСКИЙ
ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени Д. СЕРИКБАЕВА

Школафакультет ________________________________

ОТЧЕТ

о прохождении________________________ _______________ практики
(учебной)
обучающегося_______________________ _курса___________________группы
образовательная программа__________________________ ________________
(шифр, наименование ОП)

(Ф.И.О. обучающегося)
Место прохождения практики:
___________________________________ _______________________________
(название организации, предприятия)
Сроки практики:
с____________ 20____ г. по _____________ 20___ г.

Руководитель практики от НАО ВКТУ имени Д. Серикбаева:
___________________________________ ______________________________
подпись(ФИО, ученая степень, звание, должность)

Усть-Каменогорск 2022

Содержание

Введение 3
1 Магнитное обогащение полезных ископаемых 4
2 Режимы магнитной сепарации 7
3 Эксперимент. 12
4 Техника безопасности при использовании магнитных сепараторов обогащении полезных ископаемых 15
5 Область применения магнитных методов и их технологические задачи 16
6 Технологические задачи магнитных методов обогащения 17
Заключение 19
Список использованных литератур 20

Введение
При обогащении возможно получение как конечных товарных продуктов (известняк, асбест, графит и др.), так и концентратов, пригодных для дальнейшей химической или металлургической переработки. Обогащение - наиважнейшее промежуточное звено между добычей полезных ископаемых и использованием извлекаемых веществ. В основе теории обогащения лежит анализ свойств минералов и их взаимодействия в процессах разделения - минералургия.
Обогащение позволяет существенно увеличить концентрацию ценных компонентов. Содержание важных цветных металлов - меди, свинца, цинка - в рудах составляет 0,3-2 %, а в их концентратах - 20-70 %. Концентрация молибдена увеличивается от 0,1-0,05 % до 47-50 %, вольфрама - от 0,1-0,2 % до 45-65 %, зольность угля снижается от 25-35 % до 2-15 %. В задачу обогащения входит также удаление вредных примесей минералов (мышьяк, сера, кремний и т. д.). Извлечение ценных компонентов в концентрат в процессах обогащения составляет от 60 до 95 %.
Операции обработки, которым подвергают на обогатительной фабрике горную массу, подразделяют на: основные (собственно обогатительные); подготовительные и вспомогательные.
Все существующие методы обогащения основаны на различиях в физических или физико-химических свойствах отдельных компонентов полезного ископаемого. Существуют, например, гравитационное, магнитное, электрическое, флотационное, бактериальное и другие способы обогащения.

Магнитное обогащение полезных ископаемых
Первый патент на способ магнитного обогащения полезных ископаемых (железной руды) был получен в Англии в 1792 году на имя Вильяма Фулартона. Промышленная реализация магнитного способа обогащения, главным образом для железняка, началась в конце XIX столетия. В Швеции Венстрем и Таге Мортзелл предложили сухой барабанный сепаратор с изменяемой полярностью. Аналогичный магнитный сепаратор был создан в Италии Пальмером в 1854 году. Широкое применение магниттной сепарации железняка началось в Швеции в начале ХХ столетия и было связано с разработкой Грендалем технологии барабанной сепарации для мокрого магнитного обогащения в 1906 году.
Классификация процессов магнитного обогащения
Схема разделения изотопов урана с помощью мощного магнитного поля. На движущиеся в магнитном поле ядра атомов действует сила Лоренца: эта сила одинакова как для урана-235, так и для урана-238, но более тяжёлые ядра атомов урана-238 обладают бомльшей инерцией, и поэтому движутся во внешнем потоке
По областям применения различают подготовительные, основные (собственно магнитное разделение) и вспомогательные процессы магнитного обогащения.
Подготовительные процессы:
улавливание металлолома,
намагничивание и размагничивание,
магнитная агрегация.
Вспомогательные процессы:
сгущение и обезвоживание;
измельчение в магнитном поле.
В зависимости от величины магнитной восприимчивости материала магнитная сепарация разделяется на слабомагнитную и сильномагнитную, в зависимости от среды, в которой проводится разделение, - на мокрую и сухую.
По принципу использования магнитного поля процессы магнитного обогащения разделяют на прямые и комбинированные (непрямые). К прямым принадлежат процессы разделения в слабых и сильных полях, регенерации суспензий, извлечения металлолома, магнитного пылеулавливания, термомагнитной и динамической агрегации.

