Файл қосу
Электролиттер ерітінділері
|ҚАЗАҚСТАН РЕСПУБЛИКАСЫНЫҢ | |БІЛІМ ЖӘНЕ ҒЫЛЫМ МИНИСТРЛІГІ | |СЕМЕЙ қаласының ШӘКӘРІМ атындағы | |МЕМЛЕКЕТТІК УНИВЕРСИТЕТІ | |3денгейлі СМЖ құжаты |ПОӘК | | | | |ПОӘК 042-18-10.1.14 | | | |/03-2014 | |ПОӘК | | | |«Теориялық электрохимияның |18.09.2014ж | | |негіздері» пәні бойынша |№2 басылым | | |оқу-әдістемелік | | | |материалдары | | | ПӘНДЕРДІҢ ОҚУ-ӘДІСТЕМЕЛІК КЕШЕНІ «ТЕОРИЯЛЫҚ ЭЛЕКТРОХИМИЯНЫҢ НЕГІЗДЕРІ» 5В072000 – «Бейорганкалық заттардың химиялық технологиясы» мамандығына арналған ОҚУ-ӘДІСТЕМЕЛІК МАТЕРИАЛДАР Семей 2014 Мазмұны 1 Глоссарий (осы бөлімнің болуы негізді емес) 2 Дәріс оқулар 3 Практикалық және зертханалық сабақтар 4 Курс жұмысы және диплом жобасы (жұмысы) 5 Студенттің өзіндік жұмысы 1 ГЛОССАРИЙРАР Ескерту-«Глоссарий» бөлімі қажет жағдайда жасалады (міндетті емес) 2 ДӘРІС ОҚУЛАР Дәріс сабақтарының құрылымы: Дәріс 1. «Кіріспе. Электрохимиялық процестердің жалпы сипаттамасы». Дәріс сабақтың мазмұны: 1. Электрохимия пәні. 2. Бірінші және екінші реттік өткізгіштер. 3. Электрохимиялық реакциялардың ерекшеліктері. Кіріспе. Электрохимия – химия/қ энергия электр/к энергияға ж/е электр/к энергия химия/қ энергияға айналу процестерін оқитын ғылым. Осындай айналуларының мысалы ретінде жұмыс жасау және зарядталу кезіндегі аккумуляторлы батареяда жүретін процестерді қарастыруға болады. Сонымен, қорғасын аккумуляторда, күкірт қышқылы толтырылған сыйымдылық, оның ішінде екі қорғасын пластинкасы бар – электродтар, біреуі көбікті қорғасынмен, ал екіншісі – PbO2, қорғасын тотығымен қапталған, жұмыс барысында мынадай химиялық реакция жүреді: Pb + PbO2 + 2Н2SО4 = 2PbSО4 + 2Н2О екі реакцияның суммасы болып табылатын: І. Pb + SО42- = 2PbSО4 + 2ê - көбікті қорғасынмен қапталған электродта, және ІІ. PbO2 + 4Н + + SО42- = PbSО4 + 2Н2О – 2ê - қорғасын тотығымен қапталған электродта жүретін. Электрондар, бір электродтан екінші электродқа сыртқы тізбек арқылы өтіп электродты реакцияға түсіп электр тоғын туғызады. Аккумуляторда өтетін химиялық реакция нәтижесінде сыртқы тізбекте электр тоғының пайда болу процесі, аккумулятордың разрядталу процесі деп аталады. Электрлік энергия, қорғасын аккумуляторында қорғасын мен қорғасын тотығының жаратылуы және электродтарда қорғасын сульфаты PbSО4 жиналу арқылы бөлінеді. Қорғасын аккумуляторының разрядталу процесі барлық қорғасын тотығы PbO2 жаратылып және екі электродта да тек қорғасын сульфаты PbSО4 болғандағана аяқталады. Аккумулятроды зарядтау үшін оның үстінен сыртқы көз арқылы үздіксіз тоғын жібереді. Осы кезде электродтарда жоғардағы І,ІІ реакциялар кері жүреді, яғни электр/к энергия химия/қ энергияға айналуы: 2PbSО4 + 2Н2О = Pb + PbO2 + 2Н2SО4 Электр/к энергияның химия/қ энергияға айналу процестерін электролиз деп атайды. Электрохимиялық процес жүретін электрохимиялық жүйе І-ші текті өткізгіштерден – электродтардан басқа ІІ-ші текті өткізгіштерден – электродтар арасындағы кеңістікті толтыратын, өткізетін ерітінді немесе балқымадан, және сыртқы электр тізбегін құратын І-ші текті өткізгіштерден тұрады. Химия/қ және электр/к энергияның өзара өтулері тек электрохимиялық жүйелерде жүре алады, ал осы жүйелердің ерекшеліктері электрохимия пәнінде қарастырылады деп анықтайды. Электрохимия пәнінде электролиттер ерітінділерінің қасиеттері, электрохимиялық реакциялар жүргенде ерітінділерде өтетін процестер, электролит ерітінділерін зерттейтін бірқатр әдістер, электродтар жанындағы ерітіінділер қабатының (ҚЭҚ) құрылысы, электродты процестердің кинетикасын, электролиз процесі деген бөлімдер қарастырылады. Электрохимия дамуының қысқаша шолуы Химиялық және электрлік құбылыстардың байланысы жайыда мәліметті ХҮІІІ ғасырдың ортасында В.М. Ломоносов айытқан. Бірақ 1791ж Л. Гальвани өзінің жұмысында «Бұлшық еттерінің қимылы кезіндегі электрлік күші туралы трактат» препаратталған бақаны өзара қосылған мыс пен темір сым арқылы жанастырғанда бұлшық еттерінің қысқартылуы байқалатыны туралы жазған, зерттеушілердің назары жаңа құбылысқа аударылды. А. Вольта деген физик Л. Гальванидың жұмыстарын талдай отырып, бақаның бұлшық еттерінің қысқартылуын беретін электрлік энергия екі металдың қосылған жерінде пайда болады деген тұжырымға келді. Өзінің көріністерінің негізінде А. Вольта 1779ж бірінші химиялық энергия көзін ашты – қышқылмен дымқылданған мауыты (суконным) төсеммен бөлінген мыс пен мырыш дөңгелектер қатарынан тұратын, вольттың бағанасы. А. Вольта берген, электрлік энергия екі металдың жанасқан жерінде пайда болады деген теория, көп уақыт ғылымда орын алды. А. Вольта теориясының қате екенін 1872ж Ф. Энгельс көрсетті. Энергия сақталу заңына сүйеніп, электрлік энергияның көзі болып гальваникалық элементте жүретін химиялық реакция табылады деген тұжырымға келді. Осы сұрақты шешу үшін өз үлестерін Гиббс (1878ж) және Гельмгольц (1882ж) жұмыстары оте маңызды болды. Олар максималдьды химиялық жүйе беретін максимальды жұмыс пен химиялық реакцияның жылу эффект арасындағы байланысты көрсетті. 1889ж В. Нернст гальваникалық элементінің осмотикалық теориясын дамытты, ол гальваникалық элементінің ЭҚК шамасымен ерітінді концентрациясының арасын байланыстыратын теңдеу алуға мүмкіндік берді. Өзін-өзі бақылауға арналған сұрақтар: 1. Электродты процесс деген не? 2. Классификация проводников. 3. Различие между химическими и электрохимическими реакциями. Ұсынылған әдебиеттер: 1 Негізгі әдебиеттер 1. Антропов Л.И. Теоретическая электрохимия. М.: ВШ. 1984. 519с. 2. Скорчелетти В.В. Теоретическая электрохимия. Л.: «Химия», 1974. 567с. 3. В.С.Багоцкий. Основы электрохимии. М.: Химия. 1988. 4. Практические работы по физической химии / под.ред. Мищенко: М. Высшая школа. 1982. 5. Практикум по электрохимии / под.ред. Б.Б.Дамаскина. М.: Высшая школа. 1991. 288с. 6. И.А.Семиохин. Сборник задач по электрохимии. М.: МГУ. 2006. 97 с. 8.2 Қосымша әдебиеттер 7. Дж. Ньюмен. Электрохимические системы. М.: Мир. 1977. 463с 8. Дамаскин Б.Б., Петрий О.А., Цирлина Г.А. Электрохимия. М.: Химия. 2001. 624с 9. Корыта И., Дворжак И., Богачкова В. Электрохимия. М.: Мир. 1977 10. Краткий справочник физико-химических величин./ под ред. А.А.Равделя, А.М.Пономаревой. Л.: Химия. 1983. 11. А.Г. Стромберг, Д.П.Семченко. Физическая химия.М.,1988. 12. Ф.И. Кукоз. Сборник задач по теоретической электрохимии.М., 1982. Дәріс 2. «Электролиздік диссоциация жайында ұсыныстың дамуы»» Дәріс сабақтың мазмұны: 1. Аррениустың электролиздік диссоциация теориясы. 2. Электролиттер ерітіндідегі иондық тепе-теңдіктер. 3. Электролиздік диссоциация теориясының кемшілігі І. ЭЛЕКТРОЛИТИКАЛЫҚ ДИССОЦИАЛАНУ Электролиттер ерітінділері. Көрінетін дәрежеде электр тоғын өткізетін ерітінділерді электролит ерітінділері деп атайды, ал суда немесе басқа еріткіштерде еріткенде электр өткізгіш ерітінділерін түзетін заттар электролиттер болып табылады. Мысалы, ас тұзы, сірке қышқылы, хлорлы барий және т.б., олардың сулы ерітінділерінің электрөткізгіштігі жеткілікті жоғары. Электролит ерітінділерінің электрөткізгіштігі, оларды суда немесе басқа еріткіштерде еріткенде электролит молекулалары иондарға – электр заряды бар бөлшектерге ыдырағандықтан пайда болады. Электр өріс әсерінен иондардың жылжу қабілеті бар, сол электролит ерітінділерінің электрөткізгіштігін анықтайды. Сонымен, электролит емес идеалды ерітіндінің үстіндегі еріткіш буының парциал қысымы еріткіштің мольдік үлесіне пропорционал (Рауль заңы): р = р0 N1 = р0 (1 – N2) (1) мұнда р және р0 – ерітіндінің және таза еріткіш үстіндегі еріткіш буының парциал қысымы; N1 және N2 - еріткіштің және еріген заттың мольдік үлесі. Электролит емес ерітіндінің қайнау температурасының өсуі немесе қатаю температурасының азаюы таза еріткішпен салыстырғанда 1000г еріткіштегі еріген заттың моль санымен көрсетілетін ерітінді концентрациясына пропорционал: ΔТ = kc (2) мұнда k – осы еріткіш үшін константа; c – ерітінді концентрациясы. Электролит емес ерітіндінің осмостық қысымы тұрақты температурада еріген заттың концентрациясына пропорционал: π = k1c (3) мұнда π – осмостық қысым ; k1 –константа. Ал электролит ерітінділер үшін жоғарыдағы заңдылықтар бұзылады. Электролит ерітінділер электролит емес ерітінділермен мольдік концентрациялары тең болғанда ерітіндінің үстіндегі еріткіш буының парциал қысымы төмен, қайнау және қатаю температурасының өзгеруі оте қатты және осмостық қысымы оте жоғары болады екен. Сұйылтылған электролит ерітінділерінің ерекшеліктері Аррениустың электролитикалық диссоциалану теориясы арқылы ұғындырылған. Аррениустың электролитикалық диссоциалану теориясы. 