Мазмұнды есептерді шешу

Мазмұнды есептерді шешу
З. Салыкова
Қ. Топаев атындағы орта мектебі
Математиканы мектепте оқытудың басты мақсаты - қазіргі қоғамның әрбір мүше- сінің күнделікті өмірі мен еңбек қызметіне қажетті аралас пәндерді үйрету мен білім беруді жалғастыруға жеткілікті жүйелі математикалық білімді меңгерген, икемді, саналы, жеке зерделі оқушыны қамтамасыз ету.
Жаңа техника мен технологияны меңгеріп, басқару үшін алып шығатын жалпы дайындық құрамына сапалы математикалық білім ауадай қажет. Осы мақсаттарды жүзеге асыруда мазмұнды есептердің алатын орны ерекше . Бірақ мазмұнды есептерді шығару оқушыларға қиындық туғызады .
Мазмұнды есептерді шығарудың дайын әдісі жоқ, бірақ та осы есептерді шығару үшін келесі схеманы пайдалануға болады .
1. Белгісіз шамаларды анықтау .
Көп жағдайда белгісіз шама деп есептің шартындағы ізделінді шаманы алған дұрыс. Осы тәсілді ең бірінші кезекте қарастыру керек, бірақ кейде басқа шамалар арқылы теңдеулерді құрастыру жеңіл, оларды тапқаннан кейін, нақты ізделінді шаманы табуға болады .
- Теңдеу құрастыру .
Теңдеулер құрастыру барысында есептің барлық шарттарын пайдаланған жөн . Теңдеулер саны мен белгісіздер саны бірдей болу керек .
3. Ізделінді шаманы табу керек .
Егер бөгде түбірлер пайда болса, онда оларды есептің шартына байланысты алып тастау керек .
Жоғары сынып оқушыларын ҰБТ - ге әзірлеуде өзім қолданып жүрген кейбір мазмұнды есептерді шешу тәсілдерін ұсынып отырмын.
1-есеп Велосипедші бүкіл жолды белгілі жылдамдықпен 2 сағатта жүріп өтуі керек еді. Ол жылдамдығын 3 км/сағ арттырғандықтан, бүкіл жолды 1
А) 28 км ; В) 30 км ; С) 25 км ; Д) 32 км ; Е) 35 км .
Шешуі : Велосипедшінің жылдамдығын х км /сағ деп белгілейміз, ал арттырғандағы жылдамдығы ( х + 3 ) км/сағ болады . 2 сағ жүріп өтетін жолы 2х км, ал 1
2 х = 1

S = 15
Жауабы : 30 км
2 -есеп Моторлы қайық ағыспен 12 км, ағысқа қарсы 12 км жүрді. Ағысқа қарсы жүрген жолына ағыспен жүрген жолынан 1сағат артық уақыт жібереді. Қайықтың тұнық судағы жылдамдығы 9 км/сағ болса, ағыс жылдамдығын табыңыз.
А) 1 км / сағ; В) 3, 5 км/ сағ ; С) 3 км/ сағ ; Д) 2 км / сағ ; Е) 2, 5 км/ сағ
Шешуі : Ағыс жылдамдығын х км / сағ деп белгілейміз. Онда ағыспен жүрген жылдамдығы ( 9 + х ) км /сағ, ал ағысқа қарсы жүрген жылдамдығы ( 9 - х ) км/сағболады . Ағыспен 12 км жолды


24х = 81 - х 2 , х 2 + 24х - 81 = 0, Д = 576 + 324 = 900, х 1, 2 =
Жауабы : 3 км /сағ
3-есеп Екі қаланың арасын қосатын екі түрлі жол бар. Оның біреуінің ұзындығы екіншісінен 10 км артық. Бірінші жолмен автомобиль жүріп келеді, ол екі қаланың арасын жүріп өту үшін 3, 5 сағ жұмсайды, ал екінші машина екінші жолмен екі қаланың арасындағы 2, 5 сағ жұмсайды. Егер бірінші машинаның жылдамдығы екіншісіне қарағанда 20 км/сағ аз болса, онда машиналардың әрқайсысының жылдамдықтары қандай?
А) 60 км /сағ, 40 км / сағ В) 80 км / сағ, 100 км / сағ С) 75 км / сағ, 95 км / сағ Д) 65 км / сағ, 85 км / сағ Е) 60 км / сағ, 80 км / сағ
Шешуі :

