Файл қосу

Сұйық ортада жасушаларды қолдан өсіру



ҚАЗАҚСТАН РЕСПУБЛИКАСЫНЫҢ БІЛІМ ЖӘНЕ ҒЫЛЫМ МИНИСТРЛІГІ
СЕМЕЙ қаласының ШӘКӘРІМ атындағы МЕМЛЕКЕТТІК УНИВЕРСИТЕТІ
Оқу әдістемелік кешенінің 3 деңгейлі  құжаты
                                   ПОӘК
ПОӘК 042-18-22.1.113/01-2013
ПОӘК"Өсімдіктер биотехнологиясы" пәнінің оқытушыға арналған бағдарламасы                          
                             Басылым № 1
       <<  >>                2013ж
                                        

                                       
                                       
                                       
                                       
                                       
                                       
                                       
    6М060700-<<Биология>> мамандығына арналған 
                                       
            <<ӨСІМДІКТЕР БИОТЕХНОЛОГИЯСЫ>>
                                       
            ПӘННІҢ ОҚУ-ӘДІСТЕМЕЛІК КЕШЕНІ
                                       
        ОҚУ-ӘДІСТЕМЕЛІК ҚҰЖАТТАР ЖИЫНТЫҒЫ
                                       
                                       
                                       
                                       




                                Семей,2013
Мазмұны


1.Дәрістер
2.Зертханалық сабақтар
3.Емтихан сұрақтары

































                              * Дәрістер
№1 дәріс: Кіріспе. Биотехнологияның мақсаты мен міндеттері.
1.Жасушаны жасанды ортада өсіру.
2.Өсімдіктер биотехнологиясының даму тарихы.
Биотехнология  -  экономикалық маңызды заттар өндіру үшін,  өсімдіктердің жаңа сорттарын, жануарлардың жаңа түрлерін, микроорганизмдердің штаммаларын алу үшін биологиялық процестер мен объектілерді пайдаланатын ғылым мен өндірістің жаңа саласы.
Биотехнологияның негізгі мақсаты -  мәдени өсімдіктердің жаңа сорттарын шығаруға қажет селекциялық материалды аз уақыт ішінде алу үшін өсімдік жасушаларын өсіру.
Өсімдік клеткаларын қолдан өсіру дегеніміз өсімдіктің жеке жасушаларын,  ұлпаларын,  мүшелерін асептикалық жағдайда жасанды қоректік ортада өсіру.
Өсімдік ұлпасының стерилденген кішкене бөлшегін Петри чашкасының немесе пробиканың ішіне агаризонды қоректік ортаға орналастырады. Содан кейін ұлпада жасушалар белсенді түрде бөліне бастайды. Жасушалық түзілім тез өсіп каллус түзеді. Каллус дегеніміз дифференцияланбаған жасушалардың жинақталып  ерекше ұлпа түзуі. Егер осы каллустың бөліктерін балғын қоректік ортаға отырғызса, онда олар шектеусіз өсе алады. 
<<Өсімдік жасушасын қолдан өсіру>> термині ауқымды және ыңғайлы ұғымға айналды,  ол бөлініп алынған жасушаны, ұлпаны, мүшелерді, ұрықты және тұтас өсімдік-регенерантты қолдан өсіретін  in vitro-ның барлық жұмыстарын қамтиды. In vitro термині (лат.- шыныда, әйнекте) стерильді жасанды қоршаған ортада өтетін процестердің жағдайларын сипаттау үшін қолданылады. In vivo  (лат.  -  тіршілікте) организмнің тіршілік процестерінің  табиғи стерильді емес  ортада өтуі. Өсімдік-регенерант дегеніміз асептикалық түрде  алынған,  тамыры мен өркені  мәдени ортада қалыптасқан өсімдік, демек  in vitro.
Теориялық түрде кез келген өсімдік жасушасы  өзін бөліп алған организмге дейін дамуға потенциалды түрде қабілетті және ол белгілі бір жағдайларда қолдан өсірілген. Бұл қасиет тотипатенттілік деп аталады. Тотипатенттілік (лат. totus  -  барлық, тұтас,  potential  -  күш)  -   тұтас организмге дейін дамуын қамтамасыз ететін өзіне тән генетикалық ақпаратты сақтап, үйлестіретін жасушаның  қасиеті. Әдетте, әмбебап тотипатенттілік қасиетке өсімдіктің және жануардың ұрықтанған жұмыртқа жасушасы ие. Ал сомалық жасушалардан тотипатенттілік қасиетке тек қана өсімдік жасушалары ғана ие, әрі ол  in vitro жағдайында ғана. Қолдан өсірілетін жануарлар жасушасы тотипатенттілік қасиеттен айырылған.
XIX-XX ғасырларда алғаш рет  неміс ғалымдары өсімдіктің бөлініп алынған бөліктері мен мүшелерін өсіре бастады. 1883 жылы К.Рехингер бүршіктерді, тамыр мен сабақтың телімдерін ылғалды құмда өсіруге тырысқан. Ол кейбір тәжірибелерінен каллустың түзілгенін байқаған, алайда қорекпен қамтамасыз етілмегендіктен және стерильді жағдайлар сақталмағандықтан ұзақ өсетін өсімдіктерді ала алмаған. Мұндай тәжірибелерді Х.Фехтингте жүргізген.
1902 жылы Г.Габерланд жасушаларды қолдан өсіру принциптерін алғаш рет нақты қалыптастырды. Ол бірқатар жабық тұқымды өсімдіктердің жапырағынан бөліп алынған паренхима жасушаларымен тәжірибе істеді және қоректік орта ретінде сахароза, аспарагин, пептол қосылған Кноп ерітіндісін қолданды. Г.Габерланд өсімдіктің кез келген тірі жасушасы тотипатенттілік қасиетке ие деген гипотезаны алға тартты және жалғыз бір жасушадан ұлпа өсіруге тырысты. Бірақ ол өзінің керемет жаңалығын экспериментті түрде дәлелдей алмады, өйткені ол қолайсыз объектілерді тандаған болатын: белсенді түрде бөліну мен эмбриональды өсу қабілеттерін жоғалтқан жіңішке дифференцияланған арнайы жасушалар. Кейіннен белгілі болғандай жас ұлпалардың меристемалық және белсенді қызмет жасайтын жасушалары ғана  қолдан сәтті өсіріледі. 
Сонымен қатар өсімдік жасушаларын организмнен тыс өсіру жануар объектілерімен айналысушы ғалымдарды да қызықтыра бастады. Алғаш рет жануардың бөлініп алынған жасушасын өсіру мүмкін екендігі дәлелденді. 1904-1907 жж Р.Харрисон бақаның нейробластын лимфа сұйықтығында өсірді. Осыдан кейін жануарлардың жасушасын қолдан өсіру әдістері жасала бастады, қоректік орта ретінде лимфа, қан плазмасы, ұрық сұйықтығы пайдаланылды. Организмде жануарлар жасушасы қанмен және лимфамен қоректенеді,  сондықтан оларды осындай қоректік ортада өсіру табиғиға ұқсас болып келеді. Ал өсімдік организмінің қоректік заттарға бай болып келетін мұндай сұйық ортасы жоқ, тіпті флоэма экссудатыда мұндай талаптарға сай келмейді. 
Ботаниктер өсімдіктердің бөлініп алынған мүшелері мен бөліктерін өсіру үшін қолданған қоректік орталарының құрамы алғашында қарапайым болды, қоректік орталарының құрамы негізінен минералды тұздардың қосылыстарынан ғана тұратын. 1922 жылы бір мезгілде Германияда В.Котте мен АҚШ-та В.Роббинссон өсімдік ұлпаларын қолдан өсіру жетістігіне жетті. Олар меристемалық жасушалары бар ұлпаларды  қолданды - бүршіктер мен тамыр ұштары. В.Котте жүгері мен бұршақтың тамыр ұштарын қолдан сәтті өсірді. Ол құрамында Кноп ерітіндісі, глюкоза, кейбір аминқышқылдары және пептон бар әртүрлі қоректік орталарды  қолданды. В.Роббинсон жүгерінің тамырын өсіріп, қоректік ортаға ашытқы сығындысын қосты. Алайда тамыр мынадай қоректік ортада ұзақ тіршілік етпеді. 10 жылдан кейін АҚШ-та Филипп Уайт В.Роббинсонның тәжірибесін қайталады, бірақ ол қызанақтың тамыр ұштарын қолданып, жақсы нәтижелер алды.
Ф.Уайттың қызанақтың тамыр ұштарына жасаған тәжірибесі мен француз ғалымы Роже Готренің шілік пен сәбіздің камбий ұлпаларына жасаған тәжібесі 30-шы  жылдары ұлпаларды қолдан өсірудің қазіргі заманғы әдістердің негізіне айналды. Ф.Уайт тамыр ұштарын қолдан өсіру тәжірибесін 30 жыл бойы үздіксіз жүргізді, ал Р.Готре сәбіз тамырының камбиі мен флоэмасынан каллусты клондар өсірді. Ол қоректік ортаға ауксин қосып және ауксиннің  камбий жасушаларының бөлінуіне әсер ететін қабілеті бар екендігін көрсетті  Ф.Уайт пен Р.Готре өсімдік ұлпаларын қолдан өсірудің заманауи әдістеріне өте бағалы жаңалық енгізді және осы уақыттан бастап өсімдіктердің эксперименттік биологиясының жаңа бағыты белсенді түрде дами бастайды.  Көптеген қоректік орталардың құрамы жасалынды және макроэлементтердің, микроэлементтердің, витаминдердің, өсімдіктердің өсуін реттеушілердің (кокос жаңғағының, каштантың, жүгерінің эндорспермдері, ашытқының гидролизты және т.б.) маңызы зерттелді. Осы соңғы күрделі органикалық қосылыстар бөлініп алынған ұлпаларға қосылмаса жасушалардың бөлінуі мүмкін болмайды. Бұл осы қосылыстарда жасушалардың бөлінуін реттейтін фактор бар деген ойға әкелді.
Америкалық ғалым Ф.Скуг қызметкерлерімен бірге темекі сабағының телімінде бүршіктердің өсуін зерттеді және құрамында минералды тұздары, көмірсулары және витаминдері бар қоректік ортаға өсірді. Каллустың түзілуі, кейде бүршіктердің қалыптасуы байқалған. Қоректік ортаға ауксиннің қосылуы бүршіктердің өсуі мен қалыптасуын тежеді. Ал ортаға аденин  керісінше бүршіктердің қалыптасуына әсер етті және ол ауксиннің тежеушілік әсеріне бөгет жасады. Бұл зерттеушілерді кокос сүтінің өсу факторында қандай да бір пуриндік заттар бар деген ойға әкелді. Сондықтан олар алдымен нуклеин қышқылдарын зерттеуді бастайды.  Содан кейін сельд спермасының ДНҚ-сы темекі жасушаларының бөлінуіне әкелетіні анықталады. Осы нәтижені ұзақ уақыт бойы сақталған ДҚН-ның ескі препараты тапты  -  соған қарағанда өсу факторы ДНҚ бұзылуының өнімі болғанға ұқсайды. Ф.Скуг пен оның қызметтестері темекі сабағының паренхима клеткаларының бөлінуіне және ауксиннің қатысуымен бүршіктердің дамуына әсер ететін затты ашытқыдан бөліп алды.  Бұл өсуді реттейтін затты олар кинетин деп атап,  ал кинетин жататын өсуді қамтамасыз етуші класты цитокининдер  (жасушаның бөлінуін қамтамасыз ететін заттар) деп атады. Осы жаңалықтың арқасында Т.Мурасиге мен Ф.Скуг 1962 жылы темекі каллусының өсуіне қажет атақты қоректік ортаның құрамын жасады. Бұл қоректік орта көптеген өсімдік түрлерінің әртүрлі ұлпалары мен мүшелерін қолдан өсіруге бірден бір лайық орта болып саналды және қазіргі уақытта осы орта кеңінен қолданылады.       
                                       
№2 дәріс: Өсімдік жасушаларын жасанды қоректік ортада өсіру әдістері.
1.Жасушаларды жасанды ортады  өсіру  жағдайлары.
2.Каллусты алу және оны жасанды ортада  өсіру.
3.Сұйық ортада жасушаларды  өсіру.
Өсімдіктердің жасушаларын, ұлпаларын және мүшелерін қолдан өсіру сәтті  шығу үшін жасанды ортаның құрамының жақсы болуымен қатар  әртүрлі қолайлы жағдайлар жасалуы қажет. Осы айтылған сөзге жасушаны қолдан өсіру сәтті болуы үшін үнемі температура шамамен  25+-2°С болуы қажет деп жалпылай қабылданған шешім дәлел болады. Алайда мұндай дәстүрлі тәсіл ақпараттың аздығынан қолданылған болатын. Өйткені темекінің каллусының өсуіне 32°С, кәдімгі гармалаға 30°С, ипомеяға 30-32°С қажет.
Температура өсімдікте жүретін метаболизм процестерінің бәріне  әсер етеді. Температураны эксперименттің мақсатына байланысты әрбір объектіге жекелей лайықтыланып қойылуы керек. Бірақ мұндай тәжірибелерді жүргізу үлкен еңбек пен ұзақ уақытты талап етеді, сондықтан ғалымдар жасушаларды шамамен 25°С температурада өсіре береді.
Жасушаларды қолдан өсіруге әсер етуші сыртқы факторлардың бірі  -  жарық. Қазіргі уақытқа дейін фотоавтотрофтылық тек 16 өсімдіктің түріне ғана тән екені сипатталып жазылған. Қалғандары фотоавтотрофтылық өсуге қабілетсіз, оларды қараңғыда немесе әлсіз түскен жарықта өсіреді. Хлорофилдерінен айырылған ұлпаларға жарықтың әсер етуі фитохромды жүйемен қамтамасыз етілген. Екіншілік қосылыстарды алу үшін қолдан өсірілетін жасушаны қолданатын эксперименттерде жарық пен фотопериодтың белсенділігі мен сапасының  әсері нақты тағайындалған. Жасуша технологиясында жасушаларды жарықпен қамтамасыз ету  басты міндеттердің бірі.    
Жасушаларды сәтті өсіру үшін қажет маңызды факторлардың  бірі  -  аэрация. Аэрациясыз ешбір жасуша тіршілік ете алмайды. Газдардың (оттегі, азот, көмірқышқыл газы) жасушаларға әсері мүлдем зерттелмеген. 
Жасушаларды өсіруде және жасанды ортасын жасағанда физикалық фактор осмос қысымыныңда әсерін ескеру қажет.  

       Каллусты алу және оны қолдан өсіру.
Каллус  -  жасушаның қалыптаспаған пролиферациясынан пайда болған ұлпа. Пролиферация  -  жасушаның және ұлпаның бөлінуінен пайда болған жаңа түзілімдер. Каллус (лат. callus  -  тірі тері, мозоль)  -  өсімдікте жарақаттанудың нәтижесінде пайда болған ұлпаның ерекше түрі. Ол жараның орнын қорғайды және қоректік заттар жиналып арнайы қорғаныш қабаты түіледі немесе жараланған мүше қайтадан қалыптасады. Мұндай жасушалар ұлпалар мен жасушаларды қолдан өсіру барысында да пайда болады. in vitro каллусының түзілуі және өсуі ауксин мен цитокининмен реттеледі.
Каллусты алу және оның ары қарай өсуі стерилбдікті талап етеді. Жақсылап жуылған өсімдік материалы құрамында белсенді хлор (кальций мен натрий гипохлориті, хлорамин, хлорлы әк), сынап (сулема, диоцид), сутегі диоксид, этанол бар әртүрлі заттармен стерилденеді. Осындай мақсатта бромды, күкірт қышқылын, фенолды және ерекше жағдайларда антибиотиктерді сирек қолданады. Стерилдеуші заттың түрі, концентрациясы әсерт ету ұзақтығы стерилдеуге дайындаған өсімдік объектісіне байланысты болады. Стерилдеуші зат барлық микроорганизмдерді жоятындай және өсімдік ұлпаларын минимальды жарақаттайтындай әсер етуі тиіс, сонда стерилдеуші зат дұрыс таңдалған болып табылады. Сонымен қатар стерилді зат сумен жуғанда кетуі тиіс, әйтпесе ұлпалардың улану қауіпі туады да эксперименттің нәтижесіне кері әсер етеді. Әдетте танымал стерилдеуші әдістерді қолданады немесе әрбір объектіге экспериментті түрде арнайы стерилдеу әдісін жасайды. Қолайлы стерилді қоректік ортаға орналастырылған эксплант деп аталатын ұлпаның немесе мүшенің фрагменті біраз уақыт өткеннен кейін өсе бастайды да каллус пайда болады. Бұл процесс  каллустың түзілуі немесе каллусогенез деп аталады.