1883 – 1887жж Аррениус дамытқан электролитикалық диссоциалану теориясы келесі жайдыңдарға(положения) негізделеді. 1. Электролит деп аталатын бірқатар заттардың молекулалары ерітіндіде оң (+) және теріс (–) зарядталған иондарға ыдырайды. Электролиттердің еріген кезінде ыдырауын электролитикалық диссоциалану процесі деп аталды. 2. Еріген кезде молекуланың тек қана қандай да бір бөлігі иондарға ыдырайды. Иондарға ыдырайтын молекулалар үлесі нақты бір температурада заттың табиғатына және оның концентрациясына тәуелді. Электролитикалық диссоциаланудың дәрежесі және константасы. Аррениус теориясы бойынша ерітіндідегі заттың негізгі сипаттамасы болып оның диссоциалану дәрежесі табылады, ол иондарға ыдыраған молекула санының еріген заттың молекуласының жалпы санына қатынасы деп қарастырылатын: α = n1/n2 (4) n1 – иондарға ыдыраған молекула саны; n2 – ерітіндіде еріген заттың молекуласының жалпы саны. Әдеттегідей n2 ≥ n1 ≥ 0 болғандықтан, диссоциалану дәреже 0 ден 1 ге дейін болуы мүмкін. Егер α = 0 болса, диссоциалану болмайды және еріген зат электролит емес, ал егер α = 1, онда еріген заттың барлық молекулалары иондарға ыдыраған. Диссоциалану үшін қандай да бір химиялық реакцияға сияқты диссоциалану константа деп аталатын, тепе-теңдік константасы болады. Сірке қышқылының диссоциалану үшін: СН3СООН ↔ СН3СОО- + Н+ және КД = с СН3СОО- сН+/с СН3СООН (5) Диссоциалану константа ерітіндінің температурасына тәуелді. Оствальдтың сұйылту заңы. Оствальдтың сұйылту заңы диссоциалану дәрежесімен арасындағы тәуелділікті орнықтырады. Осы тәуелділікті сірке қышқылы үшін қарастырайық: с СН3СОО- = сН+ = αс Диссоциацияланбаған сірке қышқылы молекулалар үшін концентрация: с СН3СООН = с – αс = с (1 – α) с СН3СОО-, сН+ және сСН3СООН концентрация мәндерін (5)-ші теңдеуге қойып, КД = α2с/(1 – с) (6) аламыз. Диссоциалану константасын басқа түрде көрсетуге де болады, егер с = 1/v деп ескеріп алсақ, мұнда v – 1 моль еріген заттың ерітіндісінің мөлшері және сұйылту деп аталады: КД = α2/(1 – α) v (7) (6) және (7) теңдеулер Оствальд енгізген және сұйылту теңдеуі, немесе Оствальдтың сұйылту заңы деп аталады. Егер диссоциалану дәреже өте аз болса, яғни α << 1, онда (6) мен (7) теңдеулер былай жазылады: КД = α2с (8) КД = α2/ v (9) (6) – (9) теңдеулер, диссоциалану константасы берілген кезде, диссоциалану дәрежесін ерітінді концентрациясына және сұйылтуға тәуелді есептеуге көмек береді. Изотоникалық коэффициент. Электролитикалық диссоциалану нәтижесінде электролит ерітінділерде электролит емес молекулалардың еру кезінде санына қарағанда бөлшектер саны көп түзіледі. Электролит ерігенде түзілетін бөлшектер санының еріген молекула санына қатынасы изотоникалық коэффициент деп аталады і = n/n2 (10) n -болшектердің ерітіндідегі жалпы саны; n2 – еріген заттың молекула саны. Ерітіндідегі бөлшектердің жалпы саны диссоциаланбаған молекулалар мен иондардың қосындысынан тұрады n =n2(1 – α) + bn2α (11) n2(1 – α) – диссоциаланбаған молекулалар саны: b – бір молекула диссоциаланғандағы иондар саны; bn2α – диссоциацияланған кездегі иондар. (10) теңдеуге (11) теңдеудегі n мәнін қойып і = 1 – α + bα (12) аламыз b мәні екіден кем болмайды, яғни әрқашан і > 1. Изотоникалық коэффициентті электролит емес идеалды ерітінділер қасиетін бейнелейтін теңдеуге енгізу арқылы сұйылтылған электролит ерітінділерінің қасиеттерін есептеуге қолдануға мүмкіншілік берді, олар үшін (1) – (3) теңдеулерді былай жазуға болады: р = р0 (1 – іN2) (13) ΔТ = іkc (14) π = іk1c (15) (13) – (15) –ші теңдеулер көмегімен р, ΔТ, π мәндерін тәжірибе арқылы тауып изотоникалық коэффициентті есептеуге болады. Электролиттер ерітіндідегі иондық тепе-теңдіктер. Аррениус теориясының негізінде Я. Бренстед қышқылдар мен сілтілер теориясы жайында бірінші рет анықтамасын берді, оған сәйкес қышқылдар (НА) болып сутегі мен қышқыл қалдығының иондарына диссоциаланатын қосылыс табылады: НА↔ Н+ + А- ал сілті болып (МОН) – металл катионы мен гидроксил анионын иондарына диссоциаланатын қосылыс: МОН↔ М+ + ОН-. Сөйтіп, бейтараптану реакциясы әрқашан Н+ пен ОН- иондарының әрекеттесуіне әкеледі және сұйылтылған күшті қышқылдар мен сілтілер ерітінділерінде қышқылмен сілтінің табиғатына байланысты емес жылу эффектісі тұрақтылығымен сипаттану керек. Аррениус теориясы әртүрлі қышқылды-негіз тепе-теңдікті ұғындыру үшін кеңінен қолданылған. Қышқылдың НА және сілтінің МОН диссоциациялану процестері үшін Оствальдтің сұйылту заңын былай жазуға болады: КА = [Н+][А-] = α2c (1) [НА] 1 - α КВ = [М+][ОН-] = α2c (2) [МОН] 1 - α ________ [Н+] = αc және [ОН-] = αc болғандықтан, α = √К2 + 4Кс – К/2с теңдеуді қолданып _______ [Н+] = √К2А + 4КА с – КА/2 (3) _______ [ОН-] = √К2В + 4КВ с – КВ/2 (4) аламыз. КА « 4с немесе КВ « 4с, яғни КА мен КВ аз болғанда және с өте аз болмағанда _______ [Н+] = √КА с (5) _______ [ОН-] = √КВ с (6) Кері белгісімен алынған сутегі иондарының концентрациясының логарифмі ерітіндінің рН деп аталады (С.Сёренсен). рН = - lg [Н+] (7) Осыған сәйкес қышқыл мен сілтінің диссоциалану көрсеткіштері енгізілген р КА = - lg КА (8) р КВ = - lg КВ (9) Аррениус теориясын өте әлсіз электролиттер санына жататын және теңдеу Н2О ↔ Н+ + ОН- бойынша диссоциаланатын cуға қолданатын болсақ, былай жазуға болады: К’ = [Н+][ОН -] = α2c (10) [Н2О] 1 - α Су үшін α«1, ал [Н2О] іс жүзінде тұрақты, онда Кw = [Н+][ОН -] = К’[Н2О] = α2c (11) аламыз Кw – температураға тәуелді константа судың ионды көбейткіші деп атлады. Бөлме температурасындағы судың ионды көбейткіші: Кв = [Н+]·[ОН-] = 10- 14. Ол таза су үшін және сұйылтылған сулы ерітінділер үшін де тұрақты. Температура жоғары болған сайын ол да жоғары болады, ал төмен болғанда – төмендейді. Әлсіз қышқыл немесе (әлсіз) негіздерден түзілген тұздар сулы ерітінділерде гидролизға ұшырайды. Әлсіз қышқыл мен күшті негіздерден түзілген тұз үшін гидролиздену реакция А- + Н2О ↔ НА + ОН- теңдеу арқылы жүреді және гидролиз константасымен сипатталады Кһ = [НА][ОН -] (11) [А -] [Н2О] = const болғандықтан. (1), (11), (12) теңдеулерін қолдана отырып былай Кһ = Кw/ КА жазуға болады. Және әлсіз негізбен күшті қышқылдардан түзілген тұз үшін Кһ = Кw/КВ Аррениус теориясы бойынша аз еритін қосылыстар үшін еріткіш көбейткіші ұғымы берілген. Аз еритін электролиттің қаныққан ерітіндісінде тепе-теңдік оралған кезде берілген температурада, қысымда иондар концентрациясының өзгеруіне тәуелді емес туындалған иодар концентрациясының шамасы тұрақты болып қалады және ерігіштіктің туындысы деп аталады. Егер ерітіндіде туындалған иодар концентрациясының шамасы ерігіштіктің туындысынан жоғары болса, онда аз еритін қосылыстар тұнбаға түседі. Егер төмен болса, тұнба түзілмейді. Ерітіндіге тұнбадағыдай жалпы ион болатын заттар қосқан кезде ерігішітіктің төмендейтіні ұғындырылды. Кейбір кездерде комплексті қосылыстар түзілгендіктен осы ереже бұзылады. Сонымен, күміс цианидінің ерігіштігі калий цианиді көп мөлшерде болғанда азаяды, ойткені осы жағдайда комплексті ион (Ag(CN)2(- ( Ag+ + 2CN- түзіледі және тепе-теңдік орнатылады. Электролитикалық диссоциация классикалық теориясының кемшіліктері Аррениус теориясы ұсынып отырған электролиттердің сандық сипаттамасының бірі, осы ерітіндідегі иондалған молекулалар үлесін анықтайтын электролитикалық диссоциациялану дәрежесі (. Оның физикалық мағынасына сәйкес ( 1 -ден жоғары немесе 0 -ден төмен бола алмайды; берілген жағдайда оны өлшеу әдісіне (электрөткізгіштігін, осмостық қысымын немесе ЭҚК өлшеу) тәуелсіз өзгеріссіз қала беру керек. Бірақ іс жүзінде әртүрлі әдістермен алынған ( мәні тек қана әлсіз электролиттердің сұйылтылған ерітінділері үшін сәйкес болып келеді; күшті электролиттер үшін электролит концентрациясы жөғары болған сайын айырмашылығы да көп болады, және концентарцияның жоғары мәндерінде ( 1 -ден жоғары болады. Сондықтан, Аррениус теориясы беретін ( да сол физикалық мағына болмайды. Аррениус теориясы ұсынып отырған электролиттердің сандық сипаттамасының екіншісі диссоциалану константасы болып табылады; ол берілген Т мен Р да осы электролит үшін ерітінді концентрациясына тәуелсіз тұрақты болу керек. Іс жүзінде тек сұйылтылған өте әлсіз электролиттер үшін Кд,с сұйылтқанда тұрақты бола береді. Өзін-өзі бақылауға арналған сұрақтар: 1. Что означает изотонический коэффициент? 2. От каких факторов зависят степень диссоциации, константа диссоциации электролита? 3. Что такое константа гидролиза соли? Примеры. 4. Что такое константа устойчивости комплексов. Примеры. 