3, 5 ( х - 20 ) - 2, 5 х = 10
3, 5 х - 70 - 2, 5 х = 10
х - 70 = 10
х = 80
Демек, екінші машинаның жылдамдығы 80 км / сағ, ал бірінші машинаның жылдамдығы х - 20 = 80 -20 = 60 (км / сағ )
Жауабы : 60 км /сағ, 80 км / сағ
4-есеп Өзен бойындағы екі пристаньның ара қашықтығы 80 км. Қайықтың бір пристаньнан екінші пристаньға барып қайтуына 8 сағ20 мин уақыт кетеді. Ағыс жылдамдығы 4 км/сағ деп есептеп, қайықтың тынық судағы жылдамдығын табыңыз.
А) 21км/сағ В) 18км /сағ С) 22км /сағ Д) 19км/сағ Е) 20 км/сағ
Шешуі : Қайықтың тынық судағы жылдамдығы - х км / сағ, ағыспен жүрген жылдамдығы - (х + 4) км / сағ, ағысқа қарсы жүрген жылдамдығы - ( х - 4 ) км / сағ. 80 км жолды ағыспен

480 х = 25 х 2 - 400, 25 х 2 - 480 х - 400 = 0, 5х 2 - 96х - 80 = 0
Д = 9216 + 1600 = 10816, х 1, 2 =
Жауабы : 20 км / сағ
5-есеп Пароход өзен ағысымен 3 сағ жүріп өткен жолын, қайтар жолында 5 сағ жүріп өткен. Өзен ағысының жылдамдығы 5 км/сағ. Пароходтың тынық судағы жылдамдығын табыңыз
А) 20км/сағ В) 15км/сағ С) 5км/сағ Д) 10 км/сағ Е) 18км/сағ
Шешуі : х - пароходтың тынық судағы жылдамдығы,
х + 5 - ағыспен жүрген жылдамдығы
х - 5 - ағысқа қарсы жүрген жылдамдығы
3 ( х + 5 ) км - өзен ағысымен 3 сағ жүріп өткен
жолы
5 ( х - 5 ) км - қайтар жолында 5 сағ жүріп өткен
жолы .
Енді теңдеу құрып шығарамыз : 3 ( х + 5 ) = 5 ( х - 5 )
3 х + 15 = 5 х - 25
2 х = 40
х = 20
Сонымен, пароходтың тынық судағы жылдамдығы 20 км / сағ
Жауабы :20 км / сағ
6-есеп Жұмысшылар бригадасы 360 детальды дайындап шығуы керек еді. Күніне белгіленген жоспардан 4 детальді артық жасағандықтан бригада барлық тапсырманы белгіленген мерзімнен 1 күнге ерте бітірді. Осы тапсырманы орындауға бригада қанша күн жұмсады?
А) 7 күн В ) 9 күн С) 10 күн Д) 8 күн Е) 6 күн
Шешуі : х - жоспар бойынша дайындалатын детальдар саны
Бригада барлық тапсырманы белгіленген мерзімнен 1 күнге ерте бітірді, сондықтан, мына теңдеуді аламыз :
Енді осы теңдеуді шығарамыз
1440 = х 2 + 4х
х 2 + 4х - 1440 = 0
Д = 16 + 5760 = 5776
х 1, 2 =
х 2 =36 . Сондықтан, х = 36 .
7-есеп Белгілі жұмысты бір ұста 12 күнде, екінші ұста 6 күнде бітіреді. Екі ұста бірігіп сол жұмысты неше күнде бітіреді?
А) 8 күнде В) 6 күнде С) 5 күнде Д) 4 күнде Е ) 3 күнде
Шешуі: х күн - екі ұста бірігіп бітіретін жұмыс күні
- екінші ұстаның жұмыс өнімділігі
өнімділігі
Енді теңдеу құрамыз :