              Сұйық ортада жасушаларды қолдан өсіру. 
Сұйық ортада қолдан өсірілген өсімдік жасушысын суспензионды культура деп атайды. Жасушаларды белгілі бір өлшемде сақтау үшін оларды әртүрлі аппараттармен араластырып тұрады. Жасушалардың аэрациямен қамтамасыз етілуі ортаны араластырудың немесе шайқалуының немесе сұйық ортаның таза ауамен желдетуінің әсерінен болуы мүмкін. Жеке эксперименттерде жасушаларды инкубациялау үнемі қоректік ортамен қамтамасыз етіліп тұрмайды, керісінше сұйық ортамен және ауамен біртіндеп қана қарым-қатынас орнатады. Мұндай жағдайда газ алмасу жақсарады.
Суспензиядағы жасушаны агаризонды жазықтықта статистикалық тәсілмен өсірілген жасушамен салыстырғанда ерекшеліктері болады: жасуша популяциясы біртүрлі қоректік ортада, аэрацияда болады; экзогенді факторлардың жасушалардың өсуіне және метаболизміне әсер етуін оңай бақылауға болады; олар биохимиялық және молекулалық-биологиялық зерттеулер жасауға қолайлы болып келеді; олардан қалыпты жасуша популяцияларын алу мүмкіндігі жоғары.
                                       
            Суспензионды жасушаларды алу.
Әдетте суспензионды жасушаны алу  үшін каллусты ұлпалар қолданылады. Сұйық ортаға орналастырылған эксплантты өсімдікті алу мүмкін (мысалы, пыльниктерді). Экплант бетінде пайда болған каллусты жасушалар бөліне алады және ортаға өтіп суспезияның басталуына негіз болады. Бірақ бұл ұзақ әрі нәтижесі төмен процесс. Кейбір зерттеулер үшін қажет жасушаларды ферментті мацерация тәсілімен алады, мысалы: жапырақ мезофилінен, бірақ мұндай суспензияны ұзақ уақыт бойы сақтап қалу мүмкін емес.
Суспензионды жасушаларды алудың негізгі тәсілі тербелгіштегі сұйық ортада борпылдақ дифференциалданбаған каллусты өсіру болып табылады. Мұндай жағдайда каллус жеке жасушаларға және жасушалық агрекаттарға оңай ыдырайды. Борпылдақ  каллусты арнайы осындай мақсаттар үшін 2,4-Д және құрамы азайған немесе цитокинині жоқ ортада өсіреді. Каллустың дезагрегациясына қоректік ортада Са2- болмауыда жақсы әсер етеді, бірақ мұның салдарынан өсімдік жасушаларын байланыстырушы негізгі материал  -  кальций пектинаты аз мөлшерде түзіледі. Кальций пектинатын каллусқа пектизамен әсер ету арқылы бөліп алуға болады.
Сұйық ортадағы каллусты ұлпалардың бөліктері араластырудың әсерінен  жасушаларға және жасушалық агрегаттарға ыдырап алғашқы суспензияны түзеді. Каллустың ірі қалдықтары мен ірі жасуша агрегаттарынан құтылу үшін 1-2 қабат марлы немесе нейлон қолданып сүзеді немесе суспензияны тұндыру арқылы алады. Жасушалардың диссоциясына қоректік ортаның құрамы, аэрация және суспензияны араластыруда әсер етеді. Ешқандай әрекеттерге қарамастан суспензия ешқашан жалғыз жасушалардан  тұратын бір түрде ғана болмайды.  

                                       
№3,4 дәріс: Жасанды қоректік ортада өсетін жасушалардың биологиясы.
1.Дедифференциялдану және каллустың пайда болуы.
2.Өсірілген жасушалардың әртектілігі.
Кез-келген өсімдік ұлпасы қолайлы қоректік ортаға түскеннен кейін бөліне бастайды да дифференциалданбаған жасушалар түзіліп каллус пайда болады. Бұл  ұлпаның бөлінуін тоқтатқан дифференциалданған жасушалары қайтадан бөліне бастайды дегенді білдіреді. 
Маманданған бөлінбейтін жасушалардың пролиферацияға өтуі олардың дедифференциациясымен байланысты, басқаша айтқанда-мамандануын жоғалту. Осы процестің негізінде дифференциациялық белсенді гендер жатыр. Жасушалардың қызметі мен құрылымы гендердің белсенділігімен анықталады. Егер жасушалардың қызметі мен құрылымы жағынан айырмашылықтары болса, онда олардың гендерінің экспрессиядағы айырмашылықтарына байланысты, яғни мамандану әртүрлі жасушалардағы әртүрлі гендердің қатысуымен қамтамасыз етіледі. Әдетте  гендердің пуласының біраз бөлігі (5%) ғана белсенді болып келеді. Гендер берілген мүшеде, ұлпада, жасушада, Сонымен қатар тек белгілі бір жаста немесе сыртқы ортаның өзгерісінің әсеріне  байланысты қызмет жасай бастаған гендер белсенді гендер құрамына кіреді. Қызметтік мамандануына байланысты өсімдік ұлпалары мен жасушалары арасындағы физиологиялық және құрылымдық ерекшеліктердің пайда болуы дифференциация процесі деп аталады. Дифференциация ұғымы эмбриондық және меристемалық жасушалардың маманданған жасушаларға айналуын көрсетеді. Меристемалық жасушалар құрылымы мен қызметі жағынан бірдей және әртүрлі мүшелердің ұлпаларын қалыптастырып әртүрлі жолдармен дамиды. Мұның қалай жүзеге асатыны клеткалық биологияның маңызды сауалдарының бірі. 
      Өсірілген жасушалардың әртектілігі.
Өсірілетін жасушалардың негізгі түрі каллус жасушалары. Каллустық ұлпалар өсу циклінде бөлінуден кейін жасушаға тән  онтогенезге өтеді, яғни өсе бастайды, содан кейін ескі каллустық жасушалар сияқты дифференциалданады, қартаяды, тіршілігін жояды. Өсіп келе жатқан каллуста барлық жасушалар бөлінбейді, бұл қою тығыз цитоплазмасы бар және вакуольсіз меристема  жасушаларына ұқсас  болады. 
Өсіру жағдайына байланысты популяциядағы жасушалар қатынасы өзгеріп отырады. Мысалы, каллусты жаңа қоректік ортаға жиі көшіріп отырса, олардың ішінде қарқынды бөлінетін майда жасушалар әрдайым басым болады.  Каллустық жасушалардың морфологиялық жағынан, биохимиялық құрамы бойынша, физиологиялық жағдайы және генетикалық жағынан айырмашылықтары болады.
Каллустық жасушалардық өткен ұлпаның жасушаларынан өлшемі мен пішіні жағынан ерекшеліктері болады, бұларда ядроның саны мен пішіні өзгереді. Ескі каллустық жасушалар ірі болады (500-1000 мкм), ал жас жасушалар үсақ болады (15-30 мкм). Қоректік ортада цитокинин болмаса жасушалардың көлемі ұлғаяды. Жасушалар мен ядролардың қалпы мен көлемдерінің өзгеруі көбінесе плоидтылықтық (хромосомалар саны) өсуіне байланысты. Жасушаларды ұзақ өсіргенде олардың плоидтылығы ұдайы арта береді.
Өсірген жасушалардың полиморфизмі әр түрлі факторларға байланысты: түрінің және жасының ерекшеліктері, плоидтылығы, қоректік ортаның және өсіру жағдайының әсері коррелятивтік байланыстардың жойылуы. Соңғы фактор, яғни бүтін өсімдікте болған қатаң реттелудің бұзылуы, жасушаларда in vitro жағдайында өздігінен өзгергіштік пайда болудың негізгі себебі. Қандай эксплант болса да, ол неше түрлі ұлпалапынан түзілген калустар бір-біріне ұқсамай, әртекті келеді. Ал табиғатта барлық қасиеттері бірдец эксплант болмайды, сондықтан да өсірген жасушалар бірсапалы болмайды.
Физиология жағынан жасушалардың әртектілігі олардың <<ртүрлі физиологиялық күйінде болуына (яғни бөліну, өсу, қартаю, құру) байланысты. Мұндай жасуша популяциясы асинхронды деп аталады. Популяцияны синхронды болғызу, яғги барлық жасушалардың жасуша циклінің бір кезеңінде болуы тіпті мүмкін емес. Себебі, бөлінетін жасушалардың саны 2-4% амасында болады. бөлінетін жасушалардың санын көбейту жолдары бар. Мысалы, бөлінуді тоқтататын қолайсыз жағдайлар (температура, қоректік ортадан маңызды затарды шығарып тастау) бөлінуге дайын тұрған жасушалардың санын белгілі дәрежеде арттыруға мүмкіндік туғызады. Жасуша циклінің кезеңдерін тежейтін кейбір химиялық заттар да популяцияны синхрондандыруға тиімді келеді. Ең жақсы дегенде, жасушалардың 10-30% синхрондануы мүмкін, бірақ тез уақытта ол тағы да төмендейді. Бұл жерде мынаны атап  өту қажет. Сұйық ортада өсірген  жасушалардың физиологиялық айырмашылықтары азырақ болады. себебі, үзбей араластырып тұрған сұйық ортада қоректену жағдайы, аэрациясы және уытты заттардың әкетілуі барлық жасушаларға бірдей болады. 
Өсірген жасушалардың әртектілігіне генетикалық, эпигенетикалық және модификациялық өзгергіштік те себеп болады. генетикалық, яғни мутауиялық өзгерістер, генотиптің өзгеруіне әкеледі де, тұқым қуалайды. Мутация гендік, хромосомалық және геномдық деңгейінде өтеді. Гендік немесе нүктелік мутациялар жасушалардың морфологиялық, биохимиялық және физиологиялық қасиеттерінің өзгеруіне әкеледі.
Генетикалық өзгергіштіктің
Генетикалық өзгергіштіктің себептері әр алуан: 1) алғашқы эксплантты өсімдіктен бөліп алғанда коррелятивті байланыстардың бұзылуы, яғни организмнің бақылауы болмауы; 2) қоректік ортаның компоненттерінің әсері; 3) қоректік ортада жиналатын метаболизм өнімдерінің әсері; 4) бастапқы экспланттың өзіндегі әртектілік және белгілі бір жасушлардың селекциясы.
Хромосомалық өзгергіштік митоздың бұзылуы салдарынан (эндомитоз бен эндоредупликация) пайда болады. эндомитозда хромосомалар шиыршықталып бұратылады, бірақ ядроның қабығы сақталады, ұршық бұзылады, хромосомалар ажырамайды, олардың деспирализайиясы өтеді. Сондықтан, хромосомалардың саны көбейеді, ядро мен жасушаның көлемі ұлғаяды. Эндоредупликацияда ДНҚ-ның мөлшері ядрода көбейсе де хромосомалар екі еселенбейді де ядро бөлінбейді. Сонымен қатар митоздың бұзылуына байланысты хромосомалар дұрыс таратылмауы себебінен де полиплоидтық және анеуплоидтық жасушалар пайда болады.
Жасушалардың бөліну мен өсу жылдамдығы, қолайсыз жағдайларға төзімділігі олардың плоидтылығына байланысты. Соның салдарынан жасушалардың арасында бәсеке басталып, кейбіреулері басым өсе бастайды. Осындай популяциядағы жасушалардың белгілі бір типі үнемі басым өсуін клеткалық селекция деп атайды. Басым өсу кейбір жасушалардың пролиферациясымен немесе басқа бір жасушалардың элиминациясымен сипатталады. Мұндай селекцияны автоселекция деп атаған дұрыс, өйткені ол популяцияда өздігінен өтеді, сырттан стресс факторлар әсер етпейді. Автоселекция процесінде осы жағдайға ең жақы бейімделген кариотип қалыптасады.  Мүмкін, жасушалар жаңа жағдайға бейімді болғаны тіршілікке икемді полиплоидтық жасушаларды сұрыптау арқасында пайда болады. өсіру жағдайы өзгергенде сұрыптау бағыты да ауысады. 2,4-Д мен кинетиннің жоғары концентрациялары полиплоидтену мүмкіншілігін арттырады.

