Кратные интегралы



1 Кратные интегралы
1.1 Двойной интеграл
1.2 Тройной интеграл
1.3 Кратные интегралы в криволинейных координатах
1.4 Геометрические и физические приложения кратных интегралов
2 Криволинейные и поверхностные интегралы
2.1 Криволинейные интегралы
2.2 Поверхностные интегралы
2.3 Геометрические и физические приложения
Список используемой литературы
Рассмотрим в плоскости Оху замкнутую область D, ограниченную линией L. Разобьем эту область какими-нибудь линиями на п частей , а соответствующие наибольшие расстояния между точками в каждой из этих частей обозначим d1, d2, ..., dn. Выберем в каждой части точку Рi.
Пусть в области D задана функция z = f(x, y). Обозначим через f(P1), f(P2),…, f(Pn) значения этой функции в выбранных точках и составим сумму произведений вида f(Pi)ΔSi:

, (1)

называемую интегральной суммой для функции f(x, y) в области D.
Если существует один и тот же предел интегральных сумм (1) при и , не зависящий ни от способа разбиения области D на части, ни от выбора точек Pi в них, то он называется двойным интегралом от функции f(x, y) по области D и обозначается

. (2)

Вычисление двойного интеграла по области D, ограниченной линиями x = a, x = b ( a < b ), где φ1(х) и φ2(х) непрерывны на [a, b] (рис. 1) сводится к последовательному вычислению двух определенных интегралов, или так называемого двукратного интеграла:
1. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. М.: Наука, 1999.
2. Кудрявцев Л.Д. Краткий курс математического анализа. М.: Наука, 2000.
3. Ильин В.А., Позняк Э.Г. Математический анализ. М.: Наука, 1999.
4. Смирнов В.И. Курс высшей математики.- Т.2. М.: Наука, 2005.
5. Бугров Я.С., Никольский С.М. Дифференциальные уравнения. Кратные интегралы. Ряды. Функции комплексного переменного. М.: Наука, 2001.
6. Пискунов Н.С. Дифференциальное и интегральное исчисление. – Т.2. М.: Наука, 2001.
7. Сборник задач по математике для втузов. Специальные разделы математического анализа (под редекцией А.В.Ефимова и Б.П.Демидовича). – Т.2. М.: Наука, 2004.
8. Мышкис А.Д. Лекции по высшей математике. М.: Наука, 2003.
9. Титаренко В.И., Выск Н.Д. Кратные, криволинейные и поверхностные интегралы. Теория поля. М.: МАТИ, 2006.

Дисциплина: Математика, Геометрия
Тип работы:  Курсовая работа
Бесплатно:  Антиплагиат
Объем: 26 страниц
В избранное:   


Курсовая работа

На тему: КРАТНЫЕ ИНТЕГРАЛЫ

Содержание

1 Кратные интегралы

1.1 Двойной интеграл

1.2 Тройной интеграл

1.3 Кратные интегралы в криволинейных координатах

1.4 Геометрические и физические приложения кратных интегралов

2 Криволинейные и поверхностные интегралы

2.1 Криволинейные интегралы

2.2 Поверхностные интегралы

2.3 Геометрические и физические приложения

Список используемой литературы

1 Кратные интегралы

1.1 Двойной интеграл

Рассмотрим в плоскости Оху замкнутую область D, ограниченную линией L. Разобьем эту область какими-нибудь линиями на п частей , а соответствующие наибольшие расстояния между точками в каждой из этих частей обозначим d1, d2, ..., dn. Выберем в каждой части точку Рi.

Пусть в области D задана функция z = f(x, y). Обозначим через f(P1), f(P2),..., f(Pn) значения этой функции в выбранных точках и составим сумму произведений вида f(Pi)ΔSi:

, (1)

называемую интегральной суммой для функции f(x, y) в области D.

Если существует один и тот же предел интегральных сумм (1) при и , не зависящий ни от способа разбиения области D на части, ни от выбора точек Pi в них, то он называется двойным интегралом от функции f(x, y) по области D и обозначается

. (2)

Вычисление двойного интеграла по области D, ограниченной линиями x = a, x = b ( a b ), где φ1(х) и φ2(х) непрерывны на [a, b] (рис. 1) сводится к последовательному вычислению двух определенных интегралов, или так называемого двукратного интеграла:

Рис. 1

= (3)

1.2 Тройной интеграл

Понятие тройного интеграла вводится по аналогии с двойным интегралом.

Пусть в пространстве задана некоторая область V, ограниченная замкнутой поверхностью S. Зададим в этой замкнутой области непрерывную функцию f(x, y, z). Затем разобьем область V на произвольные части Δvi , считая объем каждой части равным Δvi , и составим интегральную сумму вида

, (4)

Предел при интегральных сумм (11), не зависящий от способа разбиения области V и выбора точек Pi в каждой подобласти этой области, называется тройным интегралом от функции f(x, y, z) по области V:

. (5)

Тройной интеграл от функции f(x,y,z) по области V равен трехкратному интегралу по той же области:

. (6)

1.3 Кратные интегралы в криволинейных координатах

Введем на плоскости криволинейные координаты, называемые полярными. Выберем точку О (полюс) и выходящий из нее луч (полярную ось).

Рис. 2 Рис. 3

Координатами точки М (рис. 2) будут длина отрезка МО – полярный радиус ρ и угол φ между МО и полярной осью: М(ρ,φ). Отметим, что для всех точек плоскости, кроме полюса, ρ 0, а полярный угол φ будем считать положительным при измерении его в направлении против часовой стрелки и отрицательным – при измерении в противоположном направлении.

Связь между полярными и декартовыми координатами точки М можно задать, если совместить начало декартовой системы координат с полюсом, а положительную полуось Ох – с полярной осью (рис. 3). Тогда x=ρcosφ, у=ρsinφ . Отсюда , tg.

