Хром, молибден, вольфрам химический элементы


Тип работы:  Реферат
Бесплатно:  Антиплагиат
Объем: 10 страниц
В избранное:   
Алматинский Технологический Университет Министерство Науки и Образования Р. К. Реферат на тему: « Cr, Mo, W »

Выполнила: студентка гр. ТБ-05-2

Ким Л.

Проверила:

Аязбекова М. А

Алматы, 2008


оглавление

1. общие сведения 4

физические свойства вольфрама: 4

2. Области применения 4

3. основные минералы вольфрама 5

4. оценка месторождений при поисках и разведке 5

5. разработка месторождений 8

6. Получение металлического вольфрама и его соединений 9
1. общие сведения

Вольфрам входит в 4-ю группу периодической системы Менделеева. Его атомный номер 74, атомная масса 183, 85. Природный вольфрам состоит из смеси пяти изотопов

Массовые числа изотопов: 180 182 183 184 186

Содержание природной смеси 0, 13 26, 31 14, 28 30, 64 28, 64

соответственно %

физические свойства вольфрама:

плотность 19, 3 г/см 3 твердость по Бринеллю 488 кг/мм 2 температура плавления 3410 о С, температура кипения 5930 о С,

электрическое сопротивление при 20 о С 5, 5 . 10 - 4 , при 2700 о С 90, 4 . 10 -4 .

Валентность переменчивая от2 до6 наиболее устойчив 6-валентный вольфрам 3- и 2-валентные соединения вольфрама неустойчивы и практического значения не имеют. Радиус атома вольфрама- 0, 141 нм.

Кларк вольфрама земной коры составляет по Виноградову, 0, 00013 г/т. его среднее содержание в горных породах, г/т: ультраосновных - 0, 1, основных - 0, 7, средних - 0, 00012, кислых - 0, 00019.

Вольфрам является одним из наиболее тяжелых и самым тугоплавким металлом. В чистом виде представляет собой металл серебристо-белого цвета, похожий на платину, при температуре около 1600 о С хорошо поддается ковке и может быть вытянут в тонкую нить.

Вольфрам имеет высокую стойкость: при комнатной температуре не изменяется на воздухе; при температуре красного каления медленно окисляется в ангидрид вольфрамовой кислоты; в соляной, серной и плавиковой кислотах почти не растворим. В азотной кислоте и царской водке окисляется с поверхности. В смеси азотной плавиковой кислоты растворяется, образуя вольфрамовую кислоту. Из соединений вольфрама наибольшее значение имеют: триоксид вольфрама или вольфрамовый ангидрид, вольфроматы, перекисные соединения с общей формулой ME 2 WO X . Соединения с галогенами, серой и углеродом.

Общие мировые запасы вольфрама (без России) составляют около 7, 5 млн. тонн, подтвержденные запасы около 4 млн. тонн. Наиболее крупными запасами обладают: Казахстан, Китай, Канада и США. Мировое производство вольфрама составляет 18-20 тысяч тонн в год в т. ч. в Китае 10, России 3, 5; Казахстане 0, 7, Австрии 0, 5. Основные экспортеры вольфрама: Китай, Корея, Австрия. Главные импортеры: США, Япония, Германия Великобритания.

2. Области применения

Вольфрам находит широкое применение в производстве сталей в качестве легирующей добавки, в твердых жаропрочных сплавах, в электротехнике, в производстве кислотоупорных и специальных сплавов, в химической промышленности.

Долгое время более 60 % вольфрама использовалось в металлургии для изготовления инструментальных, нержавеющих легированных и специальных сталей. Присадка вольфрама к стали 1-20 % придает ей прочность, твердость, тугоплавкость, самозакаливаемость, кислотоупорность, повышает предел упругости и сопротивление растяжению. В настоящее время 55 % вольфрама в виде карбида идет на изготовление твердых сплавов, используемых для буровых коронок фельер для волочения проволоки, штампов, пружин, деталей пневматических инструментов, клапанов двигателей. Твердые сплавы, состоящие из вольфрама (3-15 %), хрома (25-35 %) и кобальта (45-65 %) с примесью 0, 5-2, 7 % углерода, применяются для покрытия сильно изнашивающихся деталей. Сплавы вольфрама медью и серебром являются хорошими контактными материалами и применяются в рабочих частях рубильников, выключателей и др. Сплав вольфрама (85-95 %) с никелем и медью обладающий высокой плотностью, используется в радиотерапии для устройства защитных экранов от гамма лучей.