    
№5 дәріс: Өсімдік жасушаларын биосинтездік өнеркәсіпте пайдалану.
1.Экономикалық маңызы бар заттарды өндірудің жасушалық   технологиялары.
2. Жасушалық технологияның песпективалары.
3. Өсірілетін жасушаларда қосымша заттардың қор жингаоуына әсер ететін факторлар.
Өсімдіктерде алуан түрлі қосымша заттар синтезделеді. Қосымша заттар деп аталса да олардың өсімдіктегі зат алмасудағы орны зор. Олардың көптегені медицинада, техникада, тамақ және парфюмерия өнеркәсібінде, ауыл шаруашылығында кең пайдаланылады.
Өсірген жасушалардың қосымша заттарының арасында бірінші болып өздеріне зерттеушілердің назарын аудартқан алкалоидтар еді. Қызғылт қабіршөптің, жылан раувольфияның, қара мендуанасының, сасық меңдуанасының т.с.с. өсімдіктердің каллустарын талдаанда олардың құрамында әр түрлі алкалоидтар болатыны анықталды. Көптеген ғалымдардың зерттеулері арқасында каллустардың басқа да активті заттарды синтездеуге қабілеті бар екендігі жөнінде талай бағалы деректер жиналды. Жасушалар in vitro жағдайында әр өсімдік түріне тән қосымша заттарды синтездеу қабілетін сақтап қалады. Атап айтқанда, алкалоидтарды, терпеноидтарды, гликозидтарды, полифенолдарды, полисахаридтерді, эфир майларын, ерекше петидтер мен белоктарды, таза бояғыш заттарды, стероидтарды, дәм татымдық заттарды, биоинсектицидтарды, балауыздарды, витаминдерді синтездейді.
Мңызды заттарды синтездейтін жасушаларды өсіру биотехнологияның жаңа саласы. Дағдылы биотехнологиялар бағалы биологиялық активті заттарды алу үшін бүтін организмдерді пайдаланса (өсімдіктерді, жануарларды), осы заманғы биотехнологиясы ерікті немесе иммобилизденген өсімдік жасушаларын өсіруге сүйенген жасушалық технологияларға негізделген.
Жасушалардың in vitro жағдайында биотрансформация жүргізуге мүмкіншілігі болатындығы дәлелденген, яғни кейбір биологиялық активті заттар арзан қарапайым бастаушы заттардан синтезделеді. Бұл қарапайым бастаушы заттар химиялық немесе микробиологиялық жолмен өзгертіле алмайды, тек қана өсірілетін жасушалардың ферменттерінің ықпалымен ақырғы бағалы өнімге айналып кетеді.
Қоректік ортаның құрамы және басқа өсіру жағдайлары өзгеруі арқасында синтезделетін өнімдердің мөлшері тұрмақ сапасы да өзгереді. Соның нәтижесінде мүлде жаңа, негізінде басқаша әсер ететін қосылыстар пайда болуы мүмкін. Мысалы, жапон ғалымдары in vitro жағдайында ерекше пептидтерді, ісікке қарсы ем болатын қосылыстарды, убихинон-10 сияқты жаңа биологиялық активті заттарды алуда мол табысқа жеткен. Келешекте жасушалық битехнология иммобильденген өсімдік жасушаларын пайдаланатын болады.
Өнеркәсіпте өсіруге жарайтын жасушалар жабайы мен екпе дәрілік және техникалық өсімдіктердің, микробиологиялық өңдірістің және химиялық синтездің бәсекесінен озып шығуы қажет. Дағдылы өсімдіктер шикі затымен салыстырғанда өсірілетін жасушалардың мынадай артықшылықтары болады: 1) қоршаған ортаның әр түрлі факторларының (климат, маусым, ауа райы, топырақ жағдайы, зиянкестер) ықпалынан тәуелсіздік; 2) өсіру жағдайларын өте жақсы деңгейде үзбей қамтамасыз ету арқасында өнімнің мөлшері мен сапасы жоғары;  3) егіс көлемі үнемделеді.
Өсімдіктер көптеген маңызды заттардың бірден-бір қайнар көзі болып келеді. Бірақ өсімдік шикі затының қоры табиғатта таусылып бара жатыр. Осыны еске алғанда, жасушалық технологиялардың  орны болашақта ерекше зор екенін түсінуге болады. жасушалық технологиялардың ғылыми лабораториялық зерттеулерден соң өнеркәсіпте қолданылуы қазір ғана басталып келе жатыр. Тиімділігі жоғары технологиялардың жасалуы өсімдіктерде қосымша зат алмасу процестерінің генетикалық, биохимиялық, физиологиялық реттелуі жөніндегі теориялық білімнің жетіспеушілігімен шектеліп тұр. Себебі бүтін өсімдіктегі зат алмасуында қосымша заттардың қызметі толық зерттеліп бітпеген. Көпшілігінің негізгі функциясы өсімдікті әр түрлі стресс факторларынан қорғау, яғни олар реттеушілер ретінде организмнің тіршілік әрекетін қамтамасыз етуі мүмкін.
In vitro жағдайында өсетін жасушалар  -  жаңа жасанды жүйе, оның ерекшеліктері әлі аз зерттелген. Кейде өсірген жасушалардың  зат алмасуында филогенез тұрғысынан бұрын дамыған өсімдіктер тобына тән немесе өсімдіктің ювенильді кезеңіне тән ерекшеліктері байқалады.
In vitro жағдайында өскенде де жасушалар белгілі бір онтогенезден өтеді: көбею, яғни бөліну- созылып өсу-дифференциялану-қартаю-өлу. Осындай әр түрлі кезеңдегі жасушалардың сан жағынан ара қатынасы популяцияда өзгеріп отырады. Мысалы, өсіру жағдайлары өзгергенде. Бөлінуі тоқтаған каллус жасушаның дифференциялануы өсімдік түріне тән қосымша заттарды синтездеуге мамандануы деп түсінуге болады.
Қосымша заттардың биосинтезін жасушаның дифференциялануымен бақылау жөніндегі деректер әр қилы. Бірқатар тәжірибелерде қосымша заттардың синтезі морфогендік құрылымдар пайда болғанда ғана басталса, басқаларында қажетті заттардың жоғары өнімі дифференцияланбаған каллус ұлпаларында байқалған. 
Бастапқы өсімдіктің, яғни эксплант алынатын донор өсімдіктің генотипі  өсірген жасушалардың биосинтездік потенциалына елеулі ықпал етеді. М.Ценк қызметтестерімен қызғылт қабыршөптің (Catharantus roseus) жасушаларын өсіру үшін бірнеше географиялық аймақтан 184 тұқым үлгісін жинап алған. Осы тұқымдардан шыққан өскіндер арасынан серпентин мен аймалицин деген гипотензивтік индолдық алкалоидтарға өте бай (құрғақ массасына 0,7%) бірнеше өскіндер таңдап алынды. Солардан шыққан каллустар қажетті алкалоидтарды басқа өскіндерден алынған каллустарға қарағанда 4-5 есе артық синтезделген.
Бірақ У.Роллер осы өсімдікпен өткізген өзінің тәжірибелерінде мұндай байланыстылықты таба алмады.
Жапон ғалымдары да маралотының (Thalictrum minus) бүтін өсімдіктері мен каллустарында берберин деген алкалоидтың мөлшерінде корреляциясын байқамады. Бәлкім нәтижелердің мұндай қайшы болуы алғашқы генотиптің тек фенотип арқылы бағалануына байланысты. 
З.Б.Шамина қызметтестерімен апиын көкнар (Papaver somniferum) жасушаларын изогендік өсімдіктер линиясынан шығарып алған. Сабақ ұшындағы меристема жасушаларын бір мезгілде әр түрлі, бірақ жасы бірдей өсімдіктерден бөліп алып, бірдей ортада өсірді. Сондағы шыққан каллустардың өсу және алкалоидтарды синтездеу жағынан айырмашылықтары айтарлықтай болған.
А.Киннесли мен Д.Дугэлл екі темекі өсімдігінен (Nicotiana tabacum) шығарған каллустарда никотин мөлшерінен айырмашылығы екі өсімдік бір-бірінен тек никотин мөлшерінен айырмашылығы болған, басқа локустары изогендік еді. Никотинді көбірек синтездейтін өсімдіктен шыққан каллус сол қабілетін сақтап қалған.
Келтірілген деректер біршама қайшы болсада, көптеген зерттеушілер әдеттегідей ұлпаның генетикалық сипаттамасына көңіл қояды. Бірақ кей кезде өсіруге алынған ұлпада қажетті заттың мөлшері жоғары болуы оның осы ұлпада қажетті заттың мөлшері жоғары болуы оның осы ұлпада синтезделмей, тек басқа ұлпалардан тасымалданып жеткізілгенін көрсетуі мүмкін. Сондықтан өсіруге алынған экспланттың тегіне де назар аударылады. Мысалы, диоскореяның (Dioscorea floribunda) түйінінен алынған жасушаларын өсіргенде, оларда диосгениннің мөлшері өркеннің алынған жасушалармен салыстырғанда он есе артық болған. Алайда, көбінесе жасушалар өсірген кезде қосымша заттарды синтездеуге тотипотентті келеді, яғни көрінген жасуша лайықты жағдай жасалса өзі бөлініп алынған өсімдікке тән заттарды синтездей алады. Себебі қосымша метаболиттердің синтезін реттейтін гендер әдетте оларды синтездемейтін жасушаларында да бар. Қай кезде жасушалардың биосинтездік қабілеті регенерант өсімдіктерде бүрынғы қалпына келеді. Мысалы, оймақгүлдің (Diqitalis lanata) жасушалары ұзақ мерзім өсіргенде гликозидтерді синтездеу қабілетін бұрынғы қалпына түскен.
Сөйтіп, жасанды қоректік ортада өсірілген жасушаларды генетикалық информация сақталады, бірақ оның жүзеге асуы үшін ерекше жағдайлар қажет. Шамамен, жоғары өнімді өсімдіктер мен ұлпалардың бөлініп алынған жасушаларда сол метаболиттердің биосинтезіне қажет генетикалық информациясы болады.

                                       
     №6 дәріс: Жасушаларды өсіру жүйелері.
1.Жасушалар суспензиясы.
2.Иммобильденген жасушалар.
3.Қосымша заттарды алу үшін жүргізілетін жұмыстардың кезеңдері.
Жасушаларды in vitro жағдайында өсірген кезде олардың өсуі мен биосинтездеріне өсіретін жүйелердің техникалық көрсеткіштерінің маңызы зор. Өсімдіктердің қосымша заттарының биотехнология өндірісі көбінесе сұйық ортада өсетін жасушаларға негізделген. Лаборатория жағдайында қосымша метаболизмді зерттеген кезде жасушалар әдеттегідей колбаларда кішігірім көлемде (40-200 мл) өсіріледі және айналмалы тербеушілерде араластырылады. Колбалардың айналу жылдамдығы (әдетінше минутына 90-120 айналым) жасушалардың өсуіне және метаболиттердің жинақталуына әсер етеді. Мысалы, итжидек пен үйеңкі жасушаларының айналу жылдамдығы төмендегенде, олардың өсуі бәсеңдеген. Ал темекі жаушаларының өсуіне айналу жылдамдығы әсер етпеген, тіпті жылдам айналдыру арқасында оларда никотин синтезі арта түскен.
Көлемі шағын колбалардан көп литрлік ферментерлерге ауысқанда өсіру көрсеткіштері өзгереді, әсіресе араластыру мен аэрациясы. Жасушалар суспензиясын өндірісте өсіру үшін микроорганизмдерге қолданылатын аппараттарды қолданады. Бірақ соңғы зерттеулер көрсеткендей, өсімдік жасушалары өздерінің өзгешеліктеріне қарай ерекше аппараттарды қажет етеді. 
Өсімдік жасушаларының көлемі бактериялар мен саңырауқұлақтарға қарағанда 10 есе, тіпті 100 есе ірі келеді, мұнымен қатар онтогенезде де олардың көлемі өзгереді. Бастапқы экспоненциялдық өсу фазасында олар майда және тығыз болса, стационарлық фазасында көлемі өсіп вакуолі пайда болады. неғұрлым жасушаның көлемі үлкейсе, соғұрлым оның араластыру арқасында бүлінуінің қауіптілігі арта түседі. Сонымен қатар, өсімдік жасушалары ірі және ауыр болған соң оларды жақсы араластырып тұұру қажет. Өйтпесе олар ферментердің түбіне түсіп, тез қартаяды да ақырында жойылады.
Жень-шень жасушаларын турбиналық араластырғыштары болған ферментерде өсіргенде айналу жылдамдығы минутына 100-350 айналымнан асқанда, соның теріс әсері салдарынан жасушаларда антрахинондардың синтезі төмендеген.
Штамның механикалық стресіне төзімділігі жасушаларды өсіргендегі маңызды талап, ал зерттеушілер үшін бұл қиын мақсат. Суспензияны жұмсақ араластырып ауамен қамтамасыз етуге пневматикалық әдісі қолайлы, яғни ферментерге ауаның қысым күшімен жоғары көтерілген ағыспен келген стерильді ауаны үрлету. Бірақ юұл әдістің де кемшілігі бар, себебі суспензияда ауа артық мөлшерде болуы себебінен жасушалар оттегінің кемшілігіне тап болады. ал жасушалардың өсуі де, қосымша метаболизмі де оттегі мөлшерімен тығыз байланысты. 
Микроорганизмдерді өсіретін жүйелерде биомассаның өсуі, өнісді шығару және оттегімен қамтамасыз ету арасындағы өзара тәуелдігі зерттелген. Ал өсімдіктер жөнінде мұндай деректер жоқ. Жасушалардың өсуіне басқа газдар да әсер етеді. Мысалы, көмірқышқыл газы өсудегі лаг-фазаның ұзақтығына ықпал етеді. Өте күшті аэрация да теріс әсер етуі мүмкін, себебі көмірқышқыл газы мен ұшқыш қосылыстар айдалып әкетіледі. Өсімдік жасушалардың in vitro  жағдайында микроорганизмдермен салыстырғанда тыныс алудың қарқындылығы едәуір төмен, оларды өсіретін ыдыстарды дайындағанда бұл ескеретін жағдай.
Жасушаларды әр түрлі ферментерлерде өсіріп, олардың өсуі салыстырылған. Мысалы, лимонжапырақты моринда жасушаларын өсіргенде, антрахинон 30 % артық болған. Ал басқа түрлі ферментерлермен салыстырғанда тіпті екі есе артық болған. Жасушалардың биомассасы биореактордың түріне байланысты болмаған.
Өсімдік жасушалары сұйық ортада жақсы өсу үшін тығыздықты талап етеді. Ол мынандай кедергіні туғызады: биомассаның өсуімен қоса суспензияның тұтқырлығы да өседі. Оның нгәтижесінде адгезия пайда болады, жасушалар бір-біріне, ыдыстың қабырғаларына, былғауы пен датчиктерге жабысып, өсіруге бөгет жасайды. 
Ыдыстың жоғары жағында жасушалар бөліп шығарған белоктар мен полисахаридтерден тұратын көбік біртіндеп жинала бастайды. Өсе келе кейбір жасушалар өзара жабысып, осы көбікте жиналып <<қабықты>> немесе <<безені>> түзеді. Жасушалар биомассасы өсе келе бұл қабық та қалыңдайды, ақырында араластыру қарқындылығы төмендеп, жасушалар құриды.
Жалпы, өсімдік жасушаларының, микроорганизмдермен салыстырғанда, физиологиялық және метаболиттік активтілігі төмен болады. өсімдік жасушаның генерация уақыты (жасушаның кезекте екі бөлінуі арасындағы мерзім) микроб жасушаның генерация уақытынан 60-100 есе арта түседі.
  