Непрямые процессы:
магнитогидростатическая (МГС);
магнитогидродинамическая (МГД) сепарация;
сгущение материалов, которые предварительно прошли магнитную флокуляцию, сепарацию полезных компонентов, локализованных на магнитных носителях.
Основы магнитного обогащения:
Крупность обогащаемой руды - до 150 мм. Для увеличения контрастности магнитных свойств разделяемой смеси используют термообработку.
При магнитном обогащении на минеральное зерно в неоднородном магнитном поле действует магнитная сила Fмагн, которая определяется формулой, где :
ч - удельная магнитная восприимчивость, м3 кг;
- магнитная сила поля, А2 м3.
На результат s магнитной сепарации существенно влияет разница между удельными магнитными восприимчивостями ч1 и ч2 разделяемых зёрен, неоднородность поля сепаратора по величине магнитной силы и крупность частиц обогащаемого материала.
Отношение магнитных восприимчивостей разделяемых при обогащении рудных и нерудных зёрен называется коэффициентом селективности магнитного обогащения.
Для успешного разделения минералов в магнитных сепараторах необходимо, чтобы величина коэффициента селективности магнитного обогащения была не меньше 3 - 5.
Соответственно классификации процессов магнитного обогащения различаются и аппараты, в которых происходят эти процессы:
магнитные сепараторы;
дешламаторы;
магнитогидростатические сепараторы;
магнитогидродинамические сепараторы;
электродинамические сепараторы;
железоотделители;
металлоразделители;
устрройства для размагничивания и намагничивания материалов.
Разделение минеральных частиц по магнитным свойствам может осуществляться в трёх режимах:
режим отклонения магнитных частичек характеризуется повышенной производительностью, но сниженой эффективностью процесса;
режим удержания магнитных частичек характеризуется высоким извлечением магнитного компонента;
режим извлечения магнитных частичек характеризуется высоким качеством магнитного продукта, но снижением его извлечения.
Современные магнитные сепараторы имеют эффективность разделения и производительность в 5-10 раз бомльшую, чем образцы середины ХХ столетия. В сравнении с другими методами себестоимость магнитной сепарации для кусковых сильномагнитных материалов самая низкая, для мелкодисперсных - вторая после самого дешёвого методу винтовой сепарации. Производительность сепараторов для кусковых руд достигает 500 тчас, для тонкоизмельчённых сильномагнитных - 200 тчас, слабомагнитных - 40 тчас.
Перспективность магнитного обогащения обуславливается непрерывным интенсивным развитием технологии производства магнитных материалов и техники сильных магнитных полей, параметры которых постоянно улкчшаются, а себестоимость обогащения снижается.

