Flash память


Дисциплина: Информатика, Программирование, Базы данных
Тип работы:  Курсовая работа
Бесплатно:  Антиплагиат
Объем: 27 страниц
В избранное:   

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН

Казахский национальный технический университет
имени К. И. Сатпаева

Кафедра Вычислительная техника

РеФЕРАТ

Flesh память

Приняла: Конаева Ж. Е.

Выполнил: Скирка Ю. М.

Студент группы КСУ 01 - 4

Алматы 2004

Содержание

Введение 3

1 История создания Flash-памяти 4

2 Откуда берется название Flash-памяти? 8

3 Организация Flash-памяти 9

3. 1 Общий принцип работы ячейки памяти 9

3. 2 Общий принцип работы ячейки памяти 12

3. 3 Архитектура памяти 13

3. 4 Доступ к памяти 16

4 Нанокристаллическая Flash-память 17

5 Карты памяти (Flash-карты) 18

5. 1 PC-Card или ATA Flash 18

5. 2 Compact Flash 19

5. 3 SmartMedia 20

5. 4 xD-Picture Card 21

5. 5 MMC 22

5. 6 SD Card 23

5. 7 Sony Memory Stick 24

5. 8 Еще виды Flash-памяти 26

Заключение 27

Список использованной литературы 28

Введение

Следует признать тот факт, что цифровые технологии все шире входят в нашу жизнь. За последние пять лет появилось множество различных МРЗ-плееров, камер, карманных компьютеров и другой цифровой аппаратур сохраненная информация которых хранится на таких запоминающих устройствах как Flash disc, в данном реферате я опишу ее основные свойства виды и принцип записи данных на неё.

Основное преимущество флэш-памяти перед жёсткими дисками и носителями CD-ROM состоит в том, что флэш-память потребляет значительно меньше энергии во время работы. В устройствах CD-ROM, жёстких дисках, кассетах и других механических носителях информации, большая часть энергии уходит на приведение в движение механики этих устройств. Кроме того, флэш-память компактнее большинства других механических носителей.

Итак, благодаря низкому энергопотреблению, компактности, долговечности и относительно высокому быстродействию, флэш-память идеально подходит для использования в качестве накопителя в таких портативных устройствах, как: цифровые фото- и видео камеры, сотовые телефоны, портативные компьютеры, MP3-плееры, цифровые диктофоны, и т. п.

1. История создания Flash-памяти

Flash-память исторически произошла от полупроводникового ROM, однако ROM-памятью не является, а всего лишь имеет похожую на ROM организацию. Множество источников (как отечественных, так и зарубежных) зачастую ошибочно относят флэш-память к ROM. Flash никак не может быть ROM хотя бы потому, что ROM (Read Only Memory) переводится как " память только для чтения " . Ни о какой возможности перезаписи в ROM речи быть не может!

Небольшая, по началу, неточность не обращала на себя внимания, однако с развитием технологий, когда Flash-памяти стала выдерживать до 1 миллиона циклов перезаписи, и стала использоваться как накопитель общего назначения, этот недочет в классификации начал бросаться в глаза.

Среди полупроводниковой памяти только два типа относятся к "чистому" ROM - это Mask-ROM и PROM. В отличие от них EPROM , EEPROM и Flash относятся к классу энергонезависимой перезаписываемой памяти (английский эквивалент - nonvolatile read-write memory или NVRWM ) .

Примечание: всё, правда, встает на свои места, если, как утверждают сейчас некоторые специалисты, не считать RAM и ROM акронимами. Тогда RAM будет эквивалентом "энергозависимой памяти", а ROM - "энерго не зависимой памяти".

Первой энергонезависимой памятью была ROM (Read Only Memory) - память только для чтения . Из названия становится понятно, что данный тип имеет единственный цикл записи.

К сожалению, этот вид памяти не приобрел большой популярности, так как процесс изготовления микросхемы ROM занимает длительное время (от 4 до 8 недель) . Но, как это ни парадоксально, стоимость памяти довольно низкая (естественно, при больших объемах производства), а информацию с нее можно стереть только молотком или паяльной лампой.