Иммобильденген жасушалар.
Агар қосылған қатты қоректік ортада өсірген жасушалар сұйық ортада өсірген жасушаларға қарағанда қосымша метаболиттерді көбірек синтездейді. Тәжірибелер көрсеткендей, борпылдақ қарқынды өсетін каллусқа қарағанда тығыз баяу өсетін каллус жасушалары алкалоидтарды артық жинақтаған, яғни әдеттегі метаболизм жасушалардың кеңістікте әлдеқандай ұйымдасуын талап етеді. Жасушаның организмде жайғасқан орны оның дифференциялану типі мен дәрежесін белгілейтін факторлардың біреуі. Бір-бірінен аулақтанып немесе кішігірім топта өсетін жасушалардың қоршаған ортасы ерекше болғандықтан метаболизм жолдары басқаша болады. Жасушалардың ұйымдасуы тұтас организмге неғұрлым жақын болса, соғұрлым олардың метаболизм жолдары да ұқсас болуы мүмкін. Өсірген жасушаларда қосымша метаболиттердің жинақталуы мен олардың дифференциялану дәрежесінде өзара байланысы бар екендігін ғылыми әдебиеттегі бірталай деректер дәлелдейді.
Иммобаильденген жасушалар өзара тығыз байланыста өседі. Соынң нәтижесінде олардың массасының ішінде тұтас организмдегідей, белгілі химиялық және физикалық градиенттер деп гормондар, қоректік заттар, оттегі, көмірқышқыл газы мөлшері өзгеруін түсінуге болады.
Жасушаларды мынадай төрт жолмен иммобильдеуге болады:  
1)жасушаларды түрлі оқшау (инерттік) заттармен қаптау (альгинат, агар, полиакрилаимд, коллаген, т.б.);
2)оқшау заттың беткі қабатына жасушаларды абсорбция арқылы орналастыру;
3)оқшау заттың беткі қабатына жасушаларды биологиялық макромолекулалармен (лектиндермен) <<тігу>>;
4)жасушаларды коваленттік байланыстар арқылы оқшау субстратқа орналастыру (мысалы, карбоксиметилцеллюлоза).  Көбінесе алғашқы екі тәсіл қолданылады. Биологиялық жағынан оқшау затқа бекінген жасушалар өз өміршендігін сақтайды. Бекіген жасушалар төңірегінде қоректік орта көп мөлшерде жүріп тұрады, оның құрамын өзгертіп, өсу қарқындылығын бәсеңдетіп, қосымша заттарды көбірек алуға болады.
Иммобильденген эжасушаларды концентрациясы төмен алғашқы заттармен көп мөлшерде қамтамасыз ету керек.  Бұл алғашқы заттар биосинтез жолдарында алынып отырған затқа мүмкіншілігінше жақын болуы қажет. Иммобильденген жасушалар ұзақ уақыт  өсірілетін болғандықтан, бұл тәсілге өздері табиғи жолмен немесе белгілі факторлардың әсерімен (төмен температура, еріткіштер) қажетті заттарды сыртқа бөліп шығара алатын жасушаларды қолдану керек. Қажетті затты тек ішінде, мысалы вакуоль мен пластидтерді жинақтайтын жасушалар иммобильдендіруге жарамайды. Сонымен бірге жасушаларды шайып тұрған қоректік ортаның өзімен қажетті затты бөліп алу оңай емес. 
Өндірісте қолданылатын иммобильденген жасушаларды өсіру үшін биореактордың бағана тәріздісі қолайлы, өйткені мұнда орын үнемделеді және жасушалар арқылы ағып жатқан қоректік ортаны бақылау онайланады. Кейбір өсімдіктер жасушалары метаболизм барысында жарықты қажет етеді.
Иммобильденген жасушалар түрлді заттардың биотрансформациясына да қоданылуы мүмкін. Иммобильденген жасушалар технологияда ұзақ уақыт пайдаланылатын болғандықтан, биокатализ процесі арзанға түседі. А.Альферман қызметтестерімен мынадай тәжірибе өткізген. Олар оймақгүлдің (Digitalis lanata) альгинат гелімен қапталған жасушаларын (диаметрі 4-5 мм 50 түйіршік) Эрленмейердің 100 мл-лық колбаларында 25 мл қоректік ортада өсірді. Биотрансформация өтетін субстрат ретінде β-метилдигитоксин қолданған, ол тәжірибе барысында β-метилдигоксинге айналған. Субстраты бар қоректік орта үш күн сайын алмастырылып тұрған. Осындай жағдайда жасушалар 170 тәулік бойы субстраттың биотрансформациясын жүргізіп, оны қажетті өнімге айналдырып тұрған. Жүрек ауруын емдеу үшін дигоксин өте тиімді. Бірақ, өсімдікте оған қарағанда дигитоксиннің мөлшері едәуіо артық. Екеуінің химиялық айырмашылығы  -  дигоксиннің 12-ші көміртек атомында қосымша гидроксил тобы бар. Оймақгүлдің каллус жасушаларын биотрансформация реакцияларын өткізу үшін пайдаланып жүректік гликозидтарды өндіруг болады. 
Сөйтіп, иммобильденген жасушалардың суспензияда өскен жасушалармен салыстырғанда мынадай артықшылықтары бар:
* биомассаны қайта-қайта ұзақ уақыт пайдалану (жасушалар биреактор ішінде сақтала береді, ал өнімдер қоректік ортадан бөлініп алынады); 
* жасушалардың қозғалысы шектелгендіктен, олар қоректік ортаға бөлініп шықпайды, онымен араласпайды;
* жасушалардың мол биомассасын сыйымдылығы шамалы ыдыстарда өсіру;
* жасушаларды ұзақ өсіру;
* биотрансформация мүмкіншілігі.
Қосымша заттарды алу үшін жасушалық технологияларды дайындау жұмысының кезеңдері:
  1.Экономика жағынан тиімді өсімдікті таңдап алу. Өсіруге алынатын өсімдіктерде бағалы, экономика жағынан маңызды қосымша заттары айтарлықтай жоғары мөлшерде болуы қажет. Әсіресе бұл жағдайдың сирек кездесетін немесе жоғалып бара жатқан өсімдіктерге қатысы бар.
2.in vitro жағдайына ұлпаны алғашқы енгізу. Ол үшін қажетті зат жоғары мөлшерде синтезделетін жеке өсімдіктер тандап алынады. Алдымен алғашқы каллустарда қатты ортада өсіріп алады.
3.Биомассада қосымша заттардың сандық және сапалық құрамына химиялық зерттеу жүргізу. Бөлініп жатқан каллус жасушаларында көбінесе қосымша затардың мөлшері бүтін өсімдіктер мүшелеріне қарағанда аз болады. Бұл тұтас өсімдікте қосымша заттардың синтезі цитодифференцировканың бақылауында болатындығын дәлеледейді. In vitro жағдайында жасушалардың дифференциялануы басылғанда немесе тежелгенде, қосымша заттардың биосинтезі төмендеуі мүмкін. Осы жағдайды ескерген жөн. Жасушаның генетикалық мүмкіншіліктерінің толық іске аспауына басқа себептер де бола алады, мысалы автотрофтық қоректенуден айырылу. Сонымен қатар, әр түрлі факторлардың ықпалымен өнімдердіғң құрамы да өзгере алады. Кейбір өсімдіктерде қосымша заттардың метаболизмі өсу процесі бәсеңдегенде басталады, сондықтан оларға алдымен қарқынды өсуге, ал кейін заттардың биосинтезіне лайықты жағдай жасалады. 

№7 дәріс: Өсімдіктерді клондық микрокөбейту.
1.Өсімдіктерді клондық микрокөбейтудің пайдасы.
2.Клондық микрокөбейтудің әдістері.
3.Қолтық бүршіктерінің дамуын индукциялау.
 Маманданған ұлпаның кез келген тірі жасушалары лайықты қоректік ортада өсіргенде, өздерінің тотипотенттік қасиетін жүзеге асырып, регенерация арқылы бүтін өсімдікке айнала алады. Жеке жасушаларда сол өсімдік түріне тән барлық белгілері мен қасиетері сақталған бүтін өсімдіктің түзілуі клондық көбейту технологиясының негізін қалайды. 
Клон (грек. сlon  -  отпрыск, ветвь)  -  жыныссыз жолмен, яғни вегетативтік көбею жолымен түзілетін организм.
Өсімдіктердің клондық  микрокбеюі деген өсімдіктердің  in vitro жағдайында жыныссыз жолмен көбеюі. Соның нәтижесінде пайда болған өсімдіктер бастапқы өсімдікпен және өзара бір-бірімен генетикалық тұрғыдан айнымастай бірдей болады.
Бұл биотехнологиялық әдістің дағдылы вегетативтік жолмен көбеюмен салыстырғанда бірталай артықшылықтары бар, атап айтқанда:
1.Көбею коэффициенті өте жоғары. Мысалы, гербера, бүлдірген, хризантема, раушанның бір өсімдігінен in vitro жағдайында бір жылдың ішінде 1 миллионнан астам клон өсімдіктер алуға болады. алма ағашының бір бүршігінен 8 айдың ішінде 60 мыңнан астам өркен шығады. Таңқурайдың бір бұтадағы меристемаларын бөліп алып өсіріп жылына 50 мыңға дейін өсімдік алуға болады. сонымен, микрокөбеюдің коэффициенті басқа вегетативтік көбею әдістерімен салыстырғанда мыңдаған есе артық.
2.Микрокөбеюмен қатар өсімдіктер вирустар мен патогендік микроорганизмдерден сауықтырылады.
3.Сұрыптау процесін жылдамдату. Жаңа сорттарды тез көбейтіп, оларды ауыл шаруашылық өндіріске пайдалану мерзімі едәуір қысқарады.
4.Вегетативтік жолмен көбейе алмайтын өсімдіктерді мысалы, пальманы тек in vitro жағдайында көбейтуге болады. Осы әдіспен өнеркәсіп деңгейінде бірқатар өсімдіктерді көбейтеді.
5.Үнемділік. Арнайы бөлмеде стеллаждарда орналасқан пробиркаларда жыл ойы мыңдаған өсімдіктерді өсіру арқылы теплицалар алаңы үнемделеді.
6.Жас өсімдіктерді алу, яғни кәрі дарақтарды жасарту.
7.Өсу процесінің жыл бойы үзбеуге болады, әсіресе бұл дамуында тыныштық кезеңі болатын өсімдіктерді көбейтуге тиімді.
Клондық микрокөбейтудің т.рлі әдістерін ғалымдар ол кезде өтетін морфогенездің өзгешеліктеріне қарай жіктейді. Н.В.Катаева мен Р.Г.Бутенко былай жіктеуді ұсынады: а) бұрыннан болған меристемалардан өскен өсімдіктер; б) жаңадан пайда болған меристемалардан өскен өсімдіктер. 
Бірінші типті өсімдіктер бүтін өсімдікте бұрыннан болған меристемаларды (сабақтың апексі, қолтық және бұйыққан бүршіктері) активтендіру жолымен пайда болады. Бұл меристемадан шыққан өсімдіктер генетикалық жағынан аналық өсімдікпен пара-пар, өйткені апекстерді in vitro  жағдайында өсіргенде олар генетикалық тұрақтылығын сақтайды.
Екінші типті өсімдіктер in vitro жағдайында пайда болған бүршіктер мен эмбриоидтардан алынады. Бұл өсімдіктерде маманданған және каллус жасушаларынан шыққандығына байланысты генетикалық өзгергіштіктер орын алуы мүмкін. Сондықтан, шыққан клондар бастапқы өсімдіктен біршама ауытқып кете береді. Сөйтіп бұл әдісті тек каллустары тұрақты немесе регенеранттарда пайда болған өзгерістер табиғи өзгергіштіктен аспайтын өсімдіктерге пайдалануға болады.
Бүршіктер мен эмбриоидтар былай пайда болады: 1) экспланттың маманданған жасушаларынан тікелей (көбейме мүшелерінің ұлпаларынан, эпидермистен, субэпидермис ұлпаларынан, жапырақ мезофилінен т.б. 2) экспланттан шыққан алғашқы каллустан; 3) көшіріп отырғызған каллустан немесе суспензиядағы жасушалардан.
 Қолтық бүршіктерінің дамуын индукциялау.
Қолтық бүршіктерді оятып, олардың дамуын қоздырып, олардан шыққан қолтық өркендерді пайдалану өсімдіктерді микрокөбейтудегі ең кең тараған әдіс. Бүтін өсімдікте қолтық бүршіктердің өсуін сабақ ұшындағы апекс тежейді (апикальдық басымдылық құбылысы). Қолтық меристемалардың өсуі сабақтың ұшын кесіп тастағанда немесе цитокининмен өңдеген соң басталады.
Қоректік ортадағы цитокининдер жанама бүршіктердің жандануына әсер етеді және толып жатқан қолтық өркендердің дамуына әкеледі. Тез өсетін өркендердің шоғыры пайда болады, одан жеке өркендерді бөліп алып жаңа қоректік ортаға отырғызғанда, олар өсіп қайта шоғырланады.
Бірақ барлық өркендерде тамыр пайда бола бермейді. Ал оларды цитокинині жоқ ортаға көшірсе, өзінен-өзі тамырлары өсіп шығады, әсіресе даражарнақты өсімдіктерде. Қолтық бүршіктерді ояту үшін қоректік ортадағы фитогормондардың концентрациясын дұрыс анықтау керек. Цитокинин жоғары мөлшерде қолданылғанда қолтық өркеннің дамуына мүмкіндік туғызады, бірақ өсімдіктің морфологиясына теріс әсер етіп кемістіктері бар формалар пайда болады. 
Қоректік ортада ауксиннің мөлшері артық болса, каллус түзілуі мүмкін. Каллус меристеманың өсуін тежейді немесе бастапқы өсімдіктен генетикалық айырмашылықтары бар қосымша сабақ апекстерінің концентрациясын төмендетеді немесе тіпті оны қоспайды. 
Сонымен қолтық бүршіктері бар сабақ кесінділерін лайықты қоректік ортада өсіріп, өркен алуға болады, ал оны құрамы басқа ортада тамырландырып бүтін өсімдікті шығарады. Көбеюді жылдамдату мақсатымен алғашқы өркенді 5-7 жапырақ шыққан соң қалемшелейді. Әрбір қалемшеде бір жапырақ болуы керек. Қадемше биіктігі 1-1,5 см болады. оларды бір-бірден қоректік орта құйылған пробиркаларға отырғызады. Бұл тәсілді микроқалемшелеу деп атайды. Ол жүзім, картоп т.с.с. өсімдіктерге қолданылады. Микроқалемшелеуді 2-3 реттен артық пайдалануға болмайды, одан кейін өркендерді тамырландыру керек.
In vitro жағдайында қолтық бүршіктерін оятып өсіру әдісімен жеміс-жидек, әсемдік өсімдіктерді, қырыққабатты, картопты т.б. өсімдіктерді көбейтеді. Көңіл аударатын жағдай мынау: осы әдіспен меристеманың бөлінуі арқасында пайда болған регенерант өсімдіктер генетикалық біркелкі болады. себебі меристемалар генетикалық жағынан тұрақты келеді, сондықтан олардан дамыған өркендер де бастапқы өсімдіктей болады. бірақ ескерте кету керек, Т.Мурасиге пікірінше бұл микрокөбейту әдісі басқа әдістерге қарағанда бәсеңірек.
Қосалқы өркендердің экспланттан тікелей пайда болуы.
Көптеген өсімдіктерде өркендер in vitro жағдайында тікелей экспланттың маманданған ұлпадарынан пайда болады. экспланттың жеке жасушалары корреляциялық өзара әрекеттері бұзылған соң дедифференцияланады және бөліне келе меристемалық аймақтарды түзеді. Сонан соң қайтадан дедифференцияланып, өркен бүршіктері пайда болады. сол бүршіктерді тамырландырып, бүтін өсімдікті алуға болады.
Бұл әдіс әсіресе шөптекті өсімдіктердің жапырақтарын, пиязшықтарын, пиязшық түйнектерін, сабақтарын, тамырсабақтарын және түйнектерін пайдаланғанда жарамды келеді. Эксплантты ауксин мен цитокининнің шамалы мөлшері бар қоректік ортада өсіргенде бір шоғыр өркендер пайда болады. оларды бір-бірінен ажыратып бөліп, әрқайсысынан жеке ыдысқа отырғызып, тағы да бір топ шоғыр өркендерді алады. Одан кейін өркендерді тамырландырып, бүтін өсімдіктерді шығарады.
Пиязшықты өсімдіктердің көптеген түрлері табиғатта өте баяу көбейеді. Пиязшықтың түрлі ұлпаларынан in vitro жағдайында қосалқы өркендерді өсіріп көбейту коэффициентін айтарлықтай арттыруға болады. Өте кішкентай экспланттарды қолданып, бір пиязшықтан көптеген біркелкі регенерант өсімдіктерді алуға болады. осы әдіспен бірқатар өсімдіктерді микрокөбейтеді, атап айтқанда: шегіргүлді, фрезияны, амариллисты, лалагүлді, петунияны, шашыратқыны, каланхоэны, цикламенді, т.б. Сонымен қатар, қосалқы өркендер жанама және қыстырмалы меристемалардан да дамуы мүмкін. Тегі меристема болғандықтан бұндай регенерант өсімдіктері бастапқы өсімдіктермен генетикалық біркелкі болады.
Регенерант өсімдіктердің каллустан пайда болуы.
Микрокөбейтудің тағы бір көп таралған әдісі ол өсімдіктерді каллустан органогенез немесе эмбриодогенез жолымен шығару. Морфогенездің басталуы қоректік ортадағы фитогормондардың ара қатысымен реттеледі. Органогенез арқылы регенерант өсімдіктерді алудың модельді жүйесі ретінде темекі бола алады.
Қоректік ортада фитогормондардың концентрациясын өзгертіп отырып, каллустан немесе тікелей экспланттан өркендерді өсіруге болады. мысалы, темекінің Nicotiana tabacum мен N.оccidentalis деген екі түрін бірі мен бірін будандастырғанда, будан ұрықтар түзілген. Бірақ бұл ұрықтар табиғи жағдайда өне алмаған. Оларды in vitro өндіріп каллус алынды. Одан кейін каллуста сабақ бүршіктері мен маиырлардың пайда болуына жағдай туғызылды. Сөйтіп темекінің бағалы буданы көбейтілді.
Өкінішке орай, Скуг пен Миллердің анықтаған заңдылығы ең маңызды ауыл шаруашылық дақылдарына  -  дәнді дақылдар мен бұршақ тұқымдастарды қамти алмайды. Демек, каллустың регенерациялық активтілігіне генотиптің тигізетін әсері күшті болуы ықтимал. Каллустың морфогенезге қабілеттілігіне басқа  факторлар да әсер етеді. Олар: өсімдіктің жасы мен физиологиялық күйі, экспланттың тегі, каллустың жасы және оны өсіру жағдайлары.
Микрокөбейту үшін өте онды каллус жасушалары генетика тұрғысынан тұрақты, сабақ апексінің меристема жасушаларына ұқсас және тоқтаусыз бөлінуге қабілетті болуы керек.