5. Укажите основные недостатки теории Аррениуса. Ұсынылған әдебиеттер: 1 Негізгі әдебиеттер 1. Антропов Л.И. Теоретическая электрохимия. М.: ВШ. 1984. 519с. 2. Скорчелетти В.В. Теоретическая электрохимия. Л.: «Химия», 1974. 567с. 3. В.С.Багоцкий. Основы электрохимии. М.: Химия. 1988. 4. Практические работы по физической химии / под.ред. Мищенко: М. Высшая школа. 1982. 5. Практикум по электрохимии / под.ред. Б.Б.Дамаскина. М.: Высшая школа. 1991. 288с. 6. И.А.Семиохин. Сборник задач по электрохимии. М.: МГУ. 2006. 97 с. 8.2 Қосымша әдебиеттер 7. Дж. Ньюмен. Электрохимические системы. М.: Мир. 1977. 463с 8. Дамаскин Б.Б., Петрий О.А., Цирлина Г.А. Электрохимия. М.: Химия. 2001. 624с 9. Корыта И., Дворжак И., Богачкова В. Электрохимия. М.: Мир. 1977 10. Краткий справочник физико-химических величин./ под ред. А.А.Равделя, А.М.Пономаревой. Л.: Химия. 1983. 11. А.Г. Стромберг, Д.П.Семченко. Физическая химия.М.,1988. 12. Ф.И. Кукоз. Сборник задач по теоретической электрохимии.М., 1982. Дәріс 3. «Электролит ерітінділердегі ион-дипольді әрекеттесу» Дәріс сабақтың мазмұны: 1. Кристалды торының энергиясы. 2. Сольватациялану энергиясы. 3. Иондар сольватациясының энтропиясы. 4. Ерітіндіде иондардың күйі. Кристалды торының энергиясы. Кристалды тордың энергиясыосы торды бұзуға қажет жұмыс мөлшерін көрсетеді, яғни вакуумда осы торды құрайтын иондарды бір-бірінен үлкен ара-қашықтыққа бөлу. Кристалды тордың энергиясынзерттелетін заттың бір мольіна есептейді. Бұл энергия 1920ж М. Борнмен ұсынылған модельді әдіспен бағаланады. (Gp = NA [pic][pic]. КМ- моделдің константасы, ол кристалды тордағы иондардың бір-біріне сәйкес орналасуына байланысты. Әртүрлі торлар үшін оның мәні белгілі, мысалы NaCl (ГЦК-торы) үшін КМ = 1,7476. r- берілген кристалдағы бір-біріне қарама-қарсы таңбалы иондардың арасындағы тепе-теңдік n- бөлшектер арасындағы тебілу күшінің өзгерісімен сипатталатын күш константа; кристалдың сығылу мәндерімен анықталады, ол 5-12 аралықта жатыр (NaCl үшін n = 7,5). 19 (Gp = [pic][pic] = 762 кДж/моль Кристалды тордағы Na+ және Cl- көршілес иондар бөліктенген (изолированной) NaCl молекласымен салыстырғанда бостандық дәрежесі төмен, сондықтан NaCl молекласының жылулық энергиясы тордағы бір-біріне қарама- қарсы зарядталған иондар жұбының максималды мәні ретінде қарастыруға болады. Бос NaCl молекуласы жеті бостандық дәрежесіне ие, яғни 298К оның жылулық энергиясының қоры 8,68 кДж/моль болады, оның тек 2,5 кДж/моль ғана молекуланың бұзылуына апаратынтербеліс энергияға тән. Бұл термиялық энергияның мөлшері торды бұзуға қажет энергиядан (762 кДж/моль) өте аз, NaCl -дың иондарға диссоциалану көрнісін көрсете алмайды. Сонымен қоса NaCl –дың сулы ерітіндіде α ≈ 1 екені белгілі. Сонымен, кристалл торы бұзылу кезіндегі иондардың түзілуі өте үлкен энергияны қажет етеді. Егер бұл энергия сольватация энергиясымен байланыспаса (компнесировалась) онда диссоциация дәрежесі нольге тең болушы еді. Бұл нәтиже бізге ион-дипольді әрекеттесуді елемейді. Аррениус теориясындағы қарсыластардың бір-бірімен қарсыласуы толығымен орынды екенін көрсетеді. Еріген кезде ион түзетін заттарды құрылысы және байланыстарының табиғаты бойынша екі топқа бөлуге болады. Біріншісіне кристалл торы ионынан құрылған – ионофорлар қосылыстары жатады. Мұндай заттарға «электролитикалық диссоциация» термині сәйкес келмейді, ойткені оларда еру процесіне дейін де молекула болмаған. Бұл жағдайда сольватация молекула диссоциациясының процесінің энергия көзі болып табылмайды, ал ол тордың бұзылу кезіндегі бос иондар түзілу процесінің энергия көзі болып табылады. Сондықтан еріткіштердегі диэлектрлік өткізгіштілігі жоғары барлық ионофорлар – күшті электролиттер. Келесі топқа молекулярлы қосылыстар – ионогендер жатады. Ионогендер еруі кезіндегі ионның түзілуі тек еріткішпен химиялық әрекеттесуі кезінде ғана болады. Химиялық байланысты үзуге қажетті энергиягидроксоний ионындағы су молекуласымен байланысқан протон энергиясымен компенсирленеді (егер иондардың бірі – сутек ионы болса) және Н3О+ мен А– иондардыңгидратация энергиясымен. Үздіксіз орта (Борн модельі) әдісі арқылы ионның энергия және жылу гидратациясының есептеуін қарастырайық. Бұл моделге сәйкес ион радиусы ri зарядталған шарик түрінде, ал еріткіш – диэлектрлік тұрақтылығы ( бар жаппай біртекті орта (континуум) ретінде қарастырылады. Зарядталған шарикті вакуумнан ортаға ауыстыру процессі үшін сатыға бөлінеді. 1. Вакуумдағы шариктің разряды. 2. Заряды жоқ шарикті вакуумнан еріткішке тасымалдап енгізу 3. Ортада шариктің зарядталуы Осы кезде екінші сатыдағы жұмыс А2 = 0 екніне болжам жасалады, ал 1 -ші және 3 -ші сатыдағы жұмысты есптеу үшін электростатиканың негізгі заңдарын қолданылады. Кулон заңына сәйкес, r арақашықтықта диэлектрлік тұрақтылығы ( бар ортада орналасқан екі зарядтың g1 және g2 әрқайсысына әсер ететін күш келесіге тең: F = [pic]. Сондықтан орістің кернеуі Е, яғни g зарядталған r арақашықтықта орналасқан +1 зарядқа әсер ететін күш тең болады Е = [pic]. Оріс кернеуі электрлік потенциалмен ( Е = – d( / dr жалпы формуламен байланысқан, сонда ri радиусты сфера бетінің потенциалы үшін аламыз ( = – [pic] = – [pic] = [pic] , Мұнда ингралдың төменгі мәні ноль потенциалыны қарастырып отырған сферадан шексіз ұлкен қашықтыққа сәйкес келеді. Осы теңдеуден сфераны зарядтау жұмыстарының формуласы шығады: А = [pic] = [pic] = [pic] . Осы фрмулаға сәйкес А1 және А3 жұмыстарының формуласын ала-аламыз А1 = [pic] и А3 = – [pic] , мұнда zi eo – ион заряды. Борн модельінің негізгі формуласын шығара аламыз:, – (Gs = NA [pic][pic] . Осыған сәйкес, Борн теориясы арқылы ионның сольватация энергиясы оның заряды мен өлшемі арқылы, сонымен қоса еріткіштің диэлектрлік өткізгіштігімен анықталады. Жоғарда көрсетілген теңдеуді диэлектрлік өткізгіштігі белгілі барлық ерітінділер үшін қолдануға болады. Гиббс – Гельмгольц теңдеуін қолдатын болсақ (H = (G – T [pic] , Сольватация жылуының теңдеуін аламыз: – (Нs = NA [pic][pic] . Жоғарыда көрсетілген теңдеуді Борн – Бьеррум теңдеуі деп атайды. Борн сольватация теориясын нақтылау үшін бірнеше жұмыстар қолға алынған. Мысалы, Уэбб Борн формуласын бірнеше рет жаңартты, ол үшін ион жақын ерітіндінің диэлектрлік өткізгіштігін төмендетуге және электролитті енгізген кезде еріткіштің қысылу жұмысына (электрострикция құбылысы) түзетулер енгізген. Екі эффектінің нәтижесінде Борн-Уэбб формуласы арқылы есептелген гидратация энергиясы мен жылуының мәні азайып тәжірибе мәніне жақындағанын байқауға болады. Уэбб теориясында еріткіш бұрынғыдай үздіксіз орта ретінде қарастырылады және оның молекуласының құрылысы да, сұйықтық құрамыда ескерілмейді. Гидратация (сольватация) процесін қарастырған кезде осы процеске қатысатын ионның да еріткіштің де әсерін ескеру қажет. Басқаша айтқанда, сольватация процессінің толық көрнісін алу ионның еріткішке түскен кездегі болатын жағдайы және ионның еріткішке түскенде еріткіште болатын жағдай белгілі болған кезде ғана аламыз. Сұйық жағдай туралы теорияның даму денгейі қазіргі кезде бұл сұрақтарға толық жауап бере алмайді, алайда бұл бағытта жеке нәтижелер алынған. Сольватация процессінің өтуі ион табиғаты мен (өлшемі, заряд ...), сұйықтың молекуласының құрылысы мен және толығымен барлық құрылымымен сипатталады. Осы факторладың кейбіреуі Борн-Уэбб сольватация теориясында ескеріледі. Бокрис және Конвей (1954) былай есептейді, сольватация процессі ионға жақын жерде және одан алшақ еріткіш қабаттарында әртүрлі болады, яғни сольватация кезінде екі сольватты қабықша пайда болады – ішкі және сыртқы. Ішкі сольватты қабықша ионмен мықты байланысқан және оның қозғалысы кезінде бірге жүретін еріткіш молекуласынан тұрады. Сыртқы сольватты қабықша бастапқы еріткіш жағдайынан ерекше еріткіштер молекулалары болады. Олардың айырмашылығы (Hs(тұз) – (Gs(тұз) = T(Ss(тұз) тұздың (Ss(тұз) сольватациясының энтропиясын есептеуге мүмкіндігін береді. Гидратация жылуы мен энергия айырмашылығы өте аза болғандықтан, ол гидратация энтропиясының аз екендігін көрсетеді. Ерітіндідегі иондар күйі. Сольватация процесі нәтижесінде ерітіндіде бос иондар емес сольватты қабықшадағы иондар болу керек. Иондар бар кезіндегі еріткіштің диэлектрлік өткізгіштігі мен көлемінің төмендеуі, релаксация уақытының төмендеуі электрлік өрістегі иондардың қозғалысы, сольватация энтропиясының мәндері еріткіштің бір молекула бөлігі ионмен мықты байланысқанын көрсетеді. Бұндай болжам, ерітінді құрылысын әртүрлі зерттеулер кезінде өз дұрыстығын