Металлический вольфрам применяется для изготовления нитей накаливания в электролампах, электродов для водородной сварки, заменяя платину, для нагревателей высокотемпературных электропечей, работающих при температуре свыше 3000 о С, термопар, роторов в гироскопах оптических пирометров для катодов рентгеновских трубок, электровакуумной аппаратуры, радиоприборов, выпрямителей и гальвонометров.

Соединения вольфрама применяются в качестве красителей, для придания тканям огнестойкости и водоустойчивости.

В США вольфрам используется (%) 68 - в производстве машин и оборудования для металлообрабатывающей, горнодобывающей и строительной промышленности, 12 - для изготовления ламп и светильников, 12 - в электронной промышленности и транспорте, 5 - в химических отраслях и 3 - в прочих областях.

3. основные минералы вольфрама

Известно 20 вольфрамовых минералов. Наиболее распространены минералы группы вольфрамита и шеелит, имеющие промышленное значение. Реже встречается сульфид вольфрамита - тунгстенсит (WS 2 ), а также окисноподобные соединения - тунгстит, ферро - и купротунгстит, гидротунгстит. Довольно широко распространены псиломеланы, вады с высоким содержанием вольфрама.

В экзогенных условиях образуются минералы группы вульфенита: штольцит - βΠβΩΟ 4 изоструктурный с шеелитом и его моноклинная разновидность−распит − αΠβΩΟ 4 .

Группа вольфрамита представлена минералами изоморфного ряда ΜνΩΟ 4 и ΦεΩΟ 4.

4. оценка месторождений при поисках и разведке

На площадях получивших в результате региональных исследований оценку прогнозных ресурсов вольфрамого сырья по категориям Р 3 и Р 2 проводят поисковые работы.

Целью поисков является выявление месторождений вольфрама. Для этого проводят изучение перспективной площади с составлением прогнозных карт масштаба 1:50 000 на геолого-структурнофациальной основе, оконтуривание орудинения и установление факторов контролирующих его локализацию. Предварительно оценивают параметры рудных тел на поверхности и распространения оруденения на глубину залегания рудопродуцирующих магматических образований, размеры, форму, комплексность и продуктивность геохимических аномалий, содержание вольфрама и других сопутствующих элементов в рудных телах, степень окисленности руд, контуры зон, участков рудных пересечений с промышленными параметрами.

На участках развития потенциального оруденения оценивают прогнозные ресурсы по категории Р 2 и частично - Р 1 и при хороших геолого-экономических показателях переходят к оценочным работам. Целью оценочных работ является установления промышленного значения оруденения и выбор объектов под проектирование разведки и эксплуатации

Результатом оценочных работ является наличие или отсутствие коммерческого открытия, которое обосновывают:

Геологическая карта участка в масштабах 1 : 5 000 - 1 : 2 000.

Структурно-литолого-фациальные карты с разрезами.

Планы, разрезы и проекции рудных тел.

Карта поисково-оценочных критериев и признаков с отображением факторов рудолокализации: рудовмещающих литологических комплексов и структур, фаций метасамотитов контуров рудных тел и минерализационных зон, элементов зональности минеральных типов руд, литологических ореолов элементов-индикаторов орудинения, комплексных геофизических аномалий.

Прогнозная карта на структурно-фациальной основе с контурами промышленных и предполагаемых рудных тел и принципиальной моделью месторождения.

Подсчитанные ресурсы категории Р 1 , запасы категории С 2 и частично С 1 .

Данные о масштабах месторождения и качестве руд.

Технико-экономические расчеты целесообразности разведки и отработки месторождения.

Основная цель разведки, как начальной стадии разработки - обоснование промышленного значения месторождения и ожидаемых технико-экономических показателей, составления проекта освоения.

Для этого устанавливают:

Формы и размеры рудных тел и их запасы по категориям С 1 и С 2 , иногда и категории В.

Границы месторождения, его геолого-структурные особенности, прогнозные ресурсы категории Р1.

Среднее содержание и фазовый состав основных и сопутствующих компонентов.

Технологические свойства руд, типы и сорта руд, степень извлечения вольфрама и сопутствующих компонентов по лабораторным и при необходимости - укрупненным пробам.

Горнотехнические условия отработки.