         №8 дәріс: Өсімдіктерді сауықтыру.
* Апикальдық меристеманы өсіру.
2. Вирус жұққан өсімдікті айқындау.
3. Картоптың вируссыз көшетін алу.
Көптеген пайдалы өсімдіктер толып жатқан вирустар, бактериялар және саңырауқұлақтар қоздыратын ауруларға шалдығады. Соның зардабынан жыл сайын олардың өнімі төмендеп, сапасы нашарлайды. Клондық микрокөбейту кезінде стерильденген экспланттарды асептикалық жағдайда өсірудің арқасында өсімдіктер бактериялық және саңырауқұлақтық патогендерден сауықтырылады, бірақ сыртқы залалсыздандыру эксплантты вирустан тазарта алмайды.
 Вирустармен әдеттегі химиялық әдістермен күресуге болмайды, себебі олардың тіршідік әрекеті өздері ішіне енген қожа өсімдік жасушаларының метаболизмімен тығыз байланысты. Қазіргі уақытта 600-ден астам фитопатогендік вирустар белгілі. Олар адамға қауіпсіз болса да, екпе өсімдіктерді зақымдап, ауыл шаруашылығына үлкен зиян келтіреді. Мысалы, вирус ауруларының әрекетінен түсім шығыны картопта 25-88%, жүзімде-60% дейін, шиеде-35-96%, қара өрікте-5-95%, алмада-66% төмендейді де, ақырында бұл өсімдік сорттарының азғындауына әкеліп соғады. Мысалы, Францияда картоптың Бельде-Фонтанэ деген бағалы сорты вирусқа шалдығу себебінен мүлдем жоғалып кетті. Мұндай мысалдар басқа өсімдіктерде де кездеседі.
            Апикальдық меристеманы өсіру.
Вирустар қоздыратын аурулармен күресудің негізгі жолы, ол аурудан таза, сауықтырылған көшет алу. Соңғы кезде вирусы жоқ картоп және басқа вегетативтік жолмен көбейетін өсімдіктерді алу үшін апикальдық меристеманы өсіру әдісімен бірге термоөндеуді, хемотерапияны және вирустарды сарапқа салуды табысты қолданылады.
Әдеттегі вирустан құтылу әдістерінен апикальдық меристеманы өсіру әдісінің негізгі айырмашылығы мынада. In vitro жағдайында регенерант өсімдіктері алынғанда, олар инфекцияға шалдықпайды. Бұл әдістің негізін қалаған француз ғалымдары П.Лимассе мен П.Корнуе. олар 1949 жылы көрсеткендей теңбіл кеселді темекінің жапырақтарында вирустың концентрациясы өсімдіктің ұшына жақындағанда төмендеген. Өркен ұштарының, яғни апикальдық меристемалардың жартысында вирус тіпті болмаған. Апикальдық меристеманы  өсіру әдісін вегетативтік жолмен көбейетін өсімдіктерді бірінші пайдаланған 1952 жылы Г.Морель мен К.Мартин. олар бұл әдісті нарғызгүлді (георгин) теңбіл вирусынан сауықтыру үшін қолданған.
Вирустардың меристема ұлпасында көбеймеуінің себептері жөнінде әр түрлі пікірлер бар. Бір зерттеушілер болса меристемада вирустардың болмауын олардың бір жасушамен екінші жасуша арасында баяу қозғалысымен түсіндіреді. Себебі меристемада өткізгіш жүйесі жоқ, ал плазмодесмалар көлемі өте кішкене. Басқалары болса, бұл фактіні меристемаларға тән ерекше вирустық нуклеопротеидтің синтезін тежейтін метаболизммен түсіндіреді.
Жылумен өндегенде өсіп келе жатқан өркен ұштарында вирустың көбеюі күшті тежеледі, сондықтан жаңадан пайда болған меристема жасушаларында вирустың болмауы мүмкін. Жылумен өндеу нәтижеді болу үшін донорлық өсімдіктерді жоғары температурада (30-40°С) өсуге жақсы жағдай жасап ұзағырақ ұстау қажет. Сол кезед жаңадан өсіп шыққан өркендердің ұштары вирустан алас болады. Бірақ барлық өсімдіктер ұзақ мерзімді жылумен өндеуге шыдамайды. Олардың өсуі бәсең болады және басқа да жағымсыз өзгерістер байқалады. Танаптық және жеміс-көкөніс дақылдарын сауықтыру үшін термоөндеу, меристеманы өсіру және вирустық тестер арқасында сұрыптау тәсілдері қосыла аралас қолданылады.
      Вирус жұққан өсімдіктерді айқындау.
Жылумен өндеп, меристеманы өсіру арқылы алынған материалды вирустың бар-жоғын міндетті түрде тексеру керек. Ол үшін түрлі әдістер қолданылады: вирустық ауруды айқындаушы өсімдіктер; серологиялық әдістер; электрондық микроскоппен қарау және иммуноферменттік талдау.
Вируспен зақымдалған өсімдіктен бөлінген шырынды жапырақтарына тамызғанда, кейбір өсімдіктер аураға тез шалдығады. Олар вирустың жұққанын арнайы сезімталдық реакция арқылы көрсетеді. Бұл әдіске көп уақыт және көп еңбек жұмсалады. Арнайы өсімдіктерді өсіретін теплица қажет және оларды өсіретін маман керек. Бұдан басқа, әдістің сезімталдығына түрлі факторлар әсер тетеді, жауап реакция білінгенше бірталай уақыт кетеді. Қорытындысында, бұл әдіс өндіріс масштабында көптеген өсімдіктерді жылдам және тиімді талдауға жарамайды.
Электрондық микроскоп арқылы өткізген талдау қымбатқа түседі және ұзақ уақыт өтеді. Бұл әдіс ғылыми зерттеулер үшін, мысалы вирустарды бөліп шығарғанда, жаңа вирустарды алғашқы рет анықтағанда қолданылады.
Ауыл шаруашылық практикасында көбінесе серологиялық әдістері қолданылады. Олардың негізінде организмнен тыс антигендер мен антиденелердің әрекеттесу реакциясы жатады. Арнайы жасалған шыныда өсімдіктің тазартылмаған сөлінің бір тамшысы антисыворотканың бір тамшысымен қосылады. Жасушаның органоидтарында абсорбцияланған вирустар оларды серологиялық реакцияға қатыстырады, нәтижесінде тұңба (агглютинат) пайда болады. бірақ бұл әдістің анықтау сезімталдығы төмен болғандықтан, оны тек қана жапырақтарда жоғары концентрацияда жинақталатын вирустардв анықтау үшін қолдануға болады.
Вирустардв анықтаудың ең жақсы, сезімталдығы жоғары әдәсі, ол иммуноферменттік анализ. Жоғары сезімталдық пен жфлдамдықтан басқа бұл әдістің тағы бір артықшылығы бар. Талдау үшін өсімдіктің кез келген мүшесінен алынған материал өте аз мөлшерде жұмсалады. Бірақ бұл әдістің жаппай пайдалануы түрлі вирустарды анықтайтын иммунодиагностикумдардың жетіспеушілігімен шектеледі. Қазіргі кезде вирустарды анықтайтын нуклеин қышқылдардың молекулалық будандастыруына негізделген әдісі жете зерттеліп дайындалған. Шамасы, болашақта бұл әдіс иммуноферменттік әдісінің орнына қолданылады.
Вирусы жоқ өсімдіктерді өсіру кеңінен таратылу үшін түрлі дақылдардың миллиондаған өсімдіктерін вирустарға тексеруден өткізу керек, ал ол үшін диагностиканың экспресс әдістерінен басқа сол жұмыстарды автоматтандыру керек болады.
          Картоптың вируссыз көшетін алу.
Картоптың вирусы жоқ көшет материалын алу технологиясы түйнектерді жылумен өндеуден басталады. Көпшілік мақұлдаған гипотеза бойынша, вирустардың 34-40°С температурасында көбеюінің тежелуі зат алмасудың өзгеруімен байланысты. Түйнектерді вирустың түріне қарай 7 күннен 7 аптаға дейін жылумен өндейді. Сонымен бірге түйнектер вирустарды тежейтін, бірақ  өсімдіктердің өсу қарқынын арттыратын заттармен өнделеді. Меристемалары бөліп алу үшін ақшыл, ұзындығы 3-5 см өскіндер пайдаланылады. Өскіндерді жуып-шайып, стерильдеп, бокстың ішінде олардың апекстерін бөліп алады. Іс жүзінде 50-100 мкм көлеміндегі меристеманы бөліп алу мүмкін емес, сондықтан онымен бірге алғашқы жапырақ бастамалары алынады, сонда оның көлемі 500 мкм жетеді. Осыған бола экспланттың ішінде вирустары болуы мүмкін, бірақ оның есесіне апекстың өсуге қабілеті артады.
Апекстер агарланған қоректік ортада өсіп, дамиды. Ұзындығы 0,3-0,5 см  өркендер пайда болған соң, оларды одан да жақсы өсу және тамырлану үшін жаңа қоректік ортаға көшіреді. 5-7 жапырағы шыққан соң, өсімдіктерді қалемшелеп, әрқайсысын құрамы бұрынғыдай қоректік ортаға пробиркаларға отырғызады. Бір қалемшені вирусқа тексеру үшін  алып қалады. Вирусы жоқ өсімдіктер сауықтырылған линияның негізін салады. Вирустан тазартылған өсімдіктердің көбеюін жылдамдату үшін оларды жүйелі микроқалемшелейді. Қалемшелерден өсімдіктер меристемамен салыстырғанда едәуір тез дамиды, сонымен бірге тамырлары мықты және жапырақтары мол болады. пробиркаларда микроқалемщелеу арқасында 2-3 айдың ішінде 2-3 мың өсімдік алуға болады.
Одан кейін осы өте кішкене нәзік өсімдіктер (суперсуперэлита) ұзақ мерзім сақталу үшін тоңазытқышқа салынады немесе теплицада топыраққа отырғызылады. Жұмыстың осы кезеңі өте маңызды және оған бар ықыласты аудару қажет. Қолайлы жағдайларда бір сортты сауықтыру үшін 40 меристеманы бөліп алу жеткілікті, сонда in vitro жағдайында 7-8 айдың ішінде 30-40 мың түйнек алуға болады. сауықтырудың тиімділігі көбінесе сорттың ерекшеліктеріне, вируспен зақымдану деңгейіне, маусымның әсеріне байланысты. Теплица жағдайында өсіп көбейген өсімдіктер суперэлитаны құрайды, оларды бөлек ұстап, кейін арнайы көбейтеді. Сонда алынған элиталық өсімдіктерді өндірістік көшеттікте көбейтіп, шыққан түйнектерді (тұқым материалды) шаруашылықтарға сауықтырылған көшет материалын алуға жібереді. 5-6 жылдан кейін сорт қайта зақымданады, демек жаңа сауықтырылған көшет материалдары ылғи қажет болып тұрады.
Меристемалық өсімдіктерді тиімді пайдалану мақсатымен картопты микротүйнектермен көбейтудің жылдамдатқан әдісінің технологиясы дайындалған. Өсімдіктерді микроқалемшелеп, қалемшелерді түйнектерді пайда болғызатын ортаға отырғызады. Олардың шығуына дем беру үшін төмен температурамен (10-15°С) өндейді. Сонымен микротүйнектер көбінесе жапырақ қолтығында пайда болады. микротүйнектер жақсы сақталады және көбейтуге қолайлы.
Соңғы кезде картопты сауықтыру үшін каллустарды пайдаланады. Каллусты қайта-қайта жаңа ортаға көшіргенде, оның жасушалары вирустардан тазарады, морфогенез процестері нәтижесінде вирустары жоқ регенерант өсімдіктері шығады. Дәлелденгендей, кейбір сорттарды сауықтыру үшін осы әдіс апикальдық меристеманы өсіруге қарағанда тиімді келеді. Өсімдіктің ұшынан алынған каллустарында морфогенез процестері тез өтеді.
Вирустан таза материалдарды алу табысты болуы мына шарттарға байланысты:
1)өсімдікті жылумен өндеу мүмкіншілігі;
2)меристеманы өсіру мүмкіншілігі;
3)вирустарды анықтайтын жақсы игерілген сезімталдығы жоғары тестің болуы;
4)сауықтырылған материалды толық оңашалау жағдайында өсіріп көбейту;
5)сауықтырылған материалдың мөлшері жыл сайын алғашқы материалды жаңартуға жеткілікті болу керек.
Бұл шарттар түрлі дақылдарда бірдей орындала алмайды. Қазіргі кезде осы әдіспен картоптың бағалы сорттарынң барлығы дерлік сауықтырылған, бірақ біздің елімізде бұл технология алғашқы тұқым шаруашылығына енгізілмеген.
	