дәлелдейді. Бокрис және Конвей, айтылып кеткендей, біріншілік және екіншілік сольватты қабықшаларды ажырата алады. Ішкі сольватты қабықшаға кіретін еріткіш молекуласының мөлшері сольватация саны ns (гидратация саны nг ) деп атайды. Сольватация саны әртүрлі әдістермен анықтау кезіндегі алынған нәтижелер бір-бірінен үлкен айрмашылықтары бар. Улих әдісінде ішкі гидратты қабаттың түзілуі судың қатуына ұқсайды. Судың қатуы кезінде энтропияның төмендеуі 25,08 Дж/К(моль тең, гидратты санын келесі қатынаспен бағалауға болады: nг = – (Sог / 25,08 = – 0,04 (Sог Электролит концентрациясының өсуі кезінде сольватация санының эффективті түрде төмендеуі байқалады. Протонды ортада (көбінде, суда) сольватацияның ерекше заңдары гидроксоний және гидроксил иондарымен сипатталады, ойткені олар еріткішпен сутекті байланыс түзеді, оның беріктігі су молекулалар арасындағы байланыс беріктігінен кем емес. СС әрқашанда КС -мен сәйкес келе бермейді, және СС мәні әртүрлі әдістер нәтижесімен жеке ішкі жүйе ерітінділермен әрекеттесу түрінің әртүрлі сезімталдық дәрежесіне байланысты бір-бірінен айырмашылықтары болады. Сонымен қатар дифрактометриялық табылған СС мәні концентрация өскенде эффективті түрде төмендеуі байқалады (nh -ың концентрациясы көбейгенде төмендеуі литий ионы үшін белгіленіп алында, оның тұздары жоғары ерігіштікке ие). Тәжірибелік СС -ні түсіндіру кезінде қолданылатын әдіске сәйкес уақытты ескеру қажет. Сольватты қабықшаның тек осы динамикалық жағдайы тәжірибеде алынған СС мәнінің КС -дан айырмашылығына жауап береді, сондықтан ол О. Я. Самойловпен дамытқан сольватацияның динамикалық теориясының негізіне айналды. Ерітіндідегі барлық бөлшектердің ретсіз қозғалысы осы бөлшектердің молекула мөлшеріне сәйкес арақашықтыққа периодтты түрде секіру есебінен жүзеге асырылады. Tj — ион қозғалыссыз жағдайдағы орташа уақыт болсын, ал Т2 — ионға жақын орналасқан еріткіш дипольінің басқа дипольдармен байланысын үзуге, өзінің бағытын өзгертіп, ионның сольватты қабықшасының құрамына кіруге кеткен уақыт. Егер Xj > 2 > Т2 болса, онда еріткіш молеклалары сутектік немесе дипольдік байланыстарын басқа еріткіш молекулалармен үзуге және ионның сольватты қабықшасына кіруге үлгереді. Осындай жағдайда ионды мықты, берік сольватты қабықша (ЧС = КЧ) қаптайды. Керісінше қатынаста Xj < 2 < Т2 байқалатын СС нольге жуық, ал салыстырмалы мәндерде Xj және Т2 тәжірибеден салыстырмалы мәндер алынады. Өзін-өзі тексеруге арналған сұрақтар 1. Сольватация, координационнды сандары дегеніміз не, айырмашылығы неде? 2. Борн әдісінің мәні. 3. Борн-Бьеррум теңдеуі. 4. Борнның сольватация теориясының дамуы. Ұсынылған әдебиеттер: 1 Негізгі әдебиеттер 1. Антропов Л.И. Теоретическая электрохимия. М.: ВШ. 1984. 519с. 2. Скорчелетти В.В. Теоретическая электрохимия. Л.: «Химия», 1974. 567с. 3. В.С.Багоцкий. Основы электрохимии. М.: Химия. 1988. 4. Практические работы по физической химии / под.ред. Мищенко: М. Высшая школа. 1982. 5. Практикум по электрохимии / под.ред. Б.Б.Дамаскина. М.: Высшая школа. 1991. 288с. 6. И.А.Семиохин. Сборник задач по электрохимии. М.: МГУ. 2006. 97 с. 8.2 Қосымша әдебиеттер 7. Дж. Ньюмен. Электрохимические системы. М.: Мир. 1977. 463с 8. Дамаскин Б.Б., Петрий О.А., Цирлина Г.А. Электрохимия. М.: Химия. 2001. 624с 9. Корыта И., Дворжак И., Богачкова В. Электрохимия. М.: Мир. 1977 10. Краткий справочник физико-химических величин./ под ред. А.А.Равделя, А.М.Пономаревой. Л.: Химия. 1983. 11. А.Г. Стромберг, Д.П.Семченко. Физическая химия.М.,1988. 12. Ф.И. Кукоз. Сборник задач по теоретической электрохимии.М., 1982. Дәріс 4. «Электролит ерітінділерде ион аралық әрекеттесу» Дәріс сабақтың мазмұны: 1. Электролит ерітінділердегі тепе-теңдікті термодинамикалық сипаттау. 2. Дебай-Хюккель теориясы. 3. Электролит ерітінділердегі ион ассоциациясы. Электролит ерітінділердегі тепе-теңдікті термодинамикалық сипаттау. Ион-дипольді әрекеттесу электролит ерітінділердің түзілуі мен тұрақтылығын физикалық түрде түсіндіріп бере алады. Бірақ бұл ерітінділердің сандық сипаттамасын алу үшін ион-ионды әрекеттесуді ескеру қажет. Сулы ерітінділерде иондар бір-бірінен үлкен арақашықтықта орналасқан кезде көбінесе электростатикалық әрекеттесу болады. Ерітінді концентрациясы жоғарлаған сайын иондар бір-біріне жақындай бастағанда жеке ионның сольваттық қабықшалары жабылып, иондардың электростатикалық әрекеттесуі ион- дипольді әрекеттесумен күрделінеді. Кейбір кезде аниондар мен катиондар жақындаған кезде ассоциация жүреді де, ол кездегі иондар арасындағы әрекеттесу күшін электростатикалық деп санауға болмайды. Одан да қатты электростатикалық емес әрекеттесу электролит ерітіндіде комплексті ион және диссоцияланбаған молекула түзілгенде пайда болады. Алайда әртүрлі иондардың қасиеттері бірдей емес, сондықтан әр иондардың түріне жеке термодинамикалық функция енгізіп, қарастыруға болады: (+ = (+о + RT ln a+ = (+o + RT ln m+ + RT ln (+( , (– = (–о + RT ln a– = (–o + RT ln m– + RT ln (–( , мұнда (+( және (–( ( активтіліктің практикалық коэффициенті (концентрациясы, моляльность m -ға тең кездегі активтілік коэффициенті). Әртүрлі иондардың термодинамикалық қасиетін тек тәжірибелік мәндермен анықтай алмаймыз. Қосымша жұмыстар жасау керек; біз тек осы заттың молекуласы бөлінетін ионның орташа термодинамикалық мәнін ғана олшей аламыз. Тұздың диссоциациясы келесі теңдеудегі болсын: А(( В(( = (( Аz( + (( Bz( . Толық диссоциация кезінде m( = (( m , m( = (( m. Гиббс – Дюгем теңдеуін қолданып, келесідей көрсетуге болады. а((((а(((( а = const . Активтілік мәнін табудың стандартты жағдайы былай анықталады: lim a+ ( m+ = (( m при m ( 0 , lim a– ( m– = (– m при m ( 0 . α үшін стандартты жағдайды const тең 1 -ге деп алады. Сонда а((((а((( = а . а( және а( мәндерін жеке анықтаудың тәжірибелік әдістері жоқ болғандықтан, орташа ион активтілігін а( енгізеді, келесі қатынаспен анықталады а(( = а Осымен, біз еріген тұздың активтілігін сипаттайтын екі мәнге ие боламыз. Оның біріншісі – мольдік активтілік, яғни диссоциацияға байланысты емес анықталатын тұз активтілігі, ол электролит емес компонент активтілігі секілді сол тәжірибелік әдіспен және сол формуламен анықталады. Екінші мән – орташа ион активтілігі а(. Енді ион активтілігінің коэффициентін (+( және (–(, орташа ион моляльдығын m( және орташа ион активтілігінің коэффициентін ((( енгізейк a+ = (+( m+ , a– = (–( m– , a( = ((( m( , мұнда ((( = (((((((((((()1/( , m( = (m+(((m((()1/( = (((((((((()1/( m . Негізі мәндер бірі-бірімен былай байланысқан a( = ((( m( = ((( (((((((((()1/( m = L ((( m , мұнда L = (((((((((()1/( және бұл әр тұздарға валентілігі типі белгілі тұрақты мән болып келеді. ((( мәні тұз ерітіндісінің идеалды жағдайдан ауытқуын сипаттайтын негізгі көрсеткіш электролит емес ерітінділерде сияқты электролит ерітінділерде келесі активтіліктер және активтілік коэффициенттер қолданылуы мүмкін: (( = [pic] ( рациональный коэффициент активности (практически не применяется); ((( = [pic] ( практический коэффициент активности (средний моляльный); f( = [pic] ( средний мольный коэффициент активности. Ерітіндіде басқа тұздар болса ол берілген тұздың активтілік коэффициентін өзгертеді. Ерітіндідегі тұздар қоспасының активтілік коэффициентіне жалпы әсері белгілі бір заңдылыққа бағынады, егер ерітіндідегі барлық тұздар концентрациясын иондық күш арқылы белгілесек. Ерітіндідегі иондық күші І (немесе иондық беріктік) деп, әр ионның концентарциясының берілген ерітіндідегі барлық ионға алынған зарядтың квадратына көбейтіндісінің жартысына тең. Егер концентрация орнына молялды қолданса, онда ерітіндінің ион күші келесі формуламен анықталады I = [pic], мұнда i ( ерітіндідегі барлық тұздардың иондар индексі; mi = (i m. Күшті электролиттердің сұйылтылған ерітінділері осы заңға сәйкес келеді lg ((( = ( А [pic] . Дебай-Хюккель теориясы Электролит ерітінділер теориясының негізгі жайыттары 1923ж Дебай және Хюккельмен айтылған. Электролиттердің статистикалық теориясы келесі жағдайларға сәйкес келеді: иондар ерітінді көлемінде ретсіз таралмай, кулонның әсерлесу заңына сәйкес таралған. Жеке иондардың жан-жағында ион атмосферасы (ион бұлты) бар – ол тқарама – қарсы зарядталған ионнан тұратын сфера. Сфера құрамына кіретін иондар үздіксіз басқа иондармен орнын ауыстырып отырады. Ерітіндідегі барлық иондар бірдей (тең), олардың әрбіреуі иондық атмосферасымен қоршалған, сонымен қатар центрлік ион басқа ионның иондық атмосферасының құрамына кіреді. Электростатика теңдеуінің көмегімен иондық атмосфераның электрлік потенциалына формула шығарып алуға болады, одан электролиттегі орташа активтілік коэффициентінің теңдеуін таба аламыз: = [pic] D(ерітіндінің диэлектрлік өткізгіштігі; е(электрон заряды; zi(ион заряды; r(координата (радиус). χ = [pic]( ерітінді концентрациясына D және Т -ға тәуелді шама, бірақ потенциалға тәуелді емес; ұзындыққа кері өлшем бірлігіне ие; бұл орталық ионның жан-жағындағы иондық атмосфераның орталық ионнан r арақашықтыққа алыстаған кездегі тығыздығының өзгерісін сипаттайды. 