Гидрогеологическую обстановку месторождения.

Геолого-экономические условия месторождения, водо- и энергоснабжение будущего предприятия, капиталовложения, производительность по руде и концентратам, себестоимость продукции, рентабельность.

Технология ведения геологоразведочных работ на вольфрам зависит от задач той или иной стадии, ландшафтно-геохимической обстановки, вероятного промышленного типа оруденения.

Для выявления и оценки вольфрамовых месторождений используются геологические геохимические и геофизические методы, горно-буровые работы и опробование, минералого-петрографические и аналитические методы исследований. В зависимости от детальности изучения меняется роль и соотношение применяемых методов.

Важное значение при поисках вольфрама приобрели дистанционные методы, основанные на интерпретации космо- и аэрофотоснимков, снятых в разных спектрах. Эти данные дают важный материал для расшифровки морфоструктурных позиций потенциальных рудных объектов, позволяя более централизованно ориентировать поиски.

Визуальные поиски позволяют выявлять прямые признаки оруденения в открытых и частично открытых районах. Этому способствуют свойства вольфрамита и шеелита, длительно сохраняющихся в условиях денудации. Разрушение вольфрамита в зоне окисления сопровождается образованием по нему тукнгстита или гидроксдов железа, которые содержат повышенные концентрации вольфрама диагностика вольфрамита обычно не вызывает затруднений. Шеелит устойчив в зоне окисления, но иногда переходит в трудно определяемую мучнистую разновидность. Поэтому для применяются люминоскопы, использующие способность шеелита к свечению в ультрафиолетовых лучах.

Шлиховой метод позволяет выявлять прямые признаки вольфрамового оруденения. Он является наиболее чувствительным и обладает высокой разрешающей способностью. С его помощью улавливаются содержание триоксида вольфрама n * 10 -6 % и даже n * 10 -7 %. “знаки” в шлиховой пробе превышают чувствительность экспрессного полуколичественного спектрального анализа.

При поисках вольфрамовых месторождений применяется литохимический метод по вторичным и первичным ореолам рассеивания вольфрама и сопутствующим элементов.

Поиски по вторичным ореолам применяются в районах развития открытых ореолов: осадосных, наложенных, диффузионного и аккумулятивного типов.

Это гумидные зоны горно-таежных областей, аккумулятивно-денудационные равнины в умеренно влажном и умеренно аридном климатах.

Поискам по вторичным ореолам предшествует ландшафтно-геохимических условий, составление соответствующих карт и выяснение положения представительного горизонта. Отбор проб производиться из копушей и материала скважин. Поиски по первичным ореолам применяются на обнаженных территориях или с применением скважин на закрытых площадях.

Геофизические методы в комплексе с геологическими решают задачи выявление благоприятных факторов оруденения, его оконтуривания и оценки прогнозных ресурсов. При поиске и оценке вольфрамового оруденения обязательно проведение гравио и магниторазведки, эффективно применение электроразведочных методов, гамма спектрометрического метода.

... продолжение

Вы можете абсолютно на бесплатной основе полностью просмотреть эту работу через наше приложение.
Похожие работы
Разработка и производство сталелеплавильных кластеров: классификация, свойства и применение
Сера: история открытия, свойства и приложения - от алхимиков до современной промышленности
Технологические аспекты производства редких металлов: от добычи до получения чистых материалов
Структура и свойства углеродистых сталей: классификация, химические свойства и влияние легирующих элементов
Развитие черной и цветной металлургии: технологии производства стали, чугуна и других сплавов
Микроэлементы: Кобальт, Молибден, Свинец, Йод - их роль в живых организмах и промышленности
Роль микроэлементов в биологии и медицине: железо, кобальт, никель, медь, цинк и другие
Арматурные стали и их свойства в конструкциях: классификация, применение и характеристики
Вольфраматы и технологии: свойства, получение и применения
Формыexistence Ионов Молибдена в Развличных Средах и Мировые Запасы
Дисциплины



Реферат Курсовая работа Дипломная работа Материал Диссертация Практика - - - 1‑10 стр. 11‑20 стр. 21‑30 стр. 31‑60 стр. 61+ стр. Основное Кол‑во стр. Доп. Поиск Ничего не найдено :( Недавно просмотренные работы Просмотренные работы не найдены Заказ Антиплагиат Просмотренные работы ru ru/