Русский эквивалент - ПЗУ (Постоянно Запоминающее Устройство) . Если быть совсем точным, данный вид памяти называется Mask-ROM (Масочные ПЗУ) . Память устроена в виде адресуемого массива ячеек (матрицы), каждая ячейка которого может кодировать единицу информации. Данные на ROM записывались во время производства путём нанесения по маске (отсюда и название) алюминиевых соединительных дорожек литографическим способом. Наличие или отсутствие в соответствующем месте такой дорожки кодировало "0" или "1". Mask-ROM отличается сложностью модификации содержимого (только путем изготовления новых микросхем), а также длительностью производственного цикла (4-8 недель) . Поэтому, а также в связи с тем, что современное программное обеспечение зачастую имеет много недоработок и часто требует обновления, данный тип памяти не получил широкого распространения.

Преимущества:

1. Низкая стоимость готовой запрограммированной микросхемы (при больших объёмах производства) .

2. Высокая скорость доступа к ячейке памяти.

3. Высокая надёжность готовой микросхемы и устойчивость к электромагнитным полям.

Недостатки:

1. Невозможность записывать и модифицировать данные после изготовления.

2. Сложный производственный цикл.

PROM (Programmable ROM) - однократно программируемые ПЗУ. В качестве ячеек памяти в данном типе памяти использовались плавкие перемычки. В отличие от Mask-ROM, в PROM появилась возможность кодировать ("пережигать") ячейки при наличии специального устройства для записи (программатора) . Программирование ячейки в PROM осуществляется разрушением ("прожигом") плавкой перемычки путём подачи тока высокого напряжения. Возможность самостоятельной записи информации в них сделало их пригодными для штучного и мелкосерийного производства. PROM практически полностью вышел из употребления в конце 80-х годов.

Рис. 1 - Структурный вид PROM- памяти

Преимущества:

1. Высокая надёжность готовой микросхемы и устойчивость к электромагнитным полям.

2. Возможность программировать готовую микросхему, что удобно для штучного и мелкосерийного производства.

3. Высокая скорость доступа к ячейке памяти.

Недостатки:

1. Невозможность перезаписи

2. Большой процент брака

3. Необходимость специальной длительной термической тренировки, без которой надежность хранения данных была невысокой

Как было сказано выше, ROM и PROM относятся к виду неперезаписываемой энергонезависимой памяти. В 1971 году Intel выпускает совершенно новую микросхему памяти под аббревиатурой EPROM (Erasable Programmable ROM) . Такую микросхему можно было подвергать неоднократной перезаписи путем облучения чипа рентгеновскими или ультрафиолетовыми лучами. Память, стираемая ультрафиолетом, появляется немного позднее и носит аббревиатуру UV-EPROM. В такой микросхеме имеется небольшое окошко с кварцевым стеклом. За ним находится кристалл который облучается ультрафиолетом. После стирания информации это окошко заклеивают.

Вообще, EPROM была основана на МОП (металл-оксид-полупроводник) транзисторах. Запись данных в ячейки такого транзистора производилась методом лавинной инжекции заряда (о методах записи будет сказано ниже) . Этот метод давал возможность неоднократно перезаписывать данные памяти (хотя количество циклов было ограниченным) . Таким образом, вместе с EPROM рождается поколение NVRWM (NonVolatile Read-Write Memory) - что дословно переводиться, как “нелетучая память записи-чтения”.

Различные источники по-разному расшифровывают аббревиатуру EPROM - как Erasable Programmable ROM или как Electrically Programmable ROM (стираемые программируемые ПЗУ или электрически программируемые ПЗУ) . В EPROM перед записью необходимо произвести стирание (соответственно появилась возможность перезаписывать содержимое памяти) . Стирание ячеек EPROM выполняется сразу для всей микросхемы посредством облучения чипа ультрафиолетовыми или рентгеновскими лучами в течение нескольких минут. Микросхемы, стирание которых производится путем засвечивания ультрафиолетом носят название UV-EPROM, приставка UV (Ultraviolet) - ультрафиолет. Они содержат окошки из кварцевого стекла, которые по окончании процесса стирания заклеивают.

EPROM от Intel была основана на МОП-транзисторах с лавинной инжекцией заряда (FAMOS - Floating Gate Avalanche injection Metal Oxide Semiconductor, русский экви-валент - ЛИЗМОП) . В первом приближении такой транзистор представляет собой конденсатор с очень малой утечкой заряда. Позднее, в 1973 году, компания Toshiba разработала ячейки на основе SAMOS (Stacked gate Avalanche injection MOS, по другой версии - Silicon and Aluminum MOS) для EPROM памяти, а в 1977 году Intel разработала свой вариант SAMOS.