1/( шама сипаттамалық ұзындық деп атайды; оны иондық атмосфераның радиусымен теңдестіруге болады. Ол электролит ерітіндісінің теориясында үлкен мәнге ие. Активтілік коэффициенті үшін келесі теңдеу алынған: lg f( = ( A (z((z(( [pic] (1) А коэффициенті Т және D -ға тәуелді, (DT)3/2 -ге кері пропорционал 1-1 зарядты электролиттердің сулы ерітіндісі үшін 298К –де, ерітіндінің диэлектрлік өткізгіштігі және еріткіш (78,54) тең деп алып, келесідей жазуға болады: lg f( = ( A [pic] = ( A [pic] = ( 0,51 [pic] Сөйтіп, электролиттің сұйылтылған ерітінділері үшін эмпириялық табылған теңдеуі сияқты Дебай және Хюккель теориясы да активтілік коэффициенті үшін теңдеу алуға мүмкіндік береді. Яғни, теория тәжірибемен сапалық сәйкестікте жатыр. Осы теорияны өңдеген кезде келесі жорамалдар жасалды: Электролиттегі иондар санын электролиттің аналитикалық концентарциясынан табуға болады, өйткені ол электролит толық диссоциаланған (( ( 1) деп есептеді. Сондықтан, Дебай және Хюккель теориясын кейбір кездерде толық диссоциация теориясы деп те айтады. Бірақ оны ( ( 1 кездерде де қолдануға болады. Есептеу жүргізілгенде ерітінді мен таза еріткіштің дтэлектрлік өткізгіштігі тең деп алынады, бұл тек сұйылтылған ерітінділер үшін ғана жарамды (н/е дұрыс). Айтылып кеткен жорамалдарға байланысты Дебай және Хюккель теориясы тек төмен валенттілікке ие иондары бар сұйылтылған электролит ерітінділерге қолданылады. (1) теңдеу осы шекті жағдайға сәйкес келеді және Дебай- Хюккельдің шекті заңы деп аталады немесе Дебай-Хюккельдің бірінші жақындау теориясын көрсетеді. Дебай-Хюккельдің шекті заңы 1-1 зарядты электролиттің, әсіресе өте сұйылтылған ерітінділер үшін, активтілік коэффициенттердің дұрыс мәндерін береді. Теорияның тәжірибемен сәйкестігі электролит концентрациясы, ион заряды өскен сайын және еріткіштің диэлектрлік өткізгіштігі төмендеген сайын, яғни иондардың арасындағы әрекеттесу күші өсуімен, төмендейді. Екінші жақындауда орташа активтілік коэффициенті келесі теңдеумен сипатталады: lg f( = ( [pic] (2) мұнда А бұрынғы мәнін сақтайды; а ионның орташа эффективті диаметрі деп аталған, ұзындық өлшеміне ие, эмпириалық тұрақты; В = (/[pic], В Т -мен бірге біраз өзгереді. Сулы ерітінділер үшін Ва 1 -ге жуық. Теорияның екінші жақындауындағы негізгі жағдайларды сақтап Хюккель ерітінді концентрациясы өскен кезде диэлектрлік өткізгіштік тқмендейтінін ескерді. Оның төмендеуі еріткіштің дипольінің ионның жан-жағында бағытталуына байланысты, осының нәтижесінде сыртқы өрістің эффектісіне олардың рекциясы төмендейді. Хюккель теңдеуі келсі түрде беріледі: lg f( = ( [pic] + CI (3) мұнда С –эмпириялық константа. В және С мәндерін дұрыс таңдаған кезде Хюккель формуласы тәжірибемен жақсы сәйкес келеді және есептеу кезінде кең қолданылады. Иондық күш төмендеген кезде (3) теңдеу Дебай және Хюккельдің екінші жақындау теориясының формуласына айналды ((2) теңдеу), содан кейін Дебай-Хюккельдің шекті заңына ((1) теңдеу). Дебай-Хюккель теориясы ары қарай дамыған кезде және қабылданған жорамалдарды ескермеген кезде оның тәжірибемен сәйкестігі жақсарады және оның қолданылу аймағы кеңейеді, алайда бұған теориялық теңдеудің жартылай эмпириялыққа айналған кезде ғана қол жеткізе аламыз. Электролит ерітінділердегі ионды ассоциация В.К. Семченко және Н. Бьеррум (1926ж) Дебай-Хюккель теориясыда, иондардың электростатикалық тартылу энергиясының жылу қозғалысы энергиясынан артық болатын кездегі ара қашықтыққа, бір-біріне қарама-қарсы зарядталған иондардың жақындасу мүмкіндігі ескерілмегені жайлы айтты. Осының нәтижесінде бірден жаңа бөлшек-ионды жұп пайда болады. Симметриялы электролит ерітінділер үшін ионды жұп зарядталмаған, бірақ дипольді мезетке ие. Симметриялы емес электролит ерітінділерінде ионды жұп ерітінді иондар зарядынан ерекше зарядқа ие, және осы иондық жұптың қатысында ары қарай ассоциация жүруі мүмкін. Бұл аномальды электрөткізгіштігінде көрінеді. Әр уақыт кезінде иондардың бір бөлігі ионды жұппен байланыста болады, термодинамикалық қарастыру кезінде ерітіндіден кейбір бос иондар санының жоғалатынын ескеру қажет. Аррениус теориясындағы диссоциация константасына аналогты ионды жұп түзілу процесіне С+ + А -= С+, А- (3.6.А) ассоциация константасын Касс: Касс = а С+, А- / а А - (а С+ кіргізуге болады. Ионды жұпты СА молекуласынан айыра білу керек, өйткені олардың тұрақтылық болдыратын (стабилизирующее) әрекеттесуі коваленттіліктерге қарағанда, әлсіз, С+ және А- бөлшектер ара қашықтығы, СА молекуласына қарағанда, үлкен. Аралық жағдай ішкі сфералы ассоциация кезінде пайда болады, яғни комплекстүзілуде ковалентті әрекеттесу жоғары болғанда. Ассоциация константасын ең бірінші теориялық есептеуді Н. Бьеррум жүргізді. Орталық ионының жанында иондардың радиалды таралу функциясын қолданып, ол W есептеді dr жуандықтағы орталық ионнан r арақашықтықтағы сфера көлемінде ионның бар болуын есептеді. Бьеррум теориясына байланысты ионды жұптың түзілуі өседі, егер иондар заряды өссе және еріткіштің диэлектрлік өткізгіштігі төмендегенде өсындай сәйкестікті статистико- механикалық жақындау рамкаларында (ауданында) В.В. Толмачев пен С.В.Тябликов арқылы табылды. Көп өмір сүретін ионды ассоциаттар қатты комплексті қосылыстардың түзілуінің алғызаттары (предшественниками) болып келетін көптеген жүйелер белгілі. Сондықтан ионды жұптың құрылысын нақтылау қатты фазада ерітіндіден синтезделетін заттың қасиетін бақылауға және түрлендіруге етіге мүмкіндік береді. Өзін-өзі бақылауға арналған сұрақтар: 1. Активтілік, активтілік коэффициенті, ерітіндінің ионды күші деген не? 2. Дебай-Хюккельдің шекті заңы. 3. Ионды ассоциаттар деген не? 4. Ассоциалану константасы деген не? Ұсынылған әдебиеттер: 1 Негізгі әдебиеттер 1. Антропов Л.И. Теоретическая электрохимия. М.: ВШ. 1984. 519с. 2. Скорчелетти В.В. Теоретическая электрохимия. Л.: «Химия», 1974. 567с. 3. В.С.Багоцкий. Основы электрохимии. М.: Химия. 1988. 4. Практические работы по физической химии / под.ред. Мищенко: М. Высшая школа. 1982. 5. Практикум по электрохимии / под.ред. Б.Б.Дамаскина. М.: Высшая школа. 1991. 288с. 6. И.А.Семиохин. Сборник задач по электрохимии. М.: МГУ. 2006. 97 с. 8.2 Қосымша әдебиеттер 7. Дж. Ньюмен. Электрохимические системы. М.: Мир. 1977. 463с 8. Дамаскин Б.Б., Петрий О.А., Цирлина Г.А. Электрохимия. М.: Химия. 2001. 624с 9. Корыта И., Дворжак И., Богачкова В. Электрохимия. М.: Мир. 1977 10. Краткий справочник физико-химических величин./ под ред. А.А.Равделя, А.М.Пономаревой. Л.: Химия. 1983. 11. А.Г. Стромберг, Д.П.Семченко. Физическая химия.М.,1988. 12. Ф.И. Кукоз. Сборник задач по теоретической электрохимии.М., 1982. Дәріс 5. «Электролит ерітінділеріндегі тепе-теңдіктегі емес құбылыстар». Дәріс сабақтың мазмұны: 1. Электрод-ерітінді бөліну шекарада токтың өтуі. Электролиз. Фарадей заңдары 2. Электролит ерітінділердің меншікті және эквивалентті электрөткізгішітер 3. Иондардың жылжымалдылығы 4. Электролиттердің электроөткізгіштігінің теориялық түсіндіруі 5. Тасымалдау саны және анықтау әдістері. Электрод-ерітінді бөліну шекарада токтың өтуі. Әртүрлі электрохимиялық реакциялар электрод-ерітінді бөліну шекарада тоқтың өтуімен байланысты. Екінші текті электрөткізгіштер болып табылатын, ерітінділерде, ток ерітінділердегі зарядталған бөлшектер-иондармен өткізіледі, ал электродтарда және олардың ток жалғастырушыларында ток электрондар арқылы өткізіледі, сондықтан электрод-ерітінді бөліну шекарада элетродтардан ерітінді иондарына (катодта) немесе керісінше-иондардан электродқа (анодқа) өткізулер электрон арқылы жүргізіледі. А. Электрондар электродтан ерітінді бөлшектеріне өтуімен жүретін процестерді, тотықсыздану процестер деп атайды. Осы процестер катод деп аталатын электродтарда жүреді. Б. электрондар ерітінді бөлшектерінен электродқа өтуімен жүретін процестерді, тотығу процестер деп атайды. Осы процестер анод деп аталатын электродтарда жүреді. Нәтижесінде электродтарда электрохимиялық реакцияның өнімдері бөлінеді. Мысалы, мыс иондары