Режимы магнитной сепарации
Сепарация в магнитном поле основана, главным образом, на различии в магнитных свойствах разделяемых минералов. Однако минералы при перемещении в магнитном поле сепаратора подвергаются воздействию не только магнитных, но и механических сил.
Кроме магнитных сил, на частицы действуют сила тяжести и силы выталкивания и сопротивления среды, в которую помещаются зерна (ее плотность, вязкость, смачиваемость, степень турбулизации потока и др.). Результат взаимодействия указанных сил предопределяет различный характер движения частиц, что позволяет произвести их разделение.
Возникающие силы подразделяются на активные, пассивные и диссипативные. Для сильномагнитных зерен активной является магнитная сила, а пассивной - сила тяжести и силы выталкивания и сопротивления среды; для немагнитных зерен активной силой является сила тяжести, другие силы являются пассивными. Диссипативные силы, связанные с потерями энергии, уменьшают активные и пассивные силы. Минеральные зерна, у которых магнитная сила Fм больше суммы механических отрывных сил Fмех, при прохождении через магнитное поле будут притягиваться к полюсам магнитной системы и попадут в магнитный продукт. Немагнитные зерна или зерна с низкой магнитной восприимчивостью без взаимодействия с магнитным полем пройдут через него и попадут в немагнитный продукт.
Для того чтобы разделить смесь минералов, различающихся по магнитным свойствам, должны одновременно соблюдаться следующие условия:
а) магнитная сила, действующая на сильно магнитные минералы, должна быть равна или больше равнодействующей всех механических сил, действующих на эти минералы в направлении, противоположном магнитной силе;
б) магнитная сила, действующая на слабо магнитные минералы, должна быть меньше равнодействующей всех механических сил, действующих на эти минералы. Эти условия запишем следующим образом:
F'мехF'магнF"магнF"мех,
где F'магн - магнитная сила, возникающая в сильно магнитных минералах, извлекаемых в магнитную фракцию;
F"магн - то же, возникающая в менее магнитных минералах;
F'мех, F"мех - равнодействующая механических сил, действующих на минералы, выделяющиеся в магнитную и немагнитную фракции.
Разделение руды в магнитном поле под влиянием магнитных и механических сил осуществляется в режиме извлечения магнитных минералов (нижнее питание) или в режиме их удерживания (верхнее питание). Средой, в которой осуществляется разделение минералов, может быть воздух или вода. В соответствии с этим процесс называется мокрой или сухой магнитной сепарацией.

а - нижняя подача питания (режим извлечения);
б - верхняя подача питания (режим удерживания)
Рисунок 4.4 - Схема сил, действующих на частицы минерала в рабочей зоне сепаратора

Режим извлечения
В этом случае руда подается под ленту, барабан или валок и перемещается по рабочей зоне сепаратора по прямолинейной или криволинейной траектории. Рассмотрим динамику процесса сухой магнитной сепарации при криволинейном перемещении руды через рабочую зону сепараторов (рисунок 1, а). На магнитную частицу действуют следующие силы (отнесенные к зерну массой, равной единице): 1) магнитная сила, нормальная к поверхности барабана, 2) сила трения руды о плоскость fтр (магнитные частицы под воздействием Fмагн отрываются от наклонной плоскости, поэтому для них fтр=0); 3) сила инерции Fц, возникающая за счет кривизны питающего лотка. Влияние последней силы на процесс разделения незначительно и ею можно пренебречь. Обозначим: t1 - время, за которое частица пройдет длину зоны притяжения L; t2 - время, за которое частица поднимется на высоту зоны притяжения h. Если частица поступает в рабочую зону с начальной скоростью V0, путь L, который за время t1 пройдет частица, Одновременно магнитная частица должна переместиться в направлении к полюсу на расстояние.

Режим удерживания
В этом случае руда подается в верхнюю часть барабана и перемещение ее через рабочую зону сепаратора происходит по криволинейной траектории (рисунок 1б). На магнитное зерно при разделении в воздушной среде действуют следующие силы (отнесенные к зерну массой, равной единице):
1) магнитная сила, нормальная к поверхности барабана
Fмагн= μ0 χHgradH
2) сила тяжести fm =g, имеющая две составляющие: нормальную к поверхности барабана fн =gcosα и касательную к этой поверхности fн =gsinα,

3) центробежная сила, нормальная к поверхности барабана Fц ,
Необходимая удельная магнитная сила для удерживания магнитных минералов, содержание которых в руде αм=0,3 +- 0,9,
Таким образом, основными механическими силами, определяющими удельную магнитную силу при сепарации в режиме удерживания, являются центробежная сила и сила тяжести зерна, причем при значениях угла α от 0 до 90° последняя уменьшает необходимую магнитную силу.
В зависимости от направления перемещения продуктов относительно друг друга различают следующие режимы сепарации (рисунок 2):
прямоточный - продукты сепарации движутся в том же направлении, что и исходная руда; противоточный - магнитная фракция движется в направлении, противоположном направлению движения исходной руды;
полупротивоточный - исходная руда, направляемая на магнит, разделяется на магнитную и немагнитную фракции, отклоняющиеся под прямыми углами в разные стороны.