В EPROM стирание приводит все биты стираемой области в одно состояние (обычно во все единицы, реже - во все нули) . Запись на EPROM, как и в PROM, также осуществляется на программаторах (однако отличающихся от программаторов для PROM) . В настоящее время EPROM практически полностью вытеснена с рынка EEPROM и Flash.

Достоинство : Возможность перезаписывать содержимое микросхемы.

Недостатки:

1. Небольшое количество циклов перезаписи.

2. Невозможность модификации части хранимых данных.

3. Высокая вероятность "недотереть" (что в конечном итоге приведет к сбоям) или передержать микросхему под УФ-светом (т. н. overerase - эффект избыточного удаления, "пережигание"), что может уменьшить срок службы микросхемы и даже привести к её полной негодности.

EEPROM - электрически стираемые ПЗУ были разработаны в 1979 году в той же Intel. В 1983 году вышел первый 16Кбит образец, изготовленный на основе FLOTOX-транзисторов (Floating Gate Tunnel-OXide - "плавающий" затвор с туннелированием в окисле) .

Главной отличительной особенностью EEPROM (в том числе и от Flash) от выше рассмотренных типов энергонезависимой памяти является возможность перепрограм-мирования при подключении к стандартной системной шине микропроцессорного устройства. В EEPROM появилась возможность производить стирание отдельной ячейки при помощи электрического тока. Для EEPROM стирание каждой ячейки выполняется автоматически при записи в нее новой информации, т. е. можно изменить данные в любой ячейке, не затрагивая остальные. Процедура стирания обычно существенно длительное по сравнению с процедурой записи.

Преимущества EEPROM по сравнению с EPROM:

1. Увеличенный ресурс работы.

2. Проще в обращении.

Недостаток: Высокая стоимость.

Flash (полное историческое название Flash Erase EEPROM) . Изобретение флэш-памяти зачастую незаслуженно приписывают Intel, называя при этом 1988 год. На самом деле память впервые была разработана компанией Toshiba в 1984 году, и уже на следующий год было начато производство 256 Кбит микросхем Flash-памяти в промышленных масштабах. А уж потом в 1988 году Intel разработала собственный вариант флэш-памяти.

Во флэш-памяти используется несколько отличный от EEPROM тип ячейки-транзистора. Технологически флэш-память родственна как EPROM, так и EEPROM. Основное отличие флэш-памяти от EEPROM заключается в том, что стирание содержимого ячеек выполняется либо для всей микросхемы, либо для определённого блока (кластера, кадра или страницы) . Обычный размер такого блока составляет 256 или 512 байт, однако в некоторых видах флэш-памяти объём блока может достигать 256КБ. Следует заметить, что существуют микросхемы, позволяющие работать с блоками разных размеров (для оптимизации быстродействия) . Стирать можно как блок, так и содержимое всей микросхемы сразу. Таким образом, в общем случае, для того, чтобы изменить один байт, сначала в буфер считывается весь блок, где содержится подлежащий изменению байт, стирается содержимое блока, изменяется значение байта в буфере, после чего производится запись измененного в буфере блока. Такая схема существенно снижает скорость записи небольших объёмов данных в произвольные области памяти, однако значительно увеличивает быстродействие при последовательной записи данных большими порциями.

Преимущества флэш-памяти по сравнению с EEPROM:

1. Более высокая скорость записи при последовательном доступе за счёт того, что стирание информации во флэш-памяти производится блоками.

2. Себестоимость производства флэш-памяти ниже за счёт более простой органи-зации.

Недостаток: Медленная запись в произвольные участки памяти.

2. Откуда берется название Flash-памяти?

Если мы посмотрим в англо-русский словарь, то среди прочих увидим следующие переводы слова Flash: короткий кадр (фильма), вспышка, пронестись, мигание, мелькание, отжиг (стекла) .

Флэш-память получила свое название благодаря тому, как производится стирание и запись данного вида памяти.

Основное объяснение:

  • Название было дано компанией Toshiba во время разработки первых микросхем флэш-памяти (в начале 1980-х) как характеристика скорости стирания микросхемы флэш-памяти"in a Flash"- в мгновение ока.