	№9 дәріс: Гаплоидтық технология
Гаплоидтық организмнің сомалық жасушаларында сыңар хромосомалар жиынтығы (n) болады, яғни толық жиынтықтың (2n) тең жартысы. Гаплоидтарды дағдылы селекция әдістерімен шығару (түрішілік және түраралық тозаңдану, рентген сәулесін түсіру және басқа стресс факторлармен ықпал ету) оңай емес және көп уақытты талап етеді. Ал аталық және аналық гаметофиттерді in vitro жағдайында өсіріп гаплоидтарды тез шығарып, селекция процесін жеңілдетуге болады. Бұл әдістер апомиксис процесіне негізделген. Апомиксис  -  организмдердің жыныссыз жолмен көбеюі.
Аталық гаметофитті (тозаңқаптар мен тозаң) in vitro жағдайында өсіріп, гаплоидтық өсімдіктерді алу андрогенез деп аталады. Аналық гаметофитті (ұрық бүршіктер) өсіру арқылы гаплоидтық өсімдік алу гиногенез деп талады. Сонымен қатар гаплоидтарды, аталық немесе аналық хромосомалары жойылып кететін будан ұрықты  in vitro жағдайында өсіріп алуға болады. кейде гаплоидтық өсімдік псевдогамия арқасында пайда болады, яғни ұрықтанбаған жұмыртқа жасушасынан ұрық дамиды.
Тозаңқаптар мен тозаңдарды өсіріп гаплоидтарды алу.
Бірінші рет сасық меңдуананың тозаңқаптарын in vitro жағдайында өсіріп, Индияда С.Гуха мен С.Махешвари 1964 жылы гаплоидтық өсімдіктерді алады. Содан кейін осы тәжірибені француз ғалымы К.Нич 1967 жылы темеккінің тозаңқаптарын өсіріп қайталады. Содан бері осы әдіспен гаплоидтар 200-ден астам өсімдік түрлерінен алынды, соның ішінде: бидай, арпа, қара бидай, күріш, картоп, рапс, т.б. ауыл шаруашылық дақылдары.
In vitro жағдайында аталық гаметофиттен гаплоидтық спорофиттің шығуы өте күрделі, әлі егжей-тегжейі анықталмаған процесс. Микроспоролардан калус немесе эмбриоидтар қалыптасып, кейін олардан гаплоидтық регенерант өсімдіктері шығады. Ол үшін микроспоралар in vitro  жағдайында дамудың өте күрделі процесінен өтеді. Ал бұл процестің түрткі болар себепкерлері мен реттеушілері әлі белгісіз. Табиғи жағдайда in vivo микроспоралар (гаметофиттік) жолмен дамиды: 1) мейоздың нәтижесінде тозаңның бастапқы жасушасынан төрт (тетрада) микроспора пайда болады.; 2) тетраданың қалың қабығынан микроспоралар босап шығады; 3) микроспора одан әрі даму жолында екі рет митоздан өтіп, соңында жетілген тозаң түйіріне айналады. Ал in vitro жағдайында микроспора әдеттегі гаметофиттік даму жүйесінің кез келген фазасынан ауытқып кетіп, сапрофиттік даму жолына түсуі мүмкін. 
Микроспоралардың in vitro жағдайында дамуы және өсімдіктер регенерациясы.
Микроспоралардың in vitro жағдайында дамуы бірнеше жолмен қамтамасыз етілуі мүмкін. Бірлі-жарымы гаметофиттік даму жолынан ауысып эмбриоидты түзеді. Басқалары дедифференцияланып, каллусқа айналады. Тағы біреулері микроспорогенез бен гаметогенез жолын жалғастырады, яғни пісіп жетілген тозаңға айналады. Ал тағы бір тобы біртіндеп ыдырап құриды. Н.Сандерленд сасық сеңдуананың микроспораларын in vitro өсіріп, олардың бастапқы кездегі даму жолдарын зерттеп, табиғаттағы in vivo даму жолынан айырмашылығын көрсеткен.
In vitro жағдайында микроспора тепе-тең бірдей екі жасушаға бөлінуі мүмкін. Ал in vivo дағдылы жолмен бөлінгенде пайда болатын екі жасушаның бірі генеративтік, бірі вегетативтік жасушалар. Ол екеуінің көлемі жағынан айырмашылығы бар. Бұндай гаметофиттік жолдан спорофиттік жолына ауысу Datura innoxia, Nicotiana tabacum түрлеріне тән.
 Микроспора көлемі бірдей емес екі жасушаға бөлініп, вегетативтік және генеративтік жасушаларды түзеді. Бұ табиғи жолға ұқсас. Генеративтік жасуша бірінші митоздан кейін кері кетеді. Вегетативтік жасуша көп бөлініп одан әрі зиготалық даму жолына түседі. Бұндай даму жолы Nicotiana tabacum, Datura metel, Hordeum vulgare, Triticum aestivum т.б. өсімдіктерде байқалған. Кей кезде тек қана генеративтік жасуша бөліне бастайды, немесе екеуі де (вегетативтік пен генеративтік жасушалары) бірдей бөлініп, спорофитті түзеді. Микроспораның атап өткен бөліну бағыттары көпжасушалық гаплоидтық құрылымдардың (глобула, эмбриоид) пайда болуына себеп болады. олардан гаплоидтық регенерант өсімдіктері шығады.
Егерде вегетативтік жасушаның ядросы генеративтік жасушаның ядросымен қомылап кетсе, пайда болған диплоидтық жасушадан түзілген өсімдікте әрине диплоидтық болады. Сонымен қатар, диплоидтық өсімдіктер мейоз кезінде кейбір кемістіктері пайда болған микроспоралардан және зндополиплоидия өтуі салдарынан түзіледі. Микроспоралардың даму бағдарламасы гаметофиттік жолынан спорофиттік жолына ауысуының себептері белгісіз, және де бұл процеске қалыпты немесе кемістіктері бар микроспоралар қатыса ма деген сауалға әлі де жауап жоқ. Әдетте, микроспоралардың даму бағытына әр түрлі факторлар әсер етеді: микроспораларға тән табиғи полиморфизм, микроспораларлың дамуындағы ауытқу, микроспоралардың бөліну шүйкесінің орналасуы. Микроспоралардың гаметофиттік даму жолынан спорофиттік жолына ауысуы генетикалық деңгейінде анықталады, бірақ оның жүзеге асуы нақтылы физиологиялық жағдайлар мен түрлі индукциялау факторларға байланысты. Микроспораның даму бағыты ең алдымен оның даму кезеңімен белгіленеді, және өсіретін қоректік ортаның гормондық құрамына байланысты болады.
Микроспорадан түзілген көпжасушалық құрылым дами келе эмбриоидқа айналса, одан шыққан регенерант өсімдік тікелей андрогенездің нәтижесінде пайда болады. Ал егерде көпжасушалық құрылым каллусқа айналса, одан шыққан регенерант өсімдік жанама андрогенез нәтижесінде пайда болады.
Тозаңқаптағы мыңдаған микроспораларлың ішінде тек қана кейбіреулері ғана эмбриоидты түзеді. Бұл құбылыс генетикалық деңгейде белгіленуі ықтимал. Эмбриогендік микроспоралардың саны түрлі стресс ықпалдарынан арта түседі. Мысалы, төмен және жоғары температура, ионизация туғызатын сәулелер. Тікелей андрогенез үшін донорлық өсімдіктің физиологиялық күйі, тозаңның даму кезеңі, қоректік ортаның құрамы және өсіру жағдайларынң маңызы зор. Көптеген өсімдіктерде микроспораның спорофиттік жолмен дамуы үшін бір ядролық кезеңі ең қолайлы болады. Каллустан шыққан өсімдіктердің бәрі гаплоидтық бола бермейді, сондықтан гаплоидтарды жаппай алу үшін ең жақсысы эмбриоидогенез арқылы өтетін тікелей андрогенез.
В.Ананд қызметтестерімен темекінің (Nicotiana tabacum) тозаңқаптарын өсіргенде, эмбриоидтардың үш түрі пайда болғанын байқаған. Олар вегетативтік жасушаның, генеративтік жасушаның және ол екеуінің де бірге бөлінуінен түзілген. Осы эмбриоидтардан гаплоидтық өсімдіктер алып, оларды топыраққа көшіріп, гүлденуге дейін өсірген. Олардың жапырақтары мен гүлдерінің морфологиялық құрылысын зерттегенде, бұл өсімдіктер де бір-бірінен айырмашылықтары бар үш типке бөлінген. Тозаңқаптар мен микроспораларлы өсіргенде, каллустың екі типі пайда болатыны көрсетілген: біріншісі  -  әр түрлі гетерогендік жасушаларынан тұрған, екіншісінің құрамында меристемалық жасушалар ошағы болған. Регенерация прцесі екінші каллуста өте жеңіл өткен, себебі меристемалық аймақтардан өркендер тез өсіп шыққан. 

           №10 дәріс: Жасушалық инженерия.
Жасушалық инженерия  -  жасушаларды өсіру, оларды будандастыру және қайта құрастыру арқылы жасушаның мүлдем жаңа типін жасау әдістерінің негізінде қалыптасқан биотехнологияның саласы. Жасушаларды жасанды жолдармен будандастырғанда, сомалық жасушаларды бір-біріне қосқанда будан геном түзіледі. Будандастырудың бұл тәсілінің мәні мынада: аталық және аналық жасушалар ретінде жыныстық жасушалар (гаметалар) емес өсімдіктің дене жасушалары қосылады. Олардың алдын ала протопластарын бөліп алады, белгілі жағдайда олар бір-бірімен қйылысады. Пайда болған сомалық будан жасушадан кейін регенерация арқылы будан өсімдіктер өсіп шығады.
Протопластарды қосу арқылы будандастыруды әр түрлі атайды: сомдық будандастыру, парасексуальды будандастыпу, жыныстық емес будандастыру. Сонда да, көбінесе бірінші термин қолданылады, ал пайда болған будан сомалық будан деп аталады.
Жасушаны қайта құрастыру (реконструкция)  -  жасушаның құрамына кіретін ядроны, цитоплазманы, митохондрияларды, хлоропластарды, хромосомаларды бір жасушадан басқа жасушаға көшіру негізінде мүлдем жаңа жасушаны жасау. Осындай әрекеттер нәтижесінде ядролық және цитоплазмалық гендер тіркестігі әдеттегідей емес, тіпті өзгеше жасушалар пайда болуы мүмкін. Одан да артық ғалымдарды қызықтыратыны, ол жеке хромосомаларды тасымалдау арқылы анеуплоидтық линияларды  алу мүмкіншілігі.
Протоплас бөтен ДНҚ-ны қабылдай алатын өте ыңғайлы жүйе. Сол ДНҚ жасушаға енгізіп және оның экспрессиясын қамтамасыз ету арқылы генетикалық өзгертілген өсімдіктерді алуға болады. сөйтіп, протопластарды бөліп алу, өсіру, қосу және оларға жасушалық органоидтарды, жеке хромосомаларды, тіпті ДНҚ енгізу генетиктер мен селекционерлерге будан өсімдіктердің алуан түрлілігін арттыруға мүмкіншілік туғызады.
Протопластарды бөліп алу.
Протоплас  -  ферменттердің әсерімен немесе механикалық әдістермен қабығы түгел жойылған өсімдік жасушасы. Ағылшын ғалымы Э.Кокинг 1960-шы жылдардың басында жасушаның ішіндегі протопласты зақымдамай тірі күйінде бөліп алу әдісін жете зерттеп дайындады. Ол қызанақ тамырларының ұштарын, зең саңырауқұлақтар өсірген ортасына бөліп шығарған гидролиздік ферменттерімен өңдеп, протопластарды ферменттік әдісімен бөліп алды.
Әдетте тірі жасушада протопласт жасушаның қабырғасына орталық вакуольдің тургор, яғни кернеулік қысымымен тығыз жанасып тұрады. Жасуша қабығы арқылы плазмалеммамен қоршалған цитоплазмалық жіңішке жіпшелер өтеді, солар арқылы көршілес жасушалардың протопластары біріне-бірі жалғасып жатады. Сондықтан жасуша қабығын ферментпен еріткен кезде протопластарға зиян келтірмей жасушаларда плазмолизді жұргізеді. Осмотик ретінде сахароза, маннит, сорбит қолданылады. Осы заттардың гипертониялық ерітінділері әсерінен вакуоль сусызданып жиырылып, протопласт көлемі кішірейіп, соңынан қабықтан алшақтайды. Кейде жасуша сопақ болғанда протопласт плазмолиз кезінде екі бөлініп кетууі мүмкін. Сондай ядросы жоқ субпротопласт цитопласт деп аталады.
1968 жылы жапон ғалымы Такебе темекі жапырағының мезофилл жасушаларынан протопластарды көп мөлшерде алудың тиімді әдісін жете зерттеп дайындады. Алдымен жапырақты 70%-тік этанолда стерильдейді, кейін 15-20 мин 10%-тік кальций гипохлоритінде ұстап, дистильденген суда шайып алады. Астыңғы эпидермисті алып таста, жапырақты майда бөліктерге кесіп, пектиназа ферментінің ерітіндісіне салады. Пектиназа жасушааралық қабаттың заттарын ерітеді, яғни мацерация өтеді. Одан кейін объект целлюлоза ферментінің ерітіндісімен өңделеді, бұл кезде целлюлозалық жасуша қабығы біржолата жойылады. Фермент ерітіндісіне осмостық зат қосылады. Осы әдіспен әр түрлі өсімдіктердің ұлпаларынан протопластар алынады.  Қазіргі уақытта протопластарды бөліп алу үшін ферменттердің қоспасын пайдаланады. Бұл қоспаның құрамында ферменттердің үш түрі болатын пектиназалар, целлюлозалар және гемицеллюлозалар. Олар жасуша қабығының негізгі компоненттерін ыдыратады. Бұл ферменттерді кейбір бактериялар мен саңырауқұлақтар өздерін өсірген сұйық ортаға бөліп шығарады, сонымен қатар оларды ұлудың асқорыту сөлінен бөліп алады. Қазіргі уақытта пектиназалық және целлюлазалық әсері бар бірталай стандарттық ферменттер бар.
Ферменттік ерітінділерді арнайы сүзгіден өткізу арқылы залалсыздандырады. Жасуша түрлерінде құрылымы мен құрамы жағынан айырмашылықтары болғандықтан, қоданылатын ферменттердің комбинациялары мен мөлшерінің ара қатынасы бірдей болмайды. Әрбір ұлпа үшін ферменттердің құрамы, концентрациясы мен ара қатынасы және өңдеу уақыты бөлек іріктеліп алынады. Бөлініп алынған протопластар ферменттік ерітіндіде мейлінше аз уақыт болуы керек, одан кейін ұқыпты түрде жуылуы қажет.
Протопластарды бөлу кезінде аэрацияның маңызы зор. Сондықтан ортаны араластыратын жабдықтар қолданылады немесе ферменттік ерітінді түбіне ғана құйылған Петри табақшасында бөліп шығарады. Протопластарды ала көлеңкеде немесе қараңғыда бөліп алады. Ферменттік ерітіндіде инкубация уақыты ферменттердің үйлесуіне, рН және температураға байланысты, 1-2 сағаттан 15-16 сағатқа дейін барады. Әрбір нақтылы ұлпа үшін ең тиімді температурамен өңдеу уақытын жеке іріктеп алу қажет. Температура әр деңгейде болады, мысалы бидайға 14°С болса, қызанаққа 27°С.
 Тіршілікке қабілетті протопластарды алу.
Протопластарды нәтижелі бөліп алу көптеген факторларға байланысты: лпаның шығу тегі (жапырақ, тұқымжарнақ, тамыр, тозаң түйірі, каллус ұлпасы, суспензиядағы жасушалар), өсімдіктің түрі мен сорты, өсімдіктің физиологиялық күйі, ферменттердің құрамы, олардың сапасы, ортаның рН және осмостық заттың түрі.
Протопластар суспензиясының сапасы тіршілікке икемді протопластардың санымен белгіленеді. Протопластардың саны Фукс-Розенталь камерасында есептеледі. Протопластың тығыздығы (суспензияның 1 мл-дегі саны) суспензияның маңызды сипаттамасы. Егер ұлпаның немесе өсірілген жасушалардың ылғалды массасының 1 граммынан 1х106тен 5х106 дейін тіршілікке икемді протопластар шықса, онда протопластар жақсы бөлініп алынды деп есептеледі.
Протопластардың бөлініп алынатын мөлшері және олардың өміршеңдігі өсімдіктің түріне, жасына және физиологиялық күйіне, яғни генетикалық және эпигенетикалық ерекшеліктеріне байланысты.
Протопластарды көп мөлшерде тұрақты алып отыру үшін өсімдіктерді белгілі бір жағдайда өсіру керек және олардың ең қолайлы өсу кезеңін, нақтылы бір мүшесін анықтап таңдап алу қажет.
In vitro өскен жасушалар мен ұлпалардан протопластарды бөліп алудың мынадай өз артықшылықтары бар: стерильдік, in vitro жағдайында өсуге бейімділік. Бірақ жасуша қабықшасының химиялық құрамының күрделі болып өзгеруі және оның қалыңдауы ферменттік гидролизді қиындатады. Бүтін протопластардың бөлініп алынуы өсірген жасушалардың ішінде меристемалық жасушаларының сан жағынан үлесіне сай болады, ал ол үшін суспензиядағы жасушаларды жиі-жиі (2-3 тәулігінде) жаңа қоректіа ортаға көшіріп отыру керек.
Суспензияда өсірген жасушалардан протопластарды алу үшін ең қолайлы мезгіл, ол жасушалардың өсу кезеңінің логарифмдік фазасының соңында. Осы мезгілде жасуша қабықшалары ферменттердің әсерімен оңай ыдырап, өміршең протопластарды береді. Протопластардың тіршілікке икемділігі оларды бөліп алу жағдайлары мен  тәсілдеріне байланысты. Жасушаның плазмолиз кезінде сусыздандырылуы және қабығының бұзылуы оны шок күйіне (күйзеліске) душар етеді. Бұ жағдайда цитоплазманың вакуольденуі артады, көптеген липид тамшылары пайда болады, полисомалардың саны азаяды, ядро мен хлоропластар қоюланады.
  Фермент препаратының сапасы протопластардың бөліп алынған санына, мөлшеріне ғана емес, олардың кейбір қасиеттеріне де әсер етеді. Пектиндер мен целлюлозаларды гидролиздейтін саудалық фермент препараттарына қоспа ретінде протеазалар, липазалар, нуклеазалар және басқа ферменттер, фенолдық қосылыстар, тұздар кіреді. Олар плазмалемманың қасиеттерін өзгертуі мүмкін. Осы токсикалық заттардан құтылу үшін және протопластардың шығуын арттыру үшін ферменттерді тазалауға болады. Бірақ айта кететін мәселе, өте жақсы тазартылған ферменттер протопластарды көп мөлшерде алуға тиімсіз келеді. Кейде ферменттер ерітіндісіне қорғаушы заттар (протекторлар) қосылады, мысалы, декстранның немесе калий сульфатының 0,5% ерітінділері. Олар протеиндермен әрекеттесіп, ферменттердің зиянды әсерін төмендетеді.
Инкубациялық ортада иондардың, әсіресе кальций мен магнийдің болуы, плазмалемманың тұрақтылығын арттырып, оқшауланған протопластардың сапасын жақсартады. Оқшауланған протопластар механикалық және осмостық стреске өте сезімтал болады. олар тек ішіне сіңіп кіре алмайтын осмостық заттың гипертониялық ерітіндісінде өздерінің осмостық тұрақтылығын сақтай алады.
Ферменттік ерітіндісінен жуылып тазартылып алынған тіршілікке икемді протопластар шок күйінен шығып, біртіндеп өзінің ішкі жүйесіндегі бұзылған құрылымдары репарацияланып, қабығын қайта құруға дайындалады. 
                                       
