Арифметикалық прогрессияның анықтамасы және n-ші мүшенің формуласы

Арифметикалық прогрессияның анықтамасы,

n-ші мүшенің формуласы.

Р. Апахаева

№3 орта жалпы білім беретін қазақ

мектебінің математика пәні мұғалімі

Сабақтың тақырыбы:

Арифметикалық прогрессияның анықтамасы, n-ші мүшенің формуласы.

Сабақтың мақсаты:

  1. а) Арифметикалық прогрессияның анықтамасын, n-ші мүшенің формуласын қорытып шығаруға мүмкіндік туғызу;

ә) a n = a 1 + ( n 1 ) d a_{n} = a_{1} + (n - 1) d a n = a 1 + ( n 1 ) d a_{n} = a_{1} + (n - 1) d формуласын пайдаланып арифметикалық прогрессияның кез келген мүшесін таба білуге үйренуге жағдай туғызу.

II. Ойлау қабілеттерін арттыру, өз бетімен білім алуға мүмкіндік жасау.

III. Жүйелі түрде ойлауға, өз ойын нақты айтуға тәрбиелеу.

Сабақтың міндеттері:

Арифметикалық прогрессияның n-ші мүшесінің формуласын білу арқылы

арифметикалық прогрессияның өзіне тән қасиеттерін дәлелдей білуге, арифметикалық прогрессияның алғашқы n мүшесінің қосындысының формуласын қорытып шығаруға әзірлеу.

Күтілетін нәтиже:

а) арифметикалық прогрессияның анықтамасын, формуласын өзі қорытады.

ә) үйренген формулаларды №165, №168, №170, №172, №182 есептерді шығаруға қолдана алады.

Не арқылы бағаланады:

а) арифметикалық прогрессияның анықтамасын білуімен, формуланы қорыта білуімен.

ә) №165, №168, №170, №172, №182 есептерді шығара білуімен.

Сабақтың барысы:

I. Қызығушылықты ояту.

Ауылымыздағы мұз айдынынан 9 сынып оқушысы спорт бұйымдарын жалға алды. Ол берілу құны бойынша бірінші күні 200 теңге, ал келесі күні қосымша 100 теңгеден қосып төлеп отыруы қажет. Егер оқушы спорт бұйымдарын жалға бір аптаға алатын болса, онда әр күні қанша теңге төлеуі қажет? 200, 300, 400, 500, 600, 700, 800.

Берілген тізбектің әрбір мүшесі алдыңғы мүшесіне 100-ді қосу арқылы алынған. Осындай қасиетпен құрылатын тізбектер өмірде өте көп кездеседі. Оқушылар тақтаға мысалдар келтіреді.

Сұрақтар:

  • тізбектің бірінші мүшесінен екінші мүшесі қалай алынады?
  • алдыңғы мүшесінен үшінші, төртінші және т. б. мүшелері қалай алынады?
  • құрастыру ережесі белгілі болғанда, берілген тізбекті қалай сипаттауға болады?

Оқушылар арифетикалық прогрессияның анықтамасын өз бетінше тұжырымдайды.

Қосылатын тұрақты санды арифметикалық прогрессияның айырымы деп атап, d әрпімен белгілейді.

II. Мағынаны тану.

Егер a 1 = 2 a_{1} = 2 a 1 = 2 a_{1} = 2 және d = 0 , 5 d = 0, 5 d = 0 , 5 d = 0, 5 болса, есептеуді тізбектей жүргізу арқылы оның алғашқы бес мүшесін табыңыздар.

Ал осы прогрессияның жиырмасыншы, жүзінші мүшесін табу керек болса, онда екінші мүшеден бастап жиырмасыншы, жүзінші мүшесіне дейін көп есептеулер жүргізу керек. Сондықтан арифметикалық прогрессияның кез келген мүшесін есептеудің қысқаша жолын табайық.

Оқушы тақтада арифметикалық прогрессияның анықтамасы бойынша алғашқы бес мүшесін табады.

a 2 = a 1 + d a_{2} = a_{1} + d

a 3 = a 2 + d = ( a 1 + d ) + d = a 1 + 2 d a_{3} = a_{2} + \ d = \left( a_{1} + d \right) + d = a_{1} + 2d

a 4 = a 3 + d = a 1 + 2 d + d = a 1 + 3 d a_{4} = a_{3} + \ d = a_{1} + 2d + d = a_{1} + 3d

a 5 = a 4 + d = a 1 + 3 d + d = a 1 + 4 d a_{5} = a_{4} + \ d = a_{1} + 3d + d = a_{1} + 4d

\ \ \ \ \ \ Бұл жерде қандай ортақ заңдылық байқалады?

  • Осы заңдылықты қолданып өз бетіңменa10, a25, a2013(a1; dарқылы) a_{10}, \ a_{25}, \ a_{2013}\left( a_{1}; d\ арқылы \right) a10, a25, a2013(a1; dарқылы) a_{10}, \ a_{25}, \ a_{2013}\left( a_{1}; d\ арқылы \right) мүшелерін таба аласыз ба?

a 10 = a 1 + 9 d , a 25 = a 1 + 24 d , a 2013 = a 1 + 2012 d a_{10} = a_{1} + 9d, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ a_{25} = a_{1} + 24d, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ a_{2013} = a_{1} + 2012d

a n = a 1 + ( n 1 ) d a_{n} = a_{1} + (n - 1) d

Бұл теңдік арифметикалық прогрессияның n-ші мүшенің формуласы болып табылады.

III. Толғаныс.

Оқулықтағы №165, №168, №170, №172, №182 есептерді шығару.

IV. Тест тапсырмаларын орындау (электронды оқулық бойынша) .

V. Сабақты қорытындылау .

VI. Үйге тапсырма беру §10, №166, №167, №173.

Батыс Қазақстан облысы

Жаңақала ауданы


Ұқсас жұмыстар
Арифметикалық прогрессияның анықтамасы және n-ші мүшесінің формуласы
9-сынып: Арифметикалық прогрессия және n-ші мүшенің формуласы
Арифметикалық прогрессия: анықтама мен n-ші мүшенің формуласы
Арифметикалық прогрессия: n-ші мүшенің әмбебап формуласы мен қолданылуы
Арифметикалық прогрессия және п-ші мүшенің формуласы
Арифметикалық прогрессия және n-ші мүшесінің формуласы
Арифметикалық прогрессия: 9-сыныпқа арналған n-ші мүшенің формуласы мен алғашқы n мүшелерінің қосындысы бойынша сабақ жоспары
Арифметикалық прогрессия: n-ші мүшенің формуласы және есептер - 9 а сынып сабақ жоспары
Геометриялық прогрессия: n-ші мүшенің формуласы және шексіз кемімелі қосындысы
9-сынып алгебрасы: Арифметикалық прогрессия және n-ші мүшесінің формуласы
Пәндер



Реферат Курстық жұмыс Диплом Материал Диссертация Практика Презентация Сабақ жоспары Мақал-мәтелдер 1‑10 бет 11‑20 бет 21‑30 бет 31‑60 бет 61+ бет Негізгі Бет саны Қосымша Іздеу Ештеңе табылмады :( Соңғы қаралған жұмыстар Қаралған жұмыстар табылмады Тапсырыс Антиплагиат Қаралған жұмыстар kz