х = 4 . Демек, екі ұста бірігіп сол жұмысты 4 күнде бітіреді
Жауабы : 4 күнде
8-есеп Екі құбыр бассейнді 7, 5 сағ толтырады. Бірінші құбыр жеке өзі бассейінді екінші құбырға қарағанда 8 сағ бұрын толтыра алады. Бірінші құбыр жеке өзі бассейінді неше сағатта толтырады.
А) 12 сағ В) 14 сағ С) 15 сағ Д) 11 сағ Е) 10 сағ
Шешуі : I құбыр - х сағ, II құбыр - (х + 8 ) сағ толтырады.
(
7, 5 ( х + 8 + х ) = х ( х + 8 )
х 2 +8х -15х - 60 = 0
х 2 -7х - 60 = 0
Д = 49 + 240 = 289, х 1, 2 =
х 1 = -5 есептің шартын қанағаттандырмайды, демек, х = 12
9-есеп Мыс пен қалайыдан тұратын екі кесек қорытпа бар. Бірінші қорытпада 40%, екіншісінде 32% мыс бар. 35% мысы бар 8 кг қорытпа алу үшін бірге қорытылатын кесектердің салмағы қандай болуы керек?
А) 4 кг, 3 кг В) 1 кг, 7 кг С) 4кг, 4кг Д) 2кг, 6кг Е) 3кг, 5кг
Шешуі : х - бірінші кесектің салмағы, у - екінші кесектің салмағы . Алынған қорытпаның салмағы 8 кг, сондықтан, х+ у =8 . Бірінші қорытпада - 0, 4 х кг мыс, екінші қорытпада -0, 32 х кг мыс бар . Алынған қоспада 8
демек, 0, 4 х + 0, 32 у = 2, 8, теңдеудің екі жағын да 0, 4 - ке бөлеміз. Сонда, х + 0, 8 у = 7 теңдеуі шығады . Енді теңдеулер жүйесін құрамыз :
Осы теңдеулер жүйесін шешу үшін (1) теңдеуден (2) теңдеуді аламыз : 0, 2у = 1, у = 5 . Ал х - тің мәнін (1) теңдеуден табамыз: х + у = 8, х = 8 - у, х = 8 - 5 = 3 . Демек, 8 кг қорытпа алу үшін бірге қорытылатын кесектердің салмағы 3 кг және 5 кг .
Жауабы : 3 кг, 5 кг
10-есеп 36 кг мыс пен мырыш қорытпасының 45% - і мыс. Қорытпада 60% - тік мыс болу үшін, қорытпаға қанша мыс қосу керек ?
А) 13 кг В) 18, 2 кг С) 13, 5 кг Д) 16, 2 кг Е) 15, 5 кг
Шешуі: 36 кг қорытпада 36
х кг мыс қосамыз, сонда 16, 2 + х болады
Енді мына теңдеуді құрамыз :
16, 2 + х = 0, 6 х + 21, 6, 0, 4 х = 5, 4, х = 13, 5
Жауабы: 13, 5 кг
- Іс жүргізу
- Автоматтандыру, Техника
- Алғашқы әскери дайындық
- Астрономия
- Ауыл шаруашылығы
- Банк ісі
- Бизнесті бағалау
- Биология
- Бухгалтерлік іс
- Валеология
- Ветеринария
- География
- Геология, Геофизика, Геодезия
- Дін
- Ет, сүт, шарап өнімдері
- Жалпы тарих
- Жер кадастрі, Жылжымайтын мүлік
- Журналистика
- Информатика
- Кеден ісі
- Маркетинг
- Математика, Геометрия
- Медицина
- Мемлекеттік басқару
- Менеджмент
- Мұнай, Газ
- Мұрағат ісі
- Мәдениеттану
- ОБЖ (Основы безопасности жизнедеятельности)
- Педагогика
- Полиграфия
- Психология
- Салық
- Саясаттану
- Сақтандыру
- Сертификаттау, стандарттау
- Социология, Демография
- Спорт
- Статистика
- Тілтану, Филология
- Тарихи тұлғалар
- Тау-кен ісі
- Транспорт
- Туризм
- Физика
- Философия
- Халықаралық қатынастар
- Химия
- Экология, Қоршаған ортаны қорғау
- Экономика
- Экономикалық география
- Электротехника
- Қазақстан тарихы
- Қаржы
- Құрылыс
- Құқық, Криминалистика
- Әдебиет
- Өнер, музыка
- Өнеркәсіп, Өндіріс
Қазақ тілінде жазылған рефераттар, курстық жұмыстар, дипломдық жұмыстар бойынша біздің қор #1 болып табылады.

Ақпарат
Қосымша
Email: info@stud.kz