          №11 дәріс: Сомалық будандастыру.
                                       
     Сомалық будандастырудың принциптері.
 Бірінші рет будан жасушалары 1960-шы жылдары жасушаларды in vitro өсіру әдісі жетілдірілгенде жануар жасушаларынан алынған. Өсімдіктерде бұл мүмкіншілік кешірек, протопластарды бөліп алу және оларды қосу әдістері жете зерттелгенде жүзеге асты.
Жануар сомалық жасушаларын будандастыру әдісі биология мен медицинаның теориялық мәселелерін шешуге  пайдаланылады. Будан жасушалар биотехнологияда кеңінен қолданылады, мысалы, гибридомаларды пайдаланып моноклондық антиденелерлді алу үшін. Гибридома деген ол антидене түзетін жасушаның (В-лимфоциттің) ісік жасушамен қосылған будан жасушасы. 
Ісік жасушаларының құрамына енгізілген лимфоциттер организмнен тыс шексіз уақыт өсіп, антиденелерді түзеп, оларды қоректік ортаға мол мөлшерде шығарып жатады. 
Өсімдіктердің сомалық жасушаларының протопластары құйылысып, будан жасуша құрылады, ал одан тотипотенттік қасиетке сүйене регенерация арқылы будан организм шығады. Сондықтан бұл әдіс будан өсімдіктің құрамында нендей қасиеттердің пайда болатынын білу үшін генетикалық талдау жасауға ыңғайлы болады. сомалық жасушаларды будандастыру арқылы өсімдіктерді генетикалық жағынан жақсартуға болады.
Көне заманнан бастап мәдени өсімдіктердің селекциясы жыныстық будандастыруға және соның нәтижесінде шыққан алуан генотиптерді сұрыптап, олардың арасынан ең құндыларын таңдап алуға негізделген. Бірақ жыныстық будандастыру генетикалық жағынан өте қатаң шектелген будандастыру жүйесі. Бұнда ата-аналық формалары ретінде тек биологиялық бір түрге жататын белгілі организмдер белгілі бір тіркесті пайдаланылады. Жыныстық будандастырудың нәтижесінде белгілі гендер жиынтығы бар ұрпақ пайда болады. жыныстық жолмен мәдени өсімдікке жабайы түрдің бағалы жеке бір ғана белгісін беру мүмкін емес. Жыныстық процесс симметриялық (аталық пен аналықтан ұрпаққа несие боп берілетін хромосомалар саны тепе-тең) болғандықтан, көздеген мақсат бойынша берілетін пайдалы қасиетпен қатарласып, көптеген тіпті зиянды белгілері де қосымша беріледі. Аталық пен аналықтың екеуінің де гаметалары қосылғанда зиготаға өздерінің ядролық генетикалық материалдың гаплоидтық жиынтығын бір мөлшерде қосады. Жабайы түрдің көптеген жарамсыз гендерінен аластау үшін алынған буданды дүркін-дүркін бастапқы мәдени өсімдік формасымен қайтара будандастыра беру қажет. Бұл жұмысқа көп жылдар кетеді, гендері біркелкі таза линия алып, одан сортты шығару үшін он реттен артық қайталап будандастыру өткізу керек.
Жыныстық процесінде хлоропластар мен митохондриялардағы генетикалық ақпарат, яғни ядродан тыс ақпарат аналық жағынан тұқым қуалайды. Жыныстық будандастыру өсімдіктердің физиологиялық жақын түрлерімен ғана шектеледі. Болашақта селекцияның тиімділігін генетикалық базисті үдейі кеңейту жолымен ғана қамтамасыз етуге болады. екпе өсімдіктердің генетикалық базисын кеңейту жолы, ол түраралық және туысаралық будандаржды алу. Бірақ ондай таксономиялық алшақтық жыныстық жолмен будандастыруды шектейді. Дегенмен, жабайы өсімдіктердің пайдалы гендерін екпе өсімдіктерге ендіруге түраралық, туысаралық будандастырудың маңызы өте зор.
Сомалық будандастыру  -  будандастырудың жаңа әдісі,  оның арқасында будандастыру жыныстық процесс арқылы емес, тіпті басқа жолмен -  сомалық жасушалардың құйылысуы арқылы өтеді. 
Сомалық будандастырудың арқтықшылығы мынада: 1) әдеттегі жыныстық жолымен будандаспайтын филогенезде түпкі тектері алыс жатқан өсімдік түрлерін будандастыру; 2) асимметриялық будандарды ылу, оларда аналық немесе аталық әйтеуір екі біреуінің гендер жиынтығы толығымен болса, екіншісінің бірнеше хромосомалары (немесе гендері, органоидтары мен цитоплазмасы) болады; 3) үшеу және одан да көп ата-аналық жасушалардың құйылысуы; 4) ата-аналық идиотиптері толығымен болатын будандарды алу; 5) ядродан тыс цитоплазмалық гендері бойынша гомозиготаларды алу; 6) генеративтік жүйелерінің сыйымсыздығын жеңу; 7) морфогенезде гаметогенездегі аномалиялар салдарынан жыныстық процесс өте алмайтын өсімдіктердің будандарын алу; 8) эпигенетикалық программалары әр түрлі жасушалардың будандарын алу (Ю.Ю.Глеба, К.М.Сытгик, 1982).  Сонымен, сомалық немесе парасексуальдық будандастыру ядролық және цитоплазмалық гендерді тасымалдайтын бірегей әдіс. Оның көмегімен өсімдіктердің жыныстық сыйымсыздық мәселесін шешуге болады.
Екі протопласт қосылғанда, егер олардың ядролары қосылса, нағыз будан жасуша (ядролық будан) пайда болады. Ядролары қосылмаған будан жасуша гетерокарион деп аталады. Гетерокарионды ата-аналық біреуінің немесе екеуінің субпротопластарын будандастыру үшін пайдалануға болады. Субпротопласт  -  протопластың бөлігі, цитоплазмалық мембранамен қоршалған құрамында кейбір органоидтары бар; ядросы болса  -  ол нуклеопласт, ядросы жоқ болса  -  цитопласт, ядро мен цитоплазманың бөлігі болса  - мини-пртопласт. Хлоропластар мен митохондрияларды бір жасушадан екіншісіне көшіру үшін цитопластарды пайдалануға болады.  Ата-ананың біреуінің ядросы бар және цитоплазмалық гендері екеуінің немесе біреуінен болса, онда цитоплазмалық будан (цибрид) деп аталады. Ата-аналық біреуінен цитоплазмалық гендері иеленген будандарды цитоплазмалық гетерозиготалық будан (цитогет) деп атайды. Жасушада цитоплазмалық гендер хлоропластар мен митохондрияларда болғандықтан және кейбір ядролық және цитоплазмалық гендері жойылу (сегрегация) арқасында, сомалық будандастыру нәтижесінде будандардың 27 түріне дейін алуға болады. 
Оқшауланған протопластар қоршаған ортадан макромолеккулалар мен жасушаның құрамындағы кішігірім бөлшектерді өздеріне сіңіре алады. Шамасы, бұл табиғи эндоцитоз құбылысы немесе олар плазмалемманың үзілген жерінен өтеді, жаңадан бөлініп алынған протопластарда мембрананың бұзылған жерлері болып жатады.
Будан жасушаларды өсірсе одан каллус шығады, ал каллуста морфогенез процестері өтсе будан регенерант өсімдігі шығады. Осы жолмен 1972 жылы П.Карлсон әріптестерімен жоғары сатыдағы өсімдіктің бірінші буданын алды, ол темекінің Nicotiana glauca мен N.langsdorfii түраралық буданы еді. Шыққан регенерант өсіп, дамып, гүлдеген кәдімгі өсімдікке айналды. Бұл өсімдіктердің морфологиясы, хромосомалар саны, жыныстық жолмен алынған амфидиплоидтармен (ата-ананың әрқайсысынан хромосомалардың бір диплоидтық жиынтығы қосылған) бірдей болды.
1974 жылы Г.Мельхерс пен Г.Лабиб темекінің екі сортының гаплоидтық протопластарын құйып қосты. Бұл сорттардың хлоропластарының жарыққа сезімталдық кемістігі бар еді. Будан жасушадан өсіп шыққан будан өсімдіктің хлоропластарында ондай ақау болмады, осындай хлоропластар жыныстық жолымен алынған буданда да болды.
1976 жылы Д.Пауэр қызметтестерімен Petunia hybridа мен P.Parodii түраралық будан алды. Д.Дудил 1977 жылы сәбіздің Daucus carota мен  D.capillifolius түраралық сомалық буданын алды. Бұл ғалымдар сомалық будандардың нағыз будан екендігін дәлелдеді және олардың жыныстық будандарымен фенотипі бірдей екендігін көрсетті.
Сөйтіп, протопластарды бөліп алу, өсіру, оларды қосу және оларға жеке жасушалық органоидтарды енгізу, генетиктер мен селекционерлерге алынған будан өсімдіктердің әр алуандығын кеңейтуге мүмкіндік береді.

                                       
            №12 дәріс: Жасушалық селекция.
Жасушалық селекция  -  бұл in vitro өсірілген жасушалардың арасынан нақтылы бір селективтік жағдайға сәйкес өзгеріске ұшырап, пайдалы қасиетке ие болған жасушаларды көбейтіп сұрыптап алу. Әрбір жасушадан өсімдік шыға алатын болғандықтан, жасушалық селекцияны қолданып өсімдіктердің жаңа формаларын тез алуға болады. Оларға бастама болған жасуша белгілі бір төтенше факторға төзімді келсе, одан шыққан өсімдікте көбінесе сол қасиетті сақтай алады.
Жасушалық селекцияның артықшылығы мынады: жыл он екі ай маусымға тәуелсіздік және уақыт пен егіс көлемінің үнемделуі. In vitro өсетін жасушалық популяцияның әрбір жасушасын жеке организм деп тенесе, бір тәжірибенің өзінде-ақ миллиондаған дарақпен айналысуға болады. ал дала жағдайында ең көп дегенде ғалым мыңдаған ғана өсімдіктермен жұмыс істей алады.
Молекулалық және хромосомалық деңгейлердегі өзгерістері мен организм деңгейінде белгілердің өзгергіштігі арасындағы байланыстар туралы мағлұматтардың жеткіліксіздігі жасушалық селекция жөніндегі зерттеулерге үлкен кедергі келтіреді, сондықтан бұл жұмыстар көбінесе эмпирикалық жолмен жүргізіледі.
          Жасушалық селекцияның әдістері.
Селекцияны қажетті бір бағытта өткізу үшін, яғни өсіп жатқан жасушалардың арасынан белгілі мутациялары бар жеке жасушаларды сұрыптау үшін оларды арнайы селективтік ортада өсіреді. Сондай жағдайда тек мутант жасушалар ғана өсе алады. In vitro жағдайында селекцияны амин қышқылдар аналогтарына, нуклеотидтер аналогтарына, патотоксиндерге, антибиотиктерге, гербицидтерге, тұздар мен ауыр металдардың жоғары концентрацияларына, төмен рН көрсеткіштері мен басқа да түрлі-түрлі факторларға төзімді жасушалық линияларды сұрыптап алу үшін жүргізеді. Сондай-ақ гормондарға, витаминдерге, амин қышқылдарына прототрофтық немесе ауксотрофтық жасушаларды сұрыптайды, яғни сол заттар ортада болмағанда немесе болғанда ғана өсе алатын жасушалар іріктеліп алынады.
Егер де белгілі бір затқа төзімді жасушаларды сұрыптап алу керек болса, оларды сол зат қосылған ортаға егіп өсіреді. Ал енді нақтылы болса, оларды сол зат қосылған ортаға егіп өсіреді. Ал енді нақтылы стресс факторға төзімді жасушаларды сұрыптап алу мақсаты болса, онда ішінде жасушалар өсіп жатқан ыдыстарды дәл сондай жағдай (төмен немесе жоғары температура, гипоксия, т.с.с.) әсер ететін жерге орналастырады. Біраз мезгілден соң жасушалардың көбі бөліне алмай, өсе алмай құриды, тек мутация немесе эпигенетикалық өзгерістер арқасында сол факторға төзімділік көрсеткен жасушалар ғана тірі қалады. Бұндай әдісті тура селекция деп атайды. Осындай тәсілді кейбір метаболиттерді (мысалы аминқышқылын) көп мөлшерде түзіп өндіре алатын жасушаларды алу үшін қолданады. Амин қышқылының аналогін өзіне сіңірген жабайы жасушалар өледі, себебі полипептидтер дұрыс түзілмейді, белок синтезі бұзылады. Өйткені амин қышқылының орнына оның аналогі полипептидтің құрамына кіріп кетеді. Ал мутанттар сол амин қышқылын басқа жасушалардан гөрі артық түзетіндіктен оларда белок синтезі дұрыс өтеді де, ондай жасушалар тірі қалады.
Кері немесе негативтік селекция әдісі бойынша жабайы жасушалардың жедел бөлінуіне жағдай жасалады. Сонан соң қоректік ортаға әдейілеп тимидиннің аналогін қосады. Оның молекулалары тимидиннің орнына ДНҚ құрамына енеді. Соның салдарынан ДНҚ синтезі бүлінеді де, жабайы жасушалар қысқа мерзім ішінде құрып кетеді (<<летальдық өсу>> әдісі). Ал мутант жасушалар бөліне алмайды, өспейді, бірақ тірі қалады. Басқаша айтқанда, қажетті қасиеттері бар жасушалар өспеу үшін ерекше жағдай туғызылады. Содан кейін тірі қалған мутант жасушаларды қолайлы қоректік ортаға көшіріп, көбейтіп өсіріп, тұрақты линияларды алады.
Қоректік ортаға қосатын ингибитордың (селективтік агенттің) концентрациясы нақтылы жасушалар линиясының сезімталдығына байланысты. Сондықтан қоректік ортаға әрбір селективтік фактордың әр түрлі концентрациясы қосылған жеке-жеке ыдыстарға жасушаларды салып, олардың өсу қарқындығын анықтайды. Яғни концентрациялардың өсуін тоқтататын минималдық және максималдық концентрациясын табу керек.
Жасцушаларды өсіргенде қоректік ортаға кейбір амин қышқылдарының уландыратын концентрациясын немесе олардың аналогтарын қосып сұрыптау нәтижесінде сол амин қышқылдарын мол синтездейтін мутанттар алынған. Ондай мутанттар қажетті амин қышқылын асыра синтездейді, сондықтан оның аналогін өзіне онша сіңірмейді. Осылай, алғашқы жасушалармен салыстырғанда триптофанды 20-30 есе артық синтездейтін, және де 5-метилтриптофанға (триптофанның аналогі) төзімді сәбіз бен темекі жасушаларының штамдары іріктеліп алынды. Осы әдіспен картоптың, сәбіздің, күріштің, сасық меңдуананың және басқа өсімдіктердің лизин, метионин, пролин, фенилаланин, глицинді асыра синтездейтін бірқатар жасушалық линиялар алынды. Қоректік ортаға қосылған кейбір амин қышқылдарының жоғары концентрациясының улылығы мына екі себепке байланысты болуы мүмкін: 1) нақтылы амин қышқылының биосинтезі жүйесіндегі қандай да бір ферменттің активтілігі тежелуі салдарынан онымен биосинтез жолы ортақ басқа амин қышқылының түзілуі тоқтап қалады; 2) амин қышқылының концентрациясы қоректік ортада мол болғандықтан нитрат немесе аммонийдің сіңірілуі (ассимиляциясы) тежеледі. Сонымен қатар, амин қышқыл аналогтары белоктардың құрамына кіріп, олардың атқаратын қызметін бұзады.
Қазақстанда Молекулалық биология мен биохимия институтында М.Қарабаев әріптестерімен бидайдың септориозға төзімділігін арттыру мақсатымен жасушалық селекция жүргізген. Септориоз деген бидай және басқа астық тұқымдастарының жұқпалы ауруы. Оны туғызатын Septoria nodum деген саңырауқұлақ. Осы саңырауқұлақтың екі ең активті фитотоксиндерінің концентрацияларының тигізетін әсері, бидайдың бірнеше генотиптерінің сұйық ортада өсірілген жасушаларында зерттелді. Содан кейін арнайы схема бойынша жасушалық селекцияның эксперименттері орындалып, септориоз токсиніне төзімді бидайдың жасущалық линиясы алынды. Алынған жасушалардағы өзгерістердің генетикалық табиғаты, төзімділік белгісінің келесі жасуша болмағанда да сақталуы арқылы дәлелденді. Сонымен қатар сол зерттеушілер көрсеткендей, ғарышта болып келген жасушалардың патотоксинге төзімділігі артқан. Жасушаларға токсинмен ғарышта тікелей әсер ету нәтижесінде  төзімді линияны шығару процесі едәуір тездетілген. Ғарыштағы жасушалық селекция, ол ғарыштың бірегей факторларын биотехнология практикасында қолдану.  Мүмкін ұл тәжірибелер биотехнологияның жаңа бағытының  -  космостық биотехнологияның дамуына жол ашар.