катодта заряд алып металдық мысына мына реакция бойынша айналады: (Катод:) Cu2+ + 2e- → Cu электродтан ерітінді бөлшектеріне өтуімен Катодты реакцияның басқа мысалы ретінде уш валентті темір екі валентті темірге дейін тотықсыздануы: (Катод:) Fe3+ + e- → Fe2+ электродтан ерітінді бөлшектеріне өтуімен Анодты реакцияның мысалы ретінде метал мен балқымалардың еруі табылады, ол металдарды электрорафинирлеуде кеңінен қолданылады: (Анод:) Cu – 2e- → Cu2+ электрондар ерітінді бөлшектерінен электродқа өтуімен Анодты реакцияның тағы бір мысалы. Хлор иондары анодқа бір электрондарын беріп газтәрізді хлорға айналады: Cl- - e- → 1/2Cl2 Электролиз. Электролиз заңдары (Фарадей заңдары). Электрохимиялық эквивалент Электрлік тоқ электрод пен электролиттен түзілген электрохимиялық элемент тұйықталу нәтижесінде өту мүмкін немесе электрод – электролит жүйесіне берілген сыртқы потенциалдар айырмашылығының әсерінен өтуі мүмкін. Ақырғы жағдайдағы құбылыс электрод – электролит шекарасында өтетін, электролиз деп аталатын және ол электролиттен электродта бөлінген заттардан (металдар, газ), электрод затының еруінен және электрролит құрамының өзгеруінен тұрады. Электрлік токтың электрохимиялық жүйеден өтуі химиялық айналуымен байланысты болғандықтан, өтіп жатқан электр тоғы мөлшерімен әрекеттескен заттар мөлшері арасында қандай да бір тәуелділік болу керек. Осы тәуелділікті Фарадей ашты, ол электрохимияның бірінші сандық заңдарында өз мәнін тапты, кейін Фарадей заңдары деп аталды. Фарадейдің бірінші заңы. Э л е к т р о д т а р е а к ц и я л а с қ а н з а т т ы ң м ө л ш е р і е р і т і н д і д е н ө т к е н э л е к т р т о к м ө л ш е р і н е т у р а п р о п о р ц и о н а л: ∆G = КэQ = КэIτ (*) мұнда ∆G – Электродта реакцияласқан заттың мөлшері; Кэ – пропорционал коэффициенті; Q – электрод – ерітінді шекарадан өткен электр ток мөлшері; I – ток күші; τ – электролиз уақыты. Егер (*) теңдеуінде ток күшін ампермен (А) көрсетілсе, τ – сағат (сағ), онда Iτ = 1А·сағ болғанда ∆G = Кэ. Пропорционал коэффициенті Кэ электрохимиялық эквивалент деп аталады. Ол граммен көрсетілген 1А·сағат электр тоғы өткенде электродта бөлінетін заттың мөлшері болып табылады. Фарадейдің екінші заңы. Ә р т ү р л і э л е к т р о л и т т е р ү с т і н е н б і р д е й э л е к т р т о к м ө л ш е р і ө т к е н д е э л е к т р о д т а р е а к ц и я л а с қ а н ( бөлінген) ә р т ү р л і з а т т а р д ы ң м ө л ш е р і о с ы з а т т а р д ы ң х и м и я л ы қ э к в и в а л е н т т е р і н е п р о п о р ц и о н а л. Қандай да бір заттың химиялық эквиваленті деп осы элементтің атом массасының оның валенттілігіне, яғни осы элементтің атомы басқа атомдармен химиялық реакцияға түсетін электрон санына қатынасын айтады. Сойтіп, Фарадейдің екінші заңы электродта реакцияласқан әртүрлі заттардың мөлшері нақты электр ток мөлшері өткенде осы заттың табиғатына тәуелді екенін көрсетеді. Мысалы. СuСl2 ерітіндісінен электролиз кезінде анодта хлор бөлінеді, катодта – мыс, яғни Сu2+ + 2е- → Сu 2Сl- – 2е- → Сl2 Егер электролизде қандай да бір уақыт жүргізіп, кейін катодта бөлінген мыс мөлшерін, ал анодта хлор мөлшерін анықтаса, онда (егер электрод өнімі жоғалмаса) жазуға болады: ∆GСu /∆GСl2 = ЭСu/ЭСl2 мұнда ∆GСu және ∆GСl2 – бөлінген мыс пен хлор мөлшері; ЭСu және ЭСl2 – мыс пен хлордың химиялық эквиваленттері. Жалпы түрде: ∆G1/Э1 = ∆G2/Э2 = ∆G3/Э3= const (**) Көптеген эксперименттер негізінде, егер ерітіндіден фарадей саны деп аталатын F 96484 Кл -ға немесе 26,8А·сағатына тең электр ток мөлшері жіберілсе, онда бөлінген заттың мөлшері оның химиялық эквивалентіне тең деп анықталды, (*) ескере отырып ∆G = Э = КэF (***) аламыз, бұдан шығады Кэ =Э/F (****) (****) теңдеуі химиялық және электрохимиялық зквивалент арасындағы байланысты көрсетеді. (****) теңдеуі бойынша Кэ есептеу үшін фарадей санының мәнін А·сағ деп алу қажет. Электролиз кезіндегі қосалқы процестер Электролизді іс жүзінде қолданғанда Фарадей заңынан ауытқуы сияқты жиі байқалады. СuSO4 ерітіндісінің электролизі кезінде катодта мыс бөлінеді. Егер ерітіндіден 1А·сағ тең электр тоғын жіберілсе, онда Фарадей заңына сәйкес катодта мыстың электрохимиялық эквивалентті – 2,3729г (Кэ = Э/F = 63,54/26,8А·сағ) бөлінуі керек. Бірақ бірқатар жағдайларда, әсіресе ток тығыздығы жоғары болғанда, негізгі реакциямен Сu2+ + 2е- → Сu қатар қосымша Н+ + е- → 1/2Н2 реакция жүреді, оғанда берілген ток мөлшерінің бөлігі жұмсалады, нәтижесінде катодта бөлінген мыс мөлшері 2,3729г аз болады, бірақ мысты тотықсыздандырылуға жіберілген электр ток мөлшеріне сәйкес болады (егер қосымша сутегінің разрядтану процесі жалғыз болса). Егер 0,0188г сутегі бөлінсе, яғни сутегінің электрохимиялық эквивалентінің жартысына тең мөлшер, онда оның разрядтануына 0,5А·сағ жұмсалды, сонымен мыстың разрядтануына жалпы электр токтің мөлшері 1А·сағатынан 0,5 А·сағат жұмсалды, сонда Фарадей заңдарына сәй мыстың бөлінгені 2,3729·0,5 = 1,1864г. Жоғарыда айтылғаннан басқа – негізгі процестемен қатар қосымша электродты процестердің жүруіне, Фарадей заңдарынан ауытқуына себеп: электродта бөлінген өнімнің қандай да бір бөлігінің еруі, электродтарда өнімнің тотығуы және т.б. Практика жүзінде мақсатына сәй өнімдерді алуға максимальды мүмкіндік жасауға болады. Фарадейдің екі заңын біріктіріп бір заңға айналдыруға болады: кез келген заттың 1 г-экв (1г/z моль заттың) ток көмегімен бөліну немесе айналуына әрқашанда бір мөлшерді электр тоғы қажет, ол Фарадей саны (немесе фарадей) деп аталады. (m = [pic]It = [pic]It . Фарадей санының нақты өлшенген мәні F = 96484,52 ( 0,038 Кл/г-экв Бұл заряд кез келген грамм-эквивалент иондарына тән. Бұл санды z (ионның элементарлы заряд саны) көбейтсе 1 г-ионға ие болатын электр мөлшерін аламыз. Фарадей санын Авагадро санына бөлсек бір бірвалентті ионның зарядын аламыз, электрон зарядына тең: e = 96484,52 / (6,022035(1023) = 1,6021913(10–19 Кл 1833ж Фарадеймен ашылған заң екінші текті өткізгіштерге орындалады. Фарадей заңынан байқалатын ауытқулар сияқты болып табылады. Ол көбінесе ескерілмеген параллельді жүретін электрохимиялықреакцияның бар болуына байланысты. Өнеркәсіптік жағдайда фарадей заңынан ауытқу токтың кемуімен (утечка), ерітінді шашыралғанда заттардың жоғалуымен және т.б. байланысты. Техникалық қондырғыларда электролиз кезінде алынған өнім мөлшерінің Фарадей заңына негізделіп есептелген мөлшеріне қатынасы 1 -ден кем болады, ол ток арқылы шығым деп аталады: ВТ = [pic] = [pic]. Мыс кулонометрінің қызметі өсыған ұқсас. Газ кулонометрінде электролиз өнімі ретінде газ болады, және электродтан бөлінетін зат мөлшерін оның көлемін өлшеу арқылы анықтайды. Қондырғы мысалы ретінде судың электролиз реакциясына негізделген газды кулонометр болып табылады. Электролиз кезінде катодтан сутегі бөлінеді: 2Н2О + 2е– = 2ОН– + Н2 , ал анодта – оттегі: Н2О = 2Н+ + ½ О2 + 2е– . Ерітіндіден өткен электрліктің фарадей саны: [pic] , мұнда р – сыртқы қысым, Па; [pic]– тәжірибе температурадағы қаныққан су буының қысымы, Па; V – бөлінген газдың жалпы көлемі, м3. Традиционды кулонометрде электролиз процессі кезіндегі түзілген зат мөлшерін титриметриялық анықтайды. Бұл кулонометр түріне Кистяковскийдің титрационды кулонометрі жатады, ол электрохимиялық жүйе ретінде көрсетілген: (–) Pt(KNO3 , HNO3(Ag (+) . Электролиз процессі кезінде күміс анод еріп күміс иондарын түзеді, оны кейін титрлейді. Электрлік фарадей санын формула бойынша анықтайды: n = mVc мұнда m – ерітінді массасы, г; V – 1г анодтты сұйықтықты титрлеу үшін жұмсалған титрант көлемі; c – титрант концентрациясы, г-экв/см3. Электролит ерітінділердің меншікті электрөткізгіші. Жоғарыда айтылған себептермен металдың өткізгіштер сияқты электролит ерітінділерінде электр тогының өтуіне нақты кедергілері болады. Қабырғасы 1 мл кубтың қарама-қарсы қырларының арасында орналасқан электролит ерітінді қабатының кедергісін ерітіндінің меншікті кедергісі деп аталады, және ρ деп белгіленеді. Меншікті кедергіге кері шаманы меншікті электрөткізгіштігі деп атайды χ = 1/ρ (2.4) мұндағы, ρ - меншікті кедергісі, ом ∙ см; χ - меншікті электрөткізгіштік, ом-1 ∙ см-1. Ерітінді концентрациясы төмен болған кезде ерітіндінің 1 см3-да иондар саны өте аз, ал ток иондар арқылы жүргізілетіндіктен ерітінділердің меншікті электрөткізгіштігі де төмен болады. Концентрация өскен сайын 1 см3- та ерітіндіде иондар саны да көп болады және меншікті электрөткізгіштігі де өседі. Бірақ ерітінді концентрациясы қандай да бір шамаға жеткенде меншікті электрөткізгіштігі төмендей