Моделирование участка производственного цеха


Тип работы: Курсовая работа
Бесплатно: Антиплагиат
Объем: 40 страниц
В избранное:
Содержание
Введение
1. Теоретические основы компьютерного моделирования
1. 1 Основные положения теории массового обслуживания
1. 1. 1 Система массового обслуживания
1. 1. 2 Классификация СМО
1. 1. 3 Характеристики СМО
1. 2 Имитационное моделирование
1. 2. 1 Понятия имитационной модели, классификация и структура моделей
1. 2. 2 Достоинства и недостатки имитационного моделирования
1. 2. 3 Этапы построения имитационной модели
1. 2. 4 Оценка имитационных моделей
1. 2. 4. 1 Постановка задачи и определение типа модели
1. 2. 4. 2 Проверка адекватности модели
1. 2. 4. 3 Стратегическое и тактическое планирование
1. 2. 4. 4 Экспериментирование и анализ чувствительности
2. Моделирование участка производственного цеха
2. 1 Краткие сведения из теории языка GPSS
2. 2 Основные правила и операторы языка GPSS
2. 2. 1 Структура операторов GPSS
2. 2. 2 Основные операторы языка GPSS
2. 2. 3 Основные команды интерпретатора GPSS
2. 3 Модель участка производственного цеха
Заключение
Введение
В исследовании операций широко применяются как аналитические, так и статистические модели. Каждый из этих типов имеет свои преимущества и недостатки. Аналитические модели более грубы, учитывают меньшее число факторов, всегда требуют каких-то допущений и упрощений. Зато результаты расчета по ним легче обозримы, отчетливее отражают присущие явлению основные закономерности. А, главное, аналитические модели больше приспособлены для поиска оптимальных решений. Статистические модели, по сравнению, с аналитическими, более точны и подробны, не требуют столь грубых допущений, позволяют учесть большое (в теории - неограниченно большое) число факторов. Но и у них - свои недостатки: громоздкость, плохая обозримость, большой расход машинного времени, а главное, крайняя трудность поиска оптимальных решений, которые приходятся искать «на ощупь», путем догадок и проб.
Наилучшие работы в области исследования операций основаны на совместном применении аналитических и статистических моделей. Аналитическая модель дает возможность в общих чертах разобраться в явлении, наметить как бы контур основных закономерностей. Любые уточнения могут быть получены с помощью статистических моделей.
Имитационное моделирование применяется к процессам, в ход которых может время от времени вмешиваться человеческая воля. Человек, руководящий операцией, может в зависимости от сложившейся обстановки, принимать те или другие решения, подобно тому, как шахматист, глядя на доску, выбирает свой очередной ход. Затем приводится в действие математическая модель, которая показывает, какое ожидается изменение обстановки в ответ на это решение и к каким последствиям оно приведет спустя некоторое время. Следующее «текущее решение» принимается уже с учетом реальной новой обстановки и т. д. В результате многократного повторения такой процедуры руководитель как бы «набирает опыт», учится на своих и чужих ошибках и постепенно выучивается принимать правильные решения - если не оптимальные, то почти оптимальные.
В современной литературе не существует единой точки зрения по вопросу о том, что понимать под имитационным моделированием. Так существуют различные трактовки:
в первой - под имитационной моделью понимается математическая модель в классическом смысле;
во второй - этот термин сохраняется лишь за теми моделями, в которых тем или иным способом разыгрываются (имитируются) случайные воздействия;
в третьей - предполагают, что имитационная модель отличается от обычной математической более детальным описанием, но критерий, по которому можно сказать, когда кончается математическая модель и начинается имитационная, не вводится.
Основные положения теории массового обслуживания
Теория массового обслуживания опирается на теорию вероятностей и математическую статистику.
На первичное развитие теории массового обслуживания оказали особое влияние работы датского ученого А. К. Эрланга (1878-1929) .
Теория массового обслуживания - область прикладной математики, занимающаяся анализом процессов в системах производства, обслуживания, управления, в которых однородные события повторяются многократно, например, на предприятиях бытового обслуживания; в системах приема, переработки и передачи информации; автоматических линиях производства и др.
Предметом теории массового обслуживания является установление зависимостей между характером потока заявок, числом каналов обслуживан6ия, производительностью отдельного канала и эффективным обслуживанием с целью нахождения наилучших путей управления этими процессами.
Задача теории массового обслуживания - установить зависимость результирующих показателей работы системы массового обслуживания (вероятности того, что заявка будет обслужена; математического ожидания числа обслуженных заявок и т. д. ) от входных показателей (количества каналов в системе, параметров входящего потока заявок и т. д. ) . Результирующими показателями или интересующими нас характеристиками СМО являются - показатели эффективности СМО, которые описывают способна ли данная система справляться с потоком заявок.
