Бос жиынның белгіленуі

Сабақтың тақырыбы:
Ішкі жиын Жиындардың қиылысуы. Жиындардың бірігуі.
.
Сабақтың мақсаты:
Білімділік: оқушыларға жиын ұғымына, жиындардың бірігуі және қиылысуы туралы анықтама бере отырып білімдерін толықтыру
Дамытушылық: оқушылардың нақты ойлау, есте сақтау қабілетін дамыту, алған білімдерін есеп шығаруда пайдалана білуге үйрету
Тәрбиелік: оқушыларды өз бетімен еңбектенуге, теориялық білімдерін есеп шығару шеберлігімен ұштастыру, жүйелі білім алуға тәрбиелеу
Сабақтың түрі: аралас сабақ
Сабақтың типі : жаңа білім беру сабағы
Сабақтың әдісі: сұрақ-жауап, ой қозғау, түсіндірмелі
Көрнекіліктер : оқулық, презентация, суреттер, компьютер жабдықтары, интерактивті тақта.
Пән аралық байланыс : тарих
Сабақ жоспары:
I. Ұйымдастыру кезеңі.
II. Ой қозғау - үй тапсырмасын тексеру, өткенді қайталау
III. Ой толғау -жаңа сабақты түсіндіру
IV. Ой түйін - кітаппен жұмыс
V. Ой сергіту - шығармашылықты шыңдау
VI. Ой бөлісу - ауызша есептер, сұрақтар (қорытындылау) .
7. Үйге тапсырма беру
Бағалау
Сабақ жүрісі: 1. ұйымдастыру кезеңі (оқушылармен амандасып, қатыстарын және сабаққа дайындықтарын тексеру) .
2. Ой қозғау - үй тапсырмасын тексеру .
№ 248 № 252
Белгілі бір ортақ қасиеттерге ие болып, белгілі бір заңдылықпен біріккен нәрселер, объектілер жиын құрайды. аспандағы жұлдыздар жиыны,
Мысалы, “планета” сөзіндегі әріптер жиынын P әрпімен белгілесек, P={а, п, н, л, е, т} немесе P={т, п, н, л, е, а} элементтер ретін әр-түрлі жазуға болады.
Жиындар шектеулі жиын, шектеусіз жиын болып бөлінеді. Мысалы, цифрлар жиыны A - шектеулі жиын, оған 10 элемент енеді. A={0, 1, 2, 3, 4, 5, 6, 7, 8, 9} жиынының элементтер санын көрсетіп жазсақ: n(A) =10.
Егер c элементі A жиынына тиісті болмаса, оның жазылуы: c ¢ A. Оқылуы:” c A жиынына тиісті емес”. Мысалы, 0 саны натурал сандар жиынына тиісті емес: 0 ¢ N.
Егер жиында бірде-бір элемент болмаса, оны бос жиын деп атайды. Бос жиынның белгіленуі: Ø . Мысалы, 74 және 79 сандарының арасындағы жай сандар жиыны - бос жиын. Әріптер жазылмаған дәптер бетіндегі әріптер жиыны - бос жиын.
3. жаңа сабақты түсіндіру.
Егер B жиынының әрбір элементі A жиынына тиісті болса, онда B жиыны A жиынының ішкі жиыны деп аталады. Мысалы, A={1, 2, 3, 4, 5, 6, 7} жиынындағы жұп сандар жиыны - B={2, 4, 6}. B жиынының әрбір элементі A жиынына тиісті. Белгіленуі: B Є A. Оқылуы: B жиыны - A жиынының ішкі жиыны.
Жиындардың байланыстары мен арақатынастары Эйлер-Венн дөңгелектері арқылы кескінделеді.
Суретте B жиыны A жиынының ішкі жиыны екені Эйлер-Венн дөңгелектері арқылы кескінделген.
Бос жиын кез келген жиынның ішкі жиыны болады. Белгіленуі: Ø Є A. Мұндағы A - қандай да бір жиын.
Егер екі жиын бірдей элементтерден тұрса, онда олар тең жиындар деп аталады. Мысалы, A={a, b, c}; B={c, a, b}, онда A=B. Оқылуы: A жиыны B жиынына тең.