Два других (менее правдоподобных) объяснения:

  • Процесс записи на флэш-память по-английски называется Flashing (засвечивание, прожигание) - такое название осталось в наследство от предшественников флэш-памяти.
  • В отличие от EEPROM, запись/стирание данных во флэш-памяти производится блоками-кадрами (Flash - короткий кадр фильма)

Встречающиеся в отечественной литературе попытки объяснить происхождение названия флэш-памяти как характеристику высокого быстродействия данного типа памяти (переводя слово Flash как вспыхнуть, пронестись, короткий промежуток времени) следует признать несостоятельными, хотя и не лишёнными здравого смысла. Действительно, применение блочной схемы стирания позволяет в большинстве случаев добиться увеличения скорости записи.

3. Организация Flash-памяти

Ячейки флэш-памяти бывают как на одном, так и на двух транзисторах.

В простейшем случае каждая ячейка хранит один бит информации и состоит из одного полевого транзистора со специальной электрически изолированной областью ("плавающим" затвором - Floating gate), способной хранить заряд многие годы. Наличие или отсутствие заряда кодирует один бит информации.

При записи заряд помещается на плавающий затвор одним из двух способов (зависит от типа ячейки) : методом инжекции "горячих" электронов или методом туннелирования электронов. Стирание содержимого ячейки (снятие заряда с "плавающего" затвора) производится методом тунеллирования.

Как правило, наличие заряда на транзисторе понимается как логический "0", а его отсутствие - как логическая "1".

Рис 2 - Схема транзистора с плавающим затвором

Современная флэш-память обычно изготавливается по 0, 13- и 0, 18-микронному техпроцессу.

3. 1 Общий принцип работы ячейки памяти

Рассмотрим простейшую ячейку флэш-памяти на одном n-p-n транзисторе. Ячейки подобного типа чаще всего применялись во Flash-памяти с NOR архитектурой (см. ниже), а также в микросхемах EPROM.

Поведение транзистора зависит от количества электронов на "плавающем" затворе. "Плавающий" затвор играет ту же роль, что и конденсатор в DRAM, т. е. хранит запрограммированное значение.

Помещение заряда на "плавающий" затвор в такой ячейке производится методом инжекции "горячих" электронов (CHE - channel hot electrons), а снятие заряда осуществляется методом квантомеханического туннелирования Фаулера-Нордхейма (Fowler-Nordheim [FN] ) .

При чтении, в отсутствие заряда на "плавающем" затворе, под воздействием положительного поля на управляющем затворе, образуется n-канал в подложке между истоком и стоком, и возникает ток (см. Рис 2) .

Наличие заряда на "плавающем" затворе меняет вольтамперные характеристики транзистора таким образом, что при обычном для чтения напряжении канал не появляется, и тока между истоком и стоком не возникает (см. Рис 3) .

Рис 3 - Запрет возникновения тока между истоком и стоком

При программировании на сток и управляющий затвор подаётся высокое напряжение (причём на управляющий затвор напряжение подаётся приблизительно в два раза выше) . "Горячие" электроны из канала инжектируются на плавающий затвор и изменяют вольтамперные характеристики транзистора. Такие электроны называют "горячими" за то, что обладают высокой энергией, достаточной для преодоления потенциального барьера, создаваемого тонкой плёнкой диэлектрика.

Рис 4 - Программирование транзистора (запись)

При стирании высокое напряжение подаётся на исток. На управляющий затвор (опционально) подаётся высокое отрицательное напряжение. Электроны туннелируют на исток.

Рис 5 - Программирование транзистора (стирание)

Эффект туннелирования - один из эффектов, использующих волновые свойства электрона. Сам эффект заключается в преодолении электроном потенциального барьера малой "толщины". Для наглядности представим себе структуру, состоящую из двух проводящих областей, разделенных тонким слоем диэлектрика (обеднённая область) . Преодолеть этот слой обычным способом электрон не может - не хватает энергии. Но при создании определённых условий (соответствующее напряжение и т. п. ) электрон проскакивает слой диэлектрика (туннелирует сквозь него), создавая ток.

Важно отметить, что при туннелировании электрон оказывается "по другую сторону", не проходя через диэлектрик . Такая вот "телепортация".

Различия методов тунеллирования Фаулера-Нордхейма (FN) и метода инжекции "горячих" электронов (CHE) :

  • Channel FN tunneling- не требует большого напряжения. Ячейки, использующие FN, могут быть меньше ячеек, использующих CHE.
  • CHE injection (CHEI) - требует более высокого напряжения, по сравнению с FN. Таким образом, для работы памяти требуется поддержка двойного питания.
  • Программирование методом CHE осуществляется быстрее, чем методом FN.