Задачи теории массового обслуживания носят оптимизационный характер и в конечном итоге включают экономический аспект по определению такого варианта системы, при котором будет обеспечен минимум суммарных затрат от ожидания обслуживания, потерь времени и ресурсов на обслуживание и простоев каналов обслуживания.
Система массового обслуживания.
Система обслуживания считается заданной, если известны:
1) поток требований, его характер;
2) множество обслуживающих приборов;
3) дисциплина обслуживания (совокупность правил, задающих процесс обслуживания) .
Каждая СМО состоит из какого-то числа обслуживающих единиц, которые называются каналами обслуживания. В качестве каналов могут фигурировать: линии связи, различные приборы, лица, выполняющие те или иные операции и т. п
Всякая СМО предназначена для обслуживания какого-то потока заявок, поступающих в какие-то случайные моменты времени. Обслуживание заявок продолжается какое-то случайное время, после чего канал освобождается и готов к приему следующей заявки. Случайный характер потока заявок и времен обслуживания приводит к тому, что в какие-то периоды времени на входе СМО скапливается излишне большое число заявок (они либо становятся в очередь, либо покидают СМО не обслуженными) ; в другие же периоды СМО будет работать с недогрузкой или вообще простаивать.
Процесс работы СМО представляет собой случайный процесс с дискретными состояниями и непрерывным временем; состояние СМО меняется скачком в моменты появления каких-то событий ( или прихода новой заявки, или окончания обслуживания, или момента, когда заявка, которой надоело ждать, покидает очередь ) .
Классификация СМО.
Для облегчения процесса моделирования используют классификацию СМО по различным признакам, для которых пригодны определенные группы методов и моделей теории массового обслуживания, упрощающие подбор адекватных математических моделей к решению задач обслуживания в коммерческой деятельности. (см. рис. 1)
Характеристики СМО.
Перечень характеристик систем массового обслуживания можно представить следующим образом:
- среднее время обслуживания;
- среднее время ожидания в очереди;
- среднее время пребывания в СМО;
- средняя длина очереди;
- среднее число заявок в СМО;
- количество каналов обслуживания;
- интенсивность входного потока заявок;
- интенсивность обслуживания;
- интенсивность нагрузки;
- коэффициент нагрузки;
- относительная пропускная способность;
- абсолютная пропускная способность;
- доля времени простоя СМО;
- доля обслуженных заявок;
- доля потерянных заявок;
- среднее число занятых каналов;
- среднее число свободных каналов;
- коэффициент загрузки каналов;
- среднее время простоя каналов.
Имитационное моделирование
Зачем нужно имитационное моделирование?
Когда задача имеет слишком большую размерность или не поддается решению в явном (аналитическом) виде по каким-то другим причинам, используют имитационное моделирование.
По существу, каждая модель есть форма имитации. Имитационное моделирование является широким и недостаточно четко определенным понятием, имеющим очень большое значение для лиц, ответственных за проектирование и функционирование систем.
Подобно всем мощным средствам, существенно зависящим от искусства их применения, имитационное моделирование способно дать либо очень хорошие, либо очень плохие результаты. Оно может либо пролить свет на решение проблемы, либо ввести в заблуждение. Поэтому важно, чтобы руководитель или тот, кто принимает решения и будет пользоваться результатами моделирования, представлял себе смысл вводимых допущений, сильные и слабые стороны метода, его
преимущества и тонкости. Подлинное умение пользоваться техникой имитационного моделирования можно приобрести лишь на опыте.
Определение :
Имитационное моделирование есть процесс конструирования модели реальной системы и постановки экспериментов на этой модели с целью либо понять поведение системы, либо оценить (в рамках ограничений, накладываемых некоторым критерием или совокупностью критериев) различные стратегии, обеспечивающие функционирование данной системы.
Таким образом, процесс имитационного моделирования мы понимаем как процесс, включающий и конструирование модели, и аналитическое применение модели для изучения некоторой проблемы. Под моделью реальной системы мы понимаем представление группы объектов или идей в некоторой форме, отличной от их реального воплощения.
Термин "реальный" используется в смысле "существующий или способный принять одну из форм существования". Системы, существующие еще только на бумаге или находящиеся в стадии планирования, могут моделироваться так же, как и действующие системы.
Согласно определению, термин имитационное моделирование может также охватывать стохастические модели и эксперименты с использованием метода Монте-Карло. Иными словами, входы модели и функциональные соотношения между ними могут содержать, а могут и не содержать элемент случайности, подчиняющийся вероятностным законам. Более того, мы не ограничиваем наше определение имитационного моделирования лишь экспериментами, проводимыми с помощью машинных моделей. Много полезных видов имитационного моделирования может быть осуществлено всего лишь при помощи карандаша и листа бумаги.