Зададим в области D, ограниченной кривыми ρ=Φ1 (φ) и ρ=Φ2 (φ), где φ1 φ φ2 , непрерывную функцию z = f(φ, ρ) (рис. 4).

Рис. 4

Тогда

(7)

В трехмерном пространстве вводятся цилиндрические и сферические координаты.

Цилиндрические координаты точки Р(ρ,φ,z) – это полярные координаты ρ, φ проекции этой точки на плоскость Оху и аппликата данной точки z (рис.5).

Рис.5 Рис.6

Формулы перехода от цилиндрических координат к декартовым можно задать следующим образом:

x = ρ cosφ, y = ρ sinφ, z = z. (8)

В сферических координатах положение точки в пространстве определяется линейной координатой r – расстоянием от точки до начала декартовой системы координат (или полюса сферической системы), φ – полярным углом между положительной полуосью Ох и проекцией точки на плоскость Оху, и θ – углом между положительной полуосью оси Оz и отрезком OP (рис.6). При этом

Зададим формулы перехода от сферических координат к декартовым:

x = r sinθ cosφ, y = r sinθ sinφ, z = r cosθ. (9)

Тогда формулы перехода к цилиндрическим или сферическим координатам в тройном интеграле будут выглядеть так:

, (10)

где F1 и F2 – функции, полученные при подстановке в функцию f вместо x, y, z их выражений через цилиндрические (8) или сферические (9) координаты.

1.4 Геометрические и физические приложения кратных интегралов

1) Площадь плоской области S: (11)

Пример 1.

Найти площадь фигуры D, ограниченной линиями

у = 2, у = 5.

Решение.

Эту площадь удобно вычислять, считая у внешней переменной. Тогда границы области задаются уравнениями и

где вычисляется с помощью интегрирования по частям:

Следовательно,

2) Объем цилиндроида, то есть тела, ограниченного частью поверхности S: z = f(x,y) , ограниченной контуром L, проекцией D этой поверхности на плоскость Оху и отрезками, параллельными оси Оz и соединяющими каждую точку контура L с соответствующей точкой плоскости Оху:

(12)

3) Площадь части криволинейной поверхности S, заданной уравнением z = f(x,y), ограниченной контуром L:

(13)

где D – проекция S на плоскость Оху.

4) Момент инерции относительно начала координат О материальной плоской фигуры D:

(14)

Пример 2.

Найти момент инерции однородной круглой пластинки

(x – a)2 + (y – b)2 4b2 относительно начала координат.

Решение.

В силу однородности пластинки положим ее плотность γ(х,у) = 1.

Центр круга расположен в точке C(a, b), а его радиус равен 2b.

Уравнения границ пластинки имеют вид

Вычислим каждый из полученных интегралов отдельно.

Для вычисления интеграла I1 сделаем замену:

при x = a – 2b при x = a + 2b

Для вычисления интеграла I2 преобразуем подынтегральную функцию по формуле разности кубов:

Тогда

Следовательно,

Моменты инерции фигуры D относительно осей Ох и Оу:

(15)

5) Масса плоской фигуры D переменной поверхностной плотности γ = γ (х, у):

(16)

Пример 3.

Найти массу пластинки D плотности γ = ух3, если

Решение.

Координаты центра масс плоской фигуры переменной поверхностной плотности γ = γ (х, у):

(17)

Пример 4.

Найти центр тяжести однородной пластины D, ограниченной кривыми у2 = ах и

Решение.

Так как пластина однородна, т.е. ее плотность постоянна, то можно принять ее за единицу.

Тогда

Найдем массу пластины, а для этого определим абсциссу точки пересечения ограничивающих ее линий:

Соответственно

6) Объем тела V:

(18)

Пример 5.

Найти объем тела V, ограниченного поверхностями

Решение.

Найдем проекцию тела на плоскость Оху (при этом заметим, что плоскость проектируется на эту плоскость в виде прямой х = 0):

Определим абсциссу точки пересечения кривых у = х2 и х + у = 2:

посторонний корень. Тогда, используя формулу (18), получаем:

7) Масса тела V плотности γ = γ (x, y, z):

(19)

8) Моменты инерции тела V относительно координатных осей и начала координат:

(20)

(21)

где γ (х, y, z) – плотность вещества.

Статические моменты тела относительно координатных плоскостей Oyz, Oxz, Oxy:

(22)

9) Координаты центра масс тела:

II. Криволинейные и поверхностные интегралы

2.1 Криволинейные интегралы

Рассмотрим на плоскости или в пространстве кривую L и функцию f, определенную в каждой точке этой кривой. Разобьем кривую на ... продолжение

Вы можете абсолютно на бесплатной основе полностью просмотреть эту работу через наше приложение.
Похожие работы
ОСНОВНЫЕ ВИДЫ ПОКАЗАТЕЛЕЙ И ПОСЛЕДОВАТЕЛЬНОСТЬ АНАЛИЗА ФИНАНСОВО- ХОЗЯЙСТВЕННОЙ И УПРАВЛЕНЧЕСКОЙ ДЕЯТЕЛЬНОСТИ ПРЕДПРИЯТИЯ
Сингулярные интегралы
МОДЕЛИРОВАНИЕ ДИНАМИКИ УПРУГОЙ СРЕДЫ ПРИ ТРАНСПОРТНЫХ НАГРУЗКАХ
Содержательный компонент учебных курсов естественно- математического профиля (на примере профильного курса Химия )
Геологическое описание месторождения Тенгиз
по Расчету и конструированию металлорежущих станков
Денежные реформы
В ЧЕМ СЕКРЕТ ТАНГРАМА
Эволюция Земли
Возникновение и развитие денег
Дисциплины