A жиынына да, B жиынына да тиісті элементтерден ғана тұратын жиынды A және B жиынының қиылысуы деп атайды.
1-есеп. Сыныпта 16 ұл бала бар. Олардың 14-і бос уақытында футбол ойнағанды ұнатады, 9-ы шахмат ойнағанды ұнатады. Бұл ойындарға сыныптағы барлық ұл балалар қатысады. Сыныптағы неше оқушы бос уақытында футбол ойнағанды да, шахмат ойнағанды да ұнатады?
Шешуі: Бос уақытында футбол ойнағанды ұнататын сыныптағы ұлдардың жиыны - A , n(A) =14. Бос уақытында шахмат ойнағанды ұнататын сыныптағы ұлдардың жиыны - B , n(B) =9.
- 14 + 9 = 23 - бос уақытында футбол ойнағанды ұнататын және шахмат ойнағанды ұнататын сыныптағы ұлдар саны.
- 23 - 16 = 7 - бос уақытында футбол ойнағанды да, шахмат ойнағанды да ұнататын сыныптағы ұлдар саны.
Сыныптағы футбол ойнағанды да, шахмат ойнағанды да ұнататын ұлдар жиыны
C болсын, онда n(C) =7. Демек, C жиыны - A және B жиындарының қиылысу жиыны, себебі мұндағы әрбір ұл бала A жиынына да, B жиынына да тиісті (ортақ) .
Есептің шешуі Эйлер-Венн дөңгелектерімен былай кескіндейміз.
A ∩ B = C
Әрбір элементі A немесе B жиындарының кем дегенде біреуіне тиісті болатын жиын A және B жиындарының бірігуі деп аталады.
2-есеп. Бір топтағы туристердің 10-ы қазақ тілін біледі, 8-і орыс тілін біледі, олардың 3-еуі қазақ тілін де, орыс тілін де біледі. Топта барлығы неше турист бар?
Шешуі: Бір топ туристердің қазақ тілін білетіндердің жиыны - A ; n(A) =10.
Орыс тілін білетіндерінің жиыны - B ; n(B) =8.
- 10 + 8 = 18 - топ ішіндегі туристердің қазақ тілін білетіндердің және орыс тілін білетіндердің саны.
- 18 - 3 = 15 - топ ішіндегі туристер саны.
- Іс жүргізу
- Автоматтандыру, Техника
- Алғашқы әскери дайындық
- Астрономия
- Ауыл шаруашылығы
- Банк ісі
- Бизнесті бағалау
- Биология
- Бухгалтерлік іс
- Валеология
- Ветеринария
- География
- Геология, Геофизика, Геодезия
- Дін
- Ет, сүт, шарап өнімдері
- Жалпы тарих
- Жер кадастрі, Жылжымайтын мүлік
- Журналистика
- Информатика
- Кеден ісі
- Маркетинг
- Математика, Геометрия
- Медицина
- Мемлекеттік басқару
- Менеджмент
- Мұнай, Газ
- Мұрағат ісі
- Мәдениеттану
- ОБЖ (Основы безопасности жизнедеятельности)
- Педагогика
- Полиграфия
- Психология
- Салық
- Саясаттану
- Сақтандыру
- Сертификаттау, стандарттау
- Социология, Демография
- Спорт
- Статистика
- Тілтану, Филология
- Тарихи тұлғалар
- Тау-кен ісі
- Транспорт
- Туризм
- Физика
- Философия
- Халықаралық қатынастар
- Химия
- Экология, Қоршаған ортаны қорғау
- Экономика
- Экономикалық география
- Электротехника
- Қазақстан тарихы
- Қаржы
- Құрылыс
- Құқық, Криминалистика
- Әдебиет
- Өнер, музыка
- Өнеркәсіп, Өндіріс
Қазақ тілінде жазылған рефераттар, курстық жұмыстар, дипломдық жұмыстар бойынша біздің қор #1 болып табылады.

Ақпарат
Қосымша
Email: info@stud.kz