Имитационное моделирование является экспериментальной и прикладной методологией, имеющей целью:
- описать поведение систем;
- построить теории и гипотезы, которые могут объяснить наблюдаемое поведение;
- использовать эти теории для предсказания будущего поведения системы, т. е. тех воздействий, которые могут быть вызваны изменениями в системе или изменениями способов ее функционирования.
В отличие от большинства технических методов, которые могут быть классифицированы в соответствии с научными дисциплинами, в которые они уходят своими корнями (например, с физикой или химией), имитационное моделирование применимо в любой отрасли науки.
Для моделирования системы необходимо поставить искусственный эксперимент, отражающий основные условия моделируемой ситуации. Для этого мы должны придумать способ имитации искусственной последовательности происходящих в системе событий.
Модель является представлением объекта, системы или понятия (идеи) в некоторой форме, отличной от формы их реального существования. Модель служит обычно средством, помогающим нам в объяснении, понимании или совершенствовании системы. Модель какого-либо объекта может быть или точной копией этого объекта (хотя и выполненной из другого материала и в другом масштабе), или отображать некоторые характерные свойства объекта в абстрактной форме.
Примечание : абсолютно точной моделью объекта является сам этот объект. Все остальные модели - приближенные.
Модель - это используемый для предсказания и сравнения инструмент, позволяющий логическим путем спрогнозировать последствия альтернативных действий и достаточно уверенно указать, какому из них отдать предпочтение. Кроме того, модель может служить эффективным средством общения и осмысления действительности. Имитация - всего лишь один из видов моделирования.
По существу, прогресс науки и техники тесно связан с развитием способности человека создавать модели естественных явлений. Одним из главных элементов, необходимых для эффективного решения сложных задач, является построение и соответствующее использование модели. Такая модель может принимать разнообразные формы, но одна из наиболее полезных и наиболее употребительных форм - это математическая, выражающая посредством системы уравнений существенные черты изучаемых реальных систем и явлений. К сожалению, не всегда возможно создать математическую модель в узком смысле слова. При изучении большинства промышленных и военных систем мы можем определить цели, указать ограничения и предусмотреть, чтобы наша конструкция подчинялась техническим и экономическим законам. При этом могут быть вскрыты и представлены в той или иной математической форме существенные связи в системе. В отличие от этого решение, к примеру, экологических проблем связано с неясными и противоречивыми целями, а также с выбором альтернатив, диктуемых политическим и социальным факторами.
Следовательно, модель должна описывать как количественные, так и качественные характеристики системы.
Модель может применяться в качестве:
- средства осмысления действительности;
- средства общения;
- средства обучения и тренировки;
- инструмента прогнозирования;
- средства постановки экспериментов.
Полезность модели как средства осмысления реальных связей и закономерностей очевидна. Модели могут помочь нам упорядочить наши нечеткие или противоречивые понятия и несообразности. Модель помогает нам выявить взаимосвязи, временные соотношения, требуемые ресурсы и т. п. Уже сама попытка представить наши словесные формулировки и мысли в какой-то иной форме часто выявляет противоречия и неясности. Правильно построенная модель вынуждает нас организовать наши замыслы, оценить и проверить их обоснованность.
Как средство общения хорошо продуманная модель не имеет себе равных. "Лучше один раз увидеть, чем сто раз услышать". Все языки, в основе которых лежит слово, в той или иной мере оказываются неточными, когда дело доходит до сложных понятий и описаний. Преимущество модели перед словесными описаниями - в сжатости и точности представления заданной ситуации. Модель делает более понятной общую структуру исследуемого объекта и вскрывает важные причинно-следственные связи.
Модели применялись и продолжают широко применяться в качестве средства профессиональной подготовки и обучения. Модель - превосходное средство подготовки операторов, которые должны научиться справляться с всевозможными случайностями до возникновения реальной критической ситуации в системе управления.
Одним из наиболее важных применений моделей является прогнозирование поведения моделируемых объектов. Строить сверхзвуковой реактивный самолет для определения его летных характеристик экономически нецелесообразно, однако они могут быть предсказаны средствами моделирования.
Наконец, применение моделей позволяет проводить контролируемые эксперименты в ситуациях, где экспериментирование на реальных объектах было бы практически невозможным или экономически нецелесообразным. Непосредственное экспериментирование с системой (натурный эксперимент) обычно состоит в варьировании некоторых ее параметров; поддерживая остальные параметры неизменными, наблюдают результат эксперимента. Когда ставить эксперимент на реальной системе слишком дорого, используют ее модель. При экспериментировании с моделью сложной системы мы часто можем больше узнать о ее внутренних взаимодействующих факторах, чем могли бы узнать, манипулируя реальной системой. Это становится возможным благодаря измеряемости структурных элементов модели, благодаря тому, что мы можем полностью контролировать ее поведение, легко измерять параметры.