Следует заметить, что, кроме FN и CHE, существуют другие методы программирования и стирания ячейки, которые успешно используются на практике, однако эти два описанных применяются чаще всего.

Процедуры стирания и записи сильно изнашивают ячейку флэш-памяти, поэтому в новейших микросхемах некоторых производителей применяются специальные алгоритмы, оптимизирующие процесс стирания-записи, а также алгоритмы, обеспечивающие равномерное использование всех ячеек в процессе функционирования.

Некоторые виды ячеек флэш-памяти на основе МОП-транзисторов с "плавающим" затвором:

  • Stacked Gate Cell- ячейка с многослойным затвором. Метод стирания - Source-PolyFNTunneling, метод записи - Drain-SideCHEInjection.
  • SST Cell, илиSuperFlash Split-Gate Cell( - компания-разработчик технологии) - ячейка с расщеплённым затвором. Метод стирания - InterpolyFNTunneling, метод записи - Source-SideCHEInjection.
  • Two Transistor Thin Oxide Cell- двухтранзисторная ячейка с тонким слоем окисла. Метод стирания - Drain-PolyFNTunneling, метод записи - DrainFNTunneling.

Другие виды ячеек :

Кроме наиболее часто встречающихся ячеек с "плавающим" затвором, существуют также ячейки на основе SONOS -транзисторов, которые не содержат плавающего затвора . SONOS-транзистор напоминает обычный МНОП (MNOS) транзистор. В SONOS-ячейках функцию "плавающего" затвора и окружающего его изолятора выполняет композитный диэлектрик ONO. Расшифровывается SONOS (Semiconductor Oxide Nitride Oxide Semiconductor) как Полупроводник-Диэлектрик-Нитрид-Диэлектрик-Полупрово-дник. Вместо давшего название этому типу ячейки нитрида в будущем планируется использовать поликристаллический кремний.

3. 2 Общий принцип работы ячейки памяти

В последнее время многие компании начали выпуск микросхем флэш-памяти, в которых одна ячейка хранит два бита. Технология хранения двух и более бит в одной ячейке получила название MLC (multilevel cell - многоуровневая ячейка) . Достоверно известно об успешных тестах прототипов, хранящих 4 бита в одной ячейке. В настоящее время многие компании находятся в поисках предельного числа бит, которое способна хранить многоуровневая ячейка.

В технологии MLC используется аналоговая природа ячейки памяти. Как известно, обычная однобитная ячейка памяти может принимать два состояния - "0" или "1". Во флэш-памяти эти два состояния различаются по величине заряда, помещённого на "плавающий" затвор транзистора. В отличие от "обычной" флэш-памяти, MLC способна различать более двух величин зарядов, помещённых на "плавающий" затвор, и, соответственно, большее число состояний. При этом каждому состоянию в соответствие ставится определенная комбинация значений бит.

... продолжение

Вы можете абсолютно на бесплатной основе полностью просмотреть эту работу через наше приложение.
Похожие работы
ИССЛЕДОВАНИЕ ВОЗМОЖНОСТЕЙ ВОССТАНОВЛЕНИЯ И ПЕРЕПРОШИВКИ ФЛЭШ-ПАМЯТИ
Выбор подходящей ROM BIOS-чипы: важные аспекты и особенности разработки
Офисные приложения Microsoft: Word, Excel, Access - функциональность и возможности
Матричное Представление Случайного Набора: Методы Обработки и Хранения Двухмерных Матриц с Учетом Типа Элементов
Память компьютера: От оперативной до постоянной - Все, что нужно знать о хранении данных
Мультимедийные технологии и периферийные устройства ввода информации в современных компьютерных системах
Комплексный анализ систем хранения данных: от классификации и параметров до CD-накопителей и флэш-памяти
Хранение информации в компьютерах: типы памяти и файловые системы
Микроконтроллеры AVR: режимы энергосбережения, характеристики и типы
Организация и управление памятью в компьютерных системах
Дисциплины



Реферат Курсовая работа Дипломная работа Материал Диссертация Практика - - - 1‑10 стр. 11‑20 стр. 21‑30 стр. 31‑60 стр. 61+ стр. Основное Кол‑во стр. Доп. Поиск Ничего не найдено :( Недавно просмотренные работы Просмотренные работы не найдены Заказ Антиплагиат Просмотренные работы ru ru/