а - прямоточный; б - противоточный; в - полупротивоточный
Рисунок 4.5 - Режимы магнитной сепарации

Условия разделения при прямоточном режиме не обеспечивают полного извлечения магнитных зерен, поскольку слабомагнитные зерна, притягиваемые магнитом с меньшей скоростью, должны притягиваться к уже образовавшемуся на нем слою сильно магнитных зерен и в связи с этим возрастает вероятность их отрыва и попадания в немагнитный продукт.
Противоточный режим обеспечивает более благоприятные условия для извлечения магнитных зерен, так как слабо магнитные зерна могут притягиваться к поверхности магнита, свободной от сильно магнитных зерен.
При полупротивоточном режиме направление движения исходного питания совпадает с направлением магнитных сил, действующих на магнитные частицы, вследствие этого облегчается их извлечение.
Классификация сепараторов
Серийно выпускаются сепараторы двух типов: электромагнитные и с постоянными магнитами. Несмотря на конструктивные отличия магнитных систем и других узлов, все сепараторы делятся на две группы:
1) сепараторы со слабым магнитным полем (напряженность магнитного поля от 70 до 120 кАм и сила поля от 3·105 до 6·105 кА2м3), предназначенные для выделения из руд сильномагнитных минералов;
2) сепараторы с сильным магнитным полем (напряженность магнитного поля от 800 до 1600 кАм и сила поля от 3·107 до 1210·107 кА2м3), предназначенные для выделения из руд слабомагнитных минералов. Сепарация может осуществляться в воздушной или водной среде и магнитные сепараторы, в свою очередь, подразделяются на сухие и мокрые.
В зависимости от направления движения продуктов относительно друг друга различают сепараторы с прямоточной, противоточной и полу-противоточной ваннами. По конструктивному исполнению основного рабочего органа и виду среды, в которой происходит разделение, сепараторы делятся на:
барабанные для мокрой сепарации, барабанные для сухой сепарации, валковые для мокрой сепарации, валковые для сухой сепарации, дисковые для сухой сепарации.

Эксперимент
Цель эксперимента: изучение факторов влияюших на процесс обогашения алмазных руд в магнитном сепараторе и методы их регулирования для достижения максимального извлечения.
1 .Напряженность магнитного поля. Повышение напряженности поля приводит к увеличению магнитной силы и, как следствие, позволяет извлекать в магнитную фракцию минералы с более низкой магнитной восприимчивостью. Это оказывает влияние на выход и качество продуктов разделения. Однако чрезмерное увеличение напряженности магнитного поля может привести к ... продолжение

Вы можете абсолютно на бесплатной основе полностью просмотреть эту работу через наше приложение.
Похожие работы
Теоретические основы обогащения и переработки сырьевых материалов в производственных процессах
Вода в химической промышленности: свойства, требования и очистка
Технология производства гранулированных камней для железорудных концентратов и процесс доменной печи
Минералогическая и Петрографическая Характеристика Фосфоритных Руд Бассейна Каратау: Классификация, Структурно-Текстуральные Особенности и Физико-Механические Свойства
Разработка способа получения высокочистого оксида железа из отработанных растворов
Магнитное поле: воздействие на живые организмы и экосистемы, магнитная терапия и ее эффективность
Технико-экономическое обоснование разработки месторождений полезных ископаемых
Структура и Эволюция Земли: Формирование Горных Пород и Месторождений Полезных Ископаемых
Энергетический Баланс и Рациональное Использование Топливно-Энергетических Ресурсов в Народном Хозяйстве
Системный подход в современной науке: принципы и уровни организации материи
Дисциплины