Модель может служить для достижения одной ид двух основных целей: либо описательной, если модель служит для объяснения и лучшего понимания объекта, либо предписывающей, когда модель позволяет предсказывать и воспроизвести характеристики объекта, определяющие его поведение. Модель предписывающего типа обычно является и описательной, но не наоборот, Это означает, что предписывающая модель почти всегда является описательной по отношению к
моделируемому объекту, но описательная модель не всегда полезна для целей планирования и проектирования.
Различная степень полезности моделей, применяемых в технике и в социальных науках, в значительной мере зависит от методов и средств, которые использовались при построении моделей, и различий в конечных целях, которые при этом ставились. В технике модели служат в качестве вспомогательных средств при разработке новых или более совершенных систем, в то время как в социальных науках модели объясняют существующие системы. Модель, пригодная для целей разработки системы, должна также и объяснять ее, но очевидно, что модели, создаваемые исключительно для объяснения, часто не соответствуют даже своему прямому назначению.
Классификация моделей
Модели вообще и имитационные модели в частности можно классифицировать различными способами. К сожалению, ни один из них не является полностью удовлетворительным, хотя каждый служит определенной цели.
Укажем некоторые типовые группы моделей, которые могут быть положены в основу системы классификации:
- статические (например, поперечный разрез объекта) и динамические (временные ряды) ;
- детерминистские и стохастические;
- дискретные и непрерывные;
- натурные, аналоговые, символические.
Удобно представлять себе имитационные модели в виде непрерывного спектра, простирающегося от точных моделей или макетов реальных объектов до совершенно абстрактных математических моделей.
Физические модели
Масштабированные модели
Аналоговые модели
Управленческие модели
Моделирование на ЭВМ
Математические модели
Точность
Абстрактность
Модели, находящиеся в начале спектра, часто называются физическими или натурными, потому что они внешне напоминают изучаемую систему. Для удобства экспериментатора физическая модель может быть масштабирована - подвергнута уменьшению или увеличению.
Аналоговыми моделями являются модели, в которых свойство реального объекта представляется некоторым другим свойством аналогичного по поведению объекта. Задача иногда решается путем замены одного свойства другим, после чего полученные результаты надо истолковывать применительно к исходным свойствам объекта. Аналоговая ЭВМ, в которой изменение напряжения в электрической схеме определенной конфигурации может отображать поток товарок к некоторой системе, является превосходным примером аналоговой имитационной модели.
График представляет собой аналоговую модель другого типа; здесь расстояние отображает такие характеристики объекта как время, срок службы, количество единиц и т. д. График может также показывать соотношение между различными количественными характеристиками и может предсказывать, как будут изменяться некоторые величины при изменении других величин. Для некоторых относительно простых случаев график может служить средством решения поставленной задачи. Часто применяются также аналоговые модели в виде схем, описывающих взаимосвязи между элементами объекта.
По мере нашего продвижения по спектру моделей мы достигнем тех из них, где во взаимодействие вступают люди и машинные компоненты. Такое моделирование часто называют играми (управленческими, военными, планировочными) . Поскольку процессы принятия решений управленческим звеном или командным составом армии моделировать трудно, часто считают целесообразным отказаться от подобной попытки. В так называемых управленческих (деловых) играх человек
взаимодействует с информацией, поступающей с выхода вычислительной машины (которая моделирует другие свойства системы), и принимает решения на основе полученной информации. Решения человека затем снова вводятся и машину в качестве входной информации, которая используется системой. Продолжая этот процесс дальше, мы приходим к полностью машинному моделированию, которое обычно и понимается под термином "моделирование". Вычислительная машина может быть компонентом всех имитационных моделей рассмотренной части спектра, хотя это и не обязательно.
... продолжение- Информатика
- Банковское дело
- Оценка бизнеса
- Бухгалтерское дело
- Валеология
- География
- Геология, Геофизика, Геодезия
- Религия
- Общая история
- Журналистика
- Таможенное дело
- История Казахстана
- Финансы
- Законодательство и Право, Криминалистика
- Маркетинг
- Культурология
- Медицина
- Менеджмент
- Нефть, Газ
- Искуство, музыка
- Педагогика
- Психология
- Страхование
- Налоги
- Политология
- Сертификация, стандартизация
- Социология, Демография
- Статистика
- Туризм
- Физика
- Философия
- Химия
- Делопроизводсто
- Экология, Охрана природы, Природопользование
- Экономика
- Литература
- Биология
- Мясо, молочно, вино-водочные продукты
- Земельный кадастр, Недвижимость
- Математика, Геометрия
- Государственное управление
- Архивное дело
- Полиграфия
- Горное дело
- Языковедение, Филология
- Исторические личности
- Автоматизация, Техника
- Экономическая география
- Международные отношения
- ОБЖ (Основы безопасности жизнедеятельности), Защита труда