бастайды күшті элетролиттерде релаксациялық және электрофоретикалық эффектілер әсерінен иондардың тежелуі күшейгендіктен болады, ал әлсіз электролиттерде – диссоциялану дәрежесі төмендегендіктен. Меншікті электрөткізгіштікке сонымен қоса температура да әсер береді, иондардың үйкеліс коэффициенті төмендеуіне байланысты, температура өскен сайын электрөткішгіштік те өседі. Электролит ерітінділерінің эквивалентті электрөткізгіштігі Электролит ерітінділерінің қасиетін зерттегенде меншікті электрөткізгіштікпен қоса эквивалентті электрөткізгіштікті де кеңінен қолданады, ол құрамында грамм-эквивалент еріген зат мөлшері бар қалыңдығы 1 см қабаты жазық электролит ерітіндінің өткізгіштігі болып табылады. Меншікті және эквивалентті электрөткізгіш арасында тәуелділікті анықтайық. Электролит ерітіндісінің қабатының көлемі V0 см3 болсын. Егер қабат қалыңдығы 1 см болса, осы қабаттың беттігі V0 см2 болады, яғни электролит ерітіндісінің қабаты электрөткізгіштігі χ қабырғасы 1 см V0 кубиктерден тұрады. Электролит қабатының жалпы электрөткізгіштігі барлық кубиктердің меншікті электрөткізгіштігінің қосындысына тең және эквивалентті электрөткізгіштікке λ тең: λ = V0 ∙ χ (2.5) Ерітінді концентрациясының өсуімен эквивалентті өткізгіштік әрқашан кемиді. Күшті электролиттердің электростатикалық теориясы бір-бір валентті электролит үшін концентрациясынан электрөткізгіштіктің келесі эквивалентті тәуелділікке әкеледі. _ λ = λ∞ - (А + В λ∞)√с (2.8) мұндағы, λ∞ - электролитті шексіз сұйылтуындағы эквивалентті электроөткізгіштігі, А және В – ерітіндінің температураға, тұтқырлыққа және ортаның диэлектрлік өткізгіштігіне тәуелді шамалар. (28) теңдеудегі λ∞ шамасы экспоненциалды шама болып табылады және λ∞ - с тәуелділікті нөлдік концентрацияға экстраполяция жасағанда алынады. Күшті ерітіндінің эквивалентті электрөткізгіштігі (28) теңдеуі бойынша есептеген концентрациялары 0,01-0,02 н. жоғары емес ерітінділерде тәжірибе де алынған мәндерімен жақсы сәйкес келеді. Ал концентрациялары жоғары ерітінділердің электрөткізгіштігін есептегенде әдетте эмпириялық әдістерді қолданады. Электролит ерітінділерінің электрөткізгіштігін өлшеу Электрөткізгіштік шамаларын білу электрохимиялық қондырғылардағы электролиттердің кедергілерінің жоғалуын есептеуді жүргізу үшін, кедергілердің балансын толтыру үшін, жылу бөлінуді есептеу үшін қажет. Ерітінділерінің электрө-ткізгіштігін өлшеу үшін үздік ток пен жұмыс жасайтын кедергі мостыларды қолданады. Үздік токтық көзі болып жоғары жиілікті генератор жұмыс жасайды. Өлшеулерді жұргізгенде тайғанақ түйісу (контакт) К жылжытып рехорд мен нуль инструменттен өтетін ток минимальды мәнге жеткенше (телефон болған кезде – минималды дыбыс). Орнын толтыру мезетінде кедергілер арасында тәуелділік орнайды: RR2=RxR1, яғни Rx= RR2 /R1 , немесе Rx= Rl2 /l1 (мұнда l1 және l2 – компенсация кезіндегі реохорд иықтарының ұзындығы) Ұяшықтың кедергісі Rx= ρ lұяш /S ұяш = (1/χ) (lұяш /S ұяш) Мұндағы, (мұнда ρ мен χ – ұяшықтағы ерітіндінің меншікті кедергісі мен меншікті электрөткізгіштігі; lұяш - ұяшықтағы электродтар арасындағы аралық; S ұяш - электр тогы өткендегі кесінді). Ал ұяшықтағы меншікті электрөткізгіштігі мына теңдеу арқылы анықталады: χ = (1/ Rx) (lұяш /S ұяш) =(1/ Rx) k мұнда k - lұяш /S ұяш Дәріс 6. «Тепе-тең электродты потенциалдар». Дәріс сабақтың мазмұны: 1. Электродты потенциал түсінігі. 2. Электродты потенциалдардың термодинамикалық трактовкасы. 3. Электродтар классификациясы. Абсолютті электродты потенциалдарды анықтау қиын. Теориялық есептеу электрлікте ғана емес, сонымен бірге химияда иондардың алмасуы фазалар бөліктерінің бетінде жүреді. Потенциалы өсу электроды- ерітіндіні (әр түрлі фазаларда орналасқан екі ток арасындағы потенциал айырымы сияқты) эксперимент жүзінде есептеу мүмкін емес. Егер екі фазалар құрылысы нақты белгілі болса, онда потенциалдардың өсуін теориялық түрде есептеуге болады. Электрод пен ерітінді арасындағы құрылысы әлі толығымен зерттелмеген. Абсолютті электрод потенциал орнына потенциалдар шекарасының өсуін, металл-ерітінді, ЭҚК элементтерін қолдануға болады. Олардың құрамында берілген металл және ерітінді ғана емес, сонымен қоса басқа электрод болып келеді. Эксперимент жүзінде ЭҚК-тің жалпы мағынасын, яғни электродты потенциал суммасын анықтауға болады. Электрохимиялық жүйенің ең басты айырмашылығы, ол кеңістікте бөлінетін элементтердің жүру реакциясы. Жалпы мұнда реакция екіге бөлінеді, олардың әрқайсысы әртүрлі электродтарда жүреді. Бұған сәйкес электрохимиялық жүйенің ЭҚК-і екі электродтық потенциалдың суммасын көрсету керек. Е=Е1+Е2 Есептеудің сенімсіздігін жою үшін Е қысқаша шарттарды – белгілі бір электрод потенциалды 0-ге тең деп және оған басқа барлық электродтар потенциалдарын жатқызу керек. Бұл жағдайда электродтар потенциалы белгілі бір щартты шкалада беріледі және олардың мағынасы электрод табиғатына байланысты болады. Нернст сутек иондарының ерітіндідегі концентрациясында, 1-ге тең, сутек электрод потенциалын шартты түрде 0 (ноль) деп санауды ұсынды,газ тәріздес сутек қысымы 1атм. Бұл потенциалдар шкаласы сутектік шкала деп аталады. Қазіргі уақытта шартты сутекті шкала қолданылады, онда 0-ден кейінгі барлық температураларда сутекті электродтың стандартты потенциалы алынады. Бұл Нернсттің бастапқы сутектік шкаладан айырмашылығы, концентрация мен қысымның орнына активтілік (белсенділігі) және ұщқыштық алынады. Бұл кез-келген температурада сутектік шкалада электрод потенциалдарын анықтауға мүмкіндік береді, бірақ әр температурада сутекті электрод потенциалы басқандай болуы мүмкін, яғни шартты 0 әр түрлі температурада бірдей болмайды. Демек, электродтың электродтық потенциалы деп ЭҚК элементтері, бұл электродтан (оң жақтағы) және стандартты сутекті электродтан (сол жақтағы) құралған, мысалы: (+) Рt |Н2| Н+ , аq ||Zn2+| Zn (-) Бұл элементтің эқк-і (Е Zn2+| Zn) теріс (-0,763 В мырыш ионының ерітіндідегі белсенділігіне байланысты, бұл мырыштың стандартты электродты потенциалы). Мыстың электродты потенциалын табу үшін, элемент құру керек. (-) Рt |Н2| Н+ , аq ||Сu2+| Cu (+) Мұнда ЭҚК-і (Е Сu2+| Cu) оң таңбалы (0,337 В мыс ионының белсенділігіне байланысты, яғни 1-ге тең,- мыстың стандарттық электродтық потенциалы). Электродты потенциал оң таңбалы болып есептеледі, егер берілген электрод осы элементтің оң таңбасы (+) жағында болса. ЭҚК шынжырлары, тек металл өткізгіштерден құралған, 0-ге тең. Электрохимиялық элеметтің ЭҚК-і электродты потенциалдардың әр түрлілігіне тең. Элемент жазбасындағыдай бұл жартылай элемент схемасында электро+ ерітінді иондарын ретімен орналастыру керек. Бұл берілген және стандартты сутек электродынан құралған. Дәл осындай жазба үшін электродты потенциалды сәйкес таңбамен белгілеу керек. Егер керісінше болса, онда потенциал таңбасын өзгерту қажет мысалы, 1. Zn2+, аq| Zn; Е=-0,763 В 2. Zn|Zn2+, аq; Е= +0,763 В Тек бірінші жазба түрі электродты потенциалға сәйкес келеді. Ал екінші жазбаға сәйкес келетін электродты потенциал деп айта аламыз, бірақ оны ЭҚК-н есептеуге қолдануға болады, мысалы: (-) Zn |Zn2+, аq| Сu2+ , аq |Cu (+) +0,763В +0,337В Е=Е1+Е2= 0,763+0,337=1,110В Екі ерітінді арасында пайда болатын диффузиондық потенциал ZnSO4-Cu- SO4, есептеуді қиындатады. Диффузиялық потенциал екі элемент арасында пайда болады, олардың айырмашылығы саны мен сапасында .Бұл потенциалдың пайда болу себебі- электролит ионының біркелкі қозғалыста болмауы және олардың концентрациясының градиенті болуында. 2. Тепе-тең электродты потенциалдың термодинамикалық трактовкасы. Тұрақты температурада және қысымда жүретін электрохимиялық (гальвоникалық) элементтерді қарастырайық. А=-∆G болсын, химиялық реакцияның стехиометриялық түрде ,n г/экв зат әр электродтарда өтуіне сәйкес келеді. Бұған сәйкесінше ,nҒ Кулон ток, ал реакцияға n-электрондар қатысады.Жұмыс мөлшері А тең nҒЕ (химиялық жұмыс электрлікке өтеді). Демек, бірқалыпты температура мен қысымда біз мына теңдікті аламыз: ∆G=-nҒЕ Электродты потенциалға электролиттегі зат концентрациясының (белсенділігі) тәуелділігін термодинамика жолдарымен орнату мүмкін. Электродта Мn+|М тең салмақты потенциалмен Е электрохимиялық реакция жүреді. Мn+, аq+nе=М Бұл теңдеу металл иондарының дегидратациясы және оның кристалдық торға қосылуы. Ерітіндіден металл ионының1 гэлектродқа өтуі изобаралық потенциал өзгерісі екі фаза заттарыныңхимиялық потенциалдарының әр түрлілігіне тең: ерітіндіде (μ׳) және электродта (μ׳׳): ∆G=μ׳-μ׳׳ Электродта р,Т= соnst (таза металл үшін) [pic] Ерітіндіде [pic]; μ׳0- стандартты түрдегі ионның химиялық потенциалы; бұл өлшем берілген температурада тұрақты болып келеді. ∆G=μ0 -μ׳0 –Rlnа+ -∆G=nҒЕ Е=-([pic])/nҒ+[pic] Оң жақтағы бірінші бөлім мүшесі р және Т тұрақты болғанда – өлшем тұрақты (металдық электродқа бұл өлшем қысымға байланысты емес). Оны Е0 символымен (стандартты электродты потенциал)белгілеуге болады: Е=Е0+[pic] (1) Сұйылтылған ерітінділерде активтіліктің орнына концентрацияны (а+→m+, c+ ,N+) қоюға болады, бұл концентрацияның мөлшеріне және активтіліктің стандартты жағдайын таңдауға болады, мысалы: Е=Е0+[pic] (2) (2) теңдеуді Нернст (1888ж.) басқалай қорытып шығарды. Бұл теңдеу және жалпы теңдеуді (1) Нернсттің электродты потенциал теңдеуі деп атайды. Е0 – бұл электродты ерітінді активтілігімен сәйкес иондарға, 1-ге тең, байланысты шама. Ол стандартты электродты потенциал деп аталады және температураға тәуелділік. Е=Е0+[pic] = Е=Е0+[pic] [pic] Ғ- мағынасын қоя және натурал логарифмдерден ондық логарифмдер өтуін пайдаланып, n=1 және Т=298К деп: Е=Е0+0,0591lgm+γ+ Элемент реакциясында бос элементтің өзгеруі аА+вВ=сС+dD ∆G=∆G0+RTln([pic])=[pic] E=-∆G/nF=-∆G0/nF(RT/nF)·lnKp=E0- (RT/nF)·lnKp E0=(RT/nF)·lnKp Стандартты электродты потенциал. Стандартты электродты потенциал мағынасы электродты реакция мүшелерінің активтілігіне байланысты емес және берілген электродқа қонстанта болады. 250С-ге қатысты стандартты потенциалдар (таблица өлшемдері); егер олар температуралық коэффициенттен, таблицадан табуға болады. Стандартты потенциалдар ерітінділердегі химиялық тепе-теңдікті есептеуге қолданылады. Стандартты электродты потенциалдардың астыңғы қатарында орналасқан кез-келген электрод қышқылдық түрде болады, үстіңгі қатардағы электродқа қарағанда (мысалы: Раниель – Якоб элементі). Егер осындай электродтан электрохимиялық жүйе құрса, онда «астыңғы» реакция тотықтырғыш (Сu), ал «үстіңгі» - тотықсыздандырғыш реакция (Zn).Бұл процесс химиялық жолмен өтетін және егер екі электродтың да белсенді заттары бір-бірімен қатынаста болып жүрсе, бұл реакция бір бағытта жүреді.Жүйеде тепе-теңдік орнайды, егер екі электрод потенциалы бірдей болса. Бұл реакция тепе-теңдік константасына байланысты жүреді. Мысал келтірейік, редокси жүйе Се3+, Се4+ және Ғе2+,Ғе 3+ алынсын. 250С –та жүретін ,бірінші жүйенің электродты потенциалы былай болады: [pic] , Ал екіншісінің электродты потенциалы- [pic] , | | | |( сильный |( | |электролит | | | | | | | | | |сильный электролит | | | | | | | |слабый электролит |слабый электролит | | | | | |с | |с | | | | | | |Рис. 27. Зависимость эквивалентной | |Рис. 26. Зависимость удельной |электропроводности от концентрации | |электропроводности от концентрации |электролита | |электролита | | Өзін-өзі бақылауға арналған сұрақтар: 1. Нернст сутек иондарының ерітіндідегі концентрациясында. 2. Электродтар классификациясы? 3. Стандартты электродты потенциал? Ұсынылған әдебиеттер: 1 Негізгі әдебиеттер 1. Антропов Л.И. Теоретическая электрохимия. М.: ВШ. 1984. 519с. 2. Скорчелетти В.В. Теоретическая электрохимия. Л.: «Химия», 1974. 567с. 3. В.С.Багоцкий. Основы электрохимии. М.: Химия. 1988. 4. Практические работы по физической химии / под.ред. Мищенко: М. Высшая школа. 1982. 5. Практикум по электрохимии / под.ред. Б.Б.Дамаскина. М.: Высшая школа. 1991. 288с. 6. И.А.Семиохин. Сборник задач по электрохимии. М.: МГУ. 2006. 97 с. 8.2 Қосымша әдебиеттер 7. Дж. Ньюмен. Электрохимические системы. М.: Мир. 1977. 463с 8. Дамаскин Б.Б., Петрий О.А., Цирлина Г.А. Электрохимия. М.: Химия. 2001. 624с 9. Корыта И., Дворжак И., Богачкова В. Электрохимия. М.: Мир. 1977 10. Краткий справочник физико-химических величин./ под ред. А.А.Равделя, А.М.Пономаревой. Л.: Химия. 1983. 11. А.Г. Стромберг, Д.П.Семченко. Физическая химия.М.,1988. 12. Ф.И. Кукоз. Сборник задач по теоретической электрохимии.М., 1982. Дәріс 10. «Электродтық процестер кинетикасы». Дәріс сабақтың мазмұны: 1. Поляризацияның электр қозғаушы күші. 2. Электродтық поляризация және электродтық процесс сатыларының жалпы сипаттамасы. 3. Поляризациялық құбылыстың жіктелуі. 1. Поляризацияның электр қозғаушы күші. Электролиттер ішіндегі процестер (электролиттік диссоциация,гидролиз, сольваттану, т.б.) және электродтардағы процестердің (электрохимиялық реакциялар және олардың сипаттайтын қайтымды электродты потенциалдар) тепе- теңдік күйі уақытқа тәуелді емес, оларға термодинамиканың екі заңы да қолданылады. Сондықтан сәйкес заңдылықтар термодинамикалық, ал оларға арналған электрохимия бөлімі – электрохимиялық процестер термодинамикасы деп аталады. Электродтық процестер үшін тепе-теңдік электрлік токтың болмауымен сипатталады. Электрохимиялық кинетика химиялық кинетиканың жалпы жағдайларымен қатар тек электрохимиялық процестерге арналған жеке заңдылықтарға да негізделеді. Сонымен, электрохимия үшін химиялық кинетиканың негізгі постулаты, көптеген электрохимиялық процестер үшін активтену энергиясы ұғымының қолданылуы, электролиз жылдамдығына температураның оң әсері, т.б. оңтайлы. Электрохимиялық процестердің ерекшеліктері де айқын байқалады: 1. Электрохимиялық жолмен қалыпты температурада химиялық жолмен жүрмейтін реакцияларді жүргізуге болады (мысалы, судың ыдырау реакциясы қалыпты жағдайда жүрмейді, ал электролизбен су оңай ыдырайды). Өздігінен жүретін реакцияларда бос энергия төмендейді, ал электрохимиялық жолмен бос энергия артатын реакцияларды жүргізуге болады, яғни қарапайым химиялық синтез мүмкіндігіне қарағанда электросинтез мүмкіндігі көп. Қажетті бос энергия жүйеге сырттан электрлік ток энергиясы түрінде жеткізіледі. 2. Электрохимиялық процестің қосынды жылдамдығын тізбекте өтетін ток күші шамасы бойынша оңай анықтап қана қоймай, ток күшін өзгерту арқылы реттеуге де болады. 3. Электрохимиялық процесс жылдамдығы ЭҚК-не және кейде иондар диффузиясы жағдайына тәуелді. Иондар диффузиясы электродты процесс жылдамдығына жиі әсер етеді. 4. Электрохимиялық процестің активтену энергиясы ДЭС-те потенциалдың төмендеуімен байланысты. Тепе-теңдіксіз электрохимиялық жүйе, яғни электрохимиялық ауысулар нақты бағытта өтетін соңғы энергиясы бар жүйе, келесі белгілерімен ерекшеленеді: 1. Анодтық және катодтық бағыттағы электрохимиялық реакция жылдамдықтары бірдей емес Іа≠Ік≠І0. Тепе-теңдіксіз электрохимиялық жүйеде екі мүмкін болатын электродтық реакцияның біреуі бір бағытта (анодтық немесе катодтық) жүреді. 2. Жалпы жағдайда ток астында электрод потенциалы тепе-теңдікті электрод потенциалына тең емес және оны термодинамикалық жолмен есептей алмаймыз. Оның шамасы жүйе табиғаты, температурасы, қысымға ғана емес, ток күшіне де тәуелді. 3. Процесс стационарлыққа жеткенде тепе-теңдіксіз электродты потенциал тепе-теңдікті электродты потенциал сияқты уақытқа тәуелсіз болуа мүмкін. Ток астындағы электрод потенциалының бұл анықталған мәні стационарлы потенциал деп аталады. Бұл термин электрод потенциалын белгілеу үшін қолданылады жәнесыртқы ток болмағанда, егер оның мәні тең болмаса да ұзақ уақыт аралығында тұрақты болып қалады (немесе өте аз өзгереді). 4. Тепе-теңдіксіз электрохимиялық жүйе үшін кернеу шамасы ЭҚК-ң қайтымды мәнінен ерекше. Бұл кезде гальваникалық элементтер кернеуі төмен, ал электрохимиялық ваннада (электрозер) берілген ток күшінде қайтымды ЭҚК-ке қарағанда үлкен. EI(ванна) >Er және EI(галваникалық элемент)
Пәндер
- Іс жүргізу
- Автоматтандыру, Техника
- Алғашқы әскери дайындық
- Астрономия
- Ауыл шаруашылығы
- Банк ісі
- Бизнесті бағалау
- Биология
- Бухгалтерлік іс
- Валеология
- Ветеринария
- География
- Геология, Геофизика, Геодезия
- Дін
- Ет, сүт, шарап өнімдері
- Жалпы тарих
- Жер кадастрі, Жылжымайтын мүлік
- Журналистика
- Информатика
- Кеден ісі
- Маркетинг
- Математика, Геометрия
- Медицина
- Мемлекеттік басқару
- Менеджмент
- Мұнай, Газ
- Мұрағат ісі
- Мәдениеттану
- ОБЖ (Основы безопасности жизнедеятельности)
- Педагогика
- Полиграфия
- Психология
- Салық
- Саясаттану
- Сақтандыру
- Сертификаттау, стандарттау
- Социология, Демография
- Спорт
- Статистика
- Тілтану, Филология
- Тарихи тұлғалар
- Тау-кен ісі
- Транспорт
- Туризм
- Физика
- Философия
- Халықаралық қатынастар
- Химия
- Экология, Қоршаған ортаны қорғау
- Экономика
- Экономикалық география
- Электротехника
- Қазақстан тарихы
- Қаржы
- Құрылыс
- Құқық, Криминалистика
- Әдебиет
- Өнер, музыка
- Өнеркәсіп, Өндіріс
Қазақ тілінде жазылған рефераттар, курстық жұмыстар, дипломдық жұмыстар бойынша біздің қор #1 болып табылады.
Ақпарат
Қосымша
Email: info@stud.kz