             №13,14 дәріс: Гендік инженерия.
Гендік инженерия  -  молекулалық және жасушалық генетиканың қолданбалы саласы. Белгілі қасиетері бар генетикалық материалдарды (гендерді) in vitro жағдайында алдын ала құрастырып, оларды тірі жасушаға енгізіп, көбейтіп, зат алмасу процесін өзгеше жүргізу. Бұл әдіспен организмдердегі генетикалық ақпаратты кһздеген мақсатқа сай өзгертіп, олардың геномдарын белгіленген жоспармен қайта құруға болады.
Гендік инженерия ол функционалдық активті генетикалық құрылымдарды рекомбинанттық (будан) ДНҚ молекулалары түрінде қолдан құрастыру. Гендік инженерияның мәні жеке гендерді бір организмнен алып басқа организмге көшіріп орналастыру. Бұған рестриктаза мен лигаза ферменттерінің ашылуы мүмкіндік туғызады. Рестриктазалар  (рестрикциялық эндонуклеазалар) ДНҚ молекуласын белгілі жерлерден жеке үзінділерге қиып бөлшектейтін ыдыратушы фермент. Қазір ДНҚ молекуласын бір-бірінен өзгеше 120 жерінен үзетін 500-ден астам рестриктазалар анықталған. Алынған полинуклеотид бөлшектерінің (ДНҚ фрагменттерінің) комплементарлық немесе <<жабысқыш>> ұштарын ДНҚ лигазасы бір-біріне <<желімдеп>> реттеп жалғастырып қосады. Осы ферменттердің көмегімен бір ДНҚ молекуласынан қажетті ген бөлініп алынып, басқа ДНҚ молекуласының үзінділерімен құрастырылып рекомбинанттық, яғни жаңа будан ДНҚ жасалады.
Одан кейін рекомбинанттық ДНҚ бірнеше әдістермен тірі жасушаға енгізіледі. Жаңа геннің экспрессиясы өтеді де, жасуша сол ген белгілейтін белокты синтездей бастайды. Сонымен, жасушаға рекомбинанттық ДНқ молекуласы түрінде жаңа генетикалық ақпаратты енгізіп, ақырында жаңа белгісі бар организмді алуға болады. бұндай организмді трансгендік немесе трансформацияланған организм деп атайды, себебі бір организмнің өзгеріп басқа қасиетке ие болуын трансформация деп атайды.
Алғашқы рет рекомбинанттық ДНҚ 1972 жылы АҚШ-та Стэнфорд университетінде П.Бергтың лабораториясында жасалды. Онда пробирка ішінде үш түрлі микроорганизмнің ДНҚ-лары лямбда фагтың және ішек таяқшасы бактериясының ДНҚ фрагменттері мен маймылдың онкогендік вирусының толық геномы қосылған еді.
Өсімдіктердің гендік инженериясы саласында бірінші жұмыстар in vitro өсірілетін жасушалармен 1980 жылы жүргізілген. 1983 жылы алдымен күнбағыстың трансгендік каллусы, кейін сол каллустан табиғатта мүлдем болмаған санбин өсімдігі алынды. Санбин (ағ.sunflower-күнбағыс, been-бұршақ)  деген ол геномында бұршақтың бнлогы фазеолинді кодтайтын гендері бар күнбағыс өсімдігі еді. Гендік инженерия гендерді тасымалдау тәсілі ретінде болашақта екпе өсімдіктердің селекциясының тиімді аспабы бола алады. Қазіргі кезде гендік инженерия алғашқы қадамдарын басып, екпінді дамып келеді.
Гендік инженерияның әдістемелік негізі жапырақтың мезофилл жасушаларының немесе каллус ұлпасының протопластары болады. жаңа генетикалық ақпаратқа ие болған протопласты өсіріп, одан регенерант өсімдігін алуға болады. генетикалық трансформация үшін сомалық жасушалардан басқа тозаң жасушалары, жұмыртқа жасушасы қолданылады. Сонымен, in vitro өсірілетін жасушаларға гендік инженерияның әдістерін қолданып, өсімдіктердің бағалы белгілері бар негізінде жаңа формаларын құруға болады.
Гендік инженерияның жұмысы мынадай кезеңдерден тұрады:
- басқа организмге көшірілетін құрылымдық генді алу;
- оны вектордың құрамына енгізу, яғни рекомбинанттық ДНҚ-ны жасау;
- рекомбинанттық ДНҚ-ны өсімдік жасушасына тасымалдау;
- өсімдік жасушаларында бөтен ДНҚ-ның экспрессиясын талдау;
- геномы өзгерген жеке жасушалардан регенерант өсімдігін алу.
Басқа организмге тасымалданатын қажетті генді бөліп алу.
Әрбір полипептид тізбегінің, яғни белоктың өзінің құрылымдық гені болады. ол ген нақтылы белок құрамындағы амин қышқылдарының бір-бірімен ізділігін, жалғасу ретін белгілейді. Гендік инженерияның мақсаты  -  әрбір дербес құрылымдық генді бір өсімдіктен басқа бағалы сорттың өсімдігіне оны одан әрі жақсарту үшін енгізу.
Қазіргі уақытта молекулалық биологияның жетістіктерінің арқасында құрылымдық гендерді таза күйінде және де жеткілікті мөлшерде бөліп шығару әбден болады. бірақ бұл жұмыстың өсімдіктермен өткізгендегі қиыншылықтары, ол өсімдіктердің геномдарының едәуір күрделілігі. Оның құрамына 150 мыңнан астам гендер кіреді, ал соынң ішінде тек 5-10%  бірегей ДНҚ генетикалық код қызметін орындай алады, яғни 15-25 мың гендер құрылымдық гендері болғаны. Өсімдіктер геномында функциясы белгісіз көп қайталанған ДНҚ элементтері орасан зор (90-95 %). Сондықтан өсімдіктердің бір белгісін кодтайтын жеке гендерін теңестіру өте қиын да ауыр жұмыс. Одан басқа бірқатар маңызды белгілер тек бір генде емес, көптеген гендерде жазылған. Мысалы, өнімділік, тез пісіп жетілу, азотты сіңіру, ортаның қолайсыз факторларына төзімділік белгілері полигендік болады. бірақ олардың биохимиялық негіздері белгісіз. Гендік инженерияның әзірше алға қойған мақсаты  -  анық бір белгі жазылған қарапайым гендермен айналысу. Мысалы, кейбір қор белоктары, гербицидтер мен пестицидтерге төзімділік гендері, т.с.с. өсімдіктердің құрылымдық гендерін бөліп алу үшін гендік инженерияның әдістері қолданылады.
Гендердің көптеген геномдық көшірмелері ДНҚ-ның комплементарлық тізбегін (қДНҚ) кері транскриптаза (ревертаза) көмегімен матрицалық РНҚ-да синтездеу арқылы алынған. Ревертаза көмегімен үйлесімді аРНҚ болса, көрінген дербес генді синтездеуге болады. ал аРНҚ-ны бөліп алу әдістері жақсы дайындалған.
Бұдан басқа белоктың алғашқы құрылымын зерттеу әдістерінің жетілдіруі арқылы сол белокты кодтайтын генді химиялық-биологиялық жолымен синтездеуге болады. сонымен қатар ол үшін ДНҚ-ның нуклеотид қалдықтарының ізділігін тура анықтауға қолдануға болады.
        Гендерді тасымалдайтын векторлар.
Құрылымдық гендерде тек қана метаболизм өтудің нәтижесінде түзілетін заттардың (белоктың, иРНҚ-ның) коды жазылған. Оларда ген активтілігін реттейтін бөлшек мүлдем жоқ. Сондықтан, жаңа құрылымдық гендерді иеленген жасушаларда ол гендер өз бетімен тиісті қызметңн атқара алмайды. Гендердің жасушадағы әрекетін басқаратын репликация және транскрипция сигналдарын оларға вектор қамтамасыз етеді.
Вектор  - бөтен генді жасуша ішіне тасымалдап алып баратын арнаулы ДНҚ молекуласын вектор дейді. Оған мынадай талаптар қойылады: а)өз алдына репликациялану, яғни жасуша ішіне бөтен генді алып кірген соң жасушамен бірге немесе өз алдына көбейе алатын орны болуы керек; немесе вектор жасуша хромосомасының құрамына еніп, онымен бірге ұрпақ жасушаларға беріліп отыруы керек; б)трансформацияланған жасушаларды анықтау үшін оның ерекше генетикалық белгілері болуы керек; в)құрамында рестриктазалар үзе алатын нуклеотидет тізбегі болуы керек және репликацияға қабілетін жоғалтпауы керек; г)векторға орналастырылған бөтен ген оның ытқаратын қызметін бұзбауы керек, ал вектор болса, олда енгізілген геннің ішінде дұрыс реттеліп жұмыс істеуін қамтамасыз ететін болуы керек.
Бактерия плазмидалары және рекомбинанттық ДНҚ құрастыру.
Векторлар ретінде көбінесе ішек таяқшасы E.coli және де басқа бактериялардың плазмидалары  қолданылады. Бактерияларда басты хромосомадан басқа көптеген кішкентай сақина тәрізді болып тұйықталған қос тізбекті ДНҚ молекулалары кездеседі. Сақина сияқты ДНҚ молекулалары бір-біріне оралып күрделі спираль құрайды. Плазмидалар өз бетіне репликациялана алатын ДНҚ молекулалары. Олар бактерияның басты хромосомасымен тіркеспеген, жасуша ішінде өз алдына еркін орналасқан. Плазмида құрамында тетрациклин немесе канамицин сияқты антибиотиктерге төтеп беруді қамтамасыз ететін ферменттердің гендері бар. Плазмидаларды хромосомалық ДНҚ-дан бөлекше таза түрінде алуға болады.
Құрылымдық генді векторға тіркесіп қосқанда рекомбинанттық ДНҚ пайда болады. ол үшін плазмиданы және керек гені бар ДНҚ-ның бөлшегін рестриктазамен жіп сияқты кеседі. Олардың ұштары бір тізбекті немесе мұқал басты болады. Мұқал және қысқа бір тізбекті ұштары трансфераза ферментінің көмегімен бірнеше аденинді (А) немесе бірнеше тимидинді (Т) жалғап үзартады. Плазмиданың жіп сияқты болған молекуласының да екі ұшы сондай болады. сөйтіп А мен Т комплементарлық болғандықтан, рестрикцияланған фрагменттерде жабысқақ ұштар пайда болады. оларды кейін ДНҚ лигазасымен бір-біріне жабыстырып қосып, булан рекомбинанттық ДНҚ жасалады. Оны клондап көбейту үшін бактерия жасушасына енгізеді.

         №15 дәріс: Генофондты іn vitro сақтау
Өсімдік шаруашылығында сорттар жиі алмастырылып тұруы қажет. Ол жағдай бірнеше себептерге байланысты: біраз мерзімнен соң сорттардың кейбір құнды белгілері біртіндеп жоғала бастайды, ауру қоздырушы микрорганизмдер мен зиянкес жәндіктердің өте қауіпті жаңа популяциялары пайда болады да, оларға төтеп беру қиынға соғады, климат өзгереді, топырақтың құнарлығы төмендейді және тағы да көптеген жағдайлар. Мысалы, бидай және басқа астық ьұқымдастарының сорттары шаруашылықта пайдаланатын орташа мерзімі әдетте 5-10 жыл болады. жаңа сорттарды шығару үшін және ескі сорттарды жақсарту үшін әр алуан бағалы генетикалық материалдар қажет. Сирек кездесетін және жоғалып бара жатқан түрлердің генофондын және селекция үшін бағалы объектілер мен штамдарды сақтау үшін in vitro  жағдайында гендер қорын жасау жөнінде зерттеулер өткізілуде.
Гендердің негізгі көзі ол ұрық, бірақ соңғы кезде биотехнология әдістері дамып, селекцияда қоданыла бастаған соң, генетикалық материал in vitro өсірілетін жасушалар мен ұлпалар түрінде қажет болып жатыр. Гендерді in vitro сақтау әдісі әдеттегі жағдайда ұрықтары сақталмайтын өсімдіктерге қолайлы, вегетативтік жолмен көбейетін және табиғатта жоғалып бара жатқан түрлер үшін лайықты. Құнды заттарды беретін жаңа жасушалар линияларын жасау үшін эталон жасушалары бола алатын жасушалар  коллекцияларын да сақтау керек. Сонымен, бірталай теориялық және рактикалық мәселелерді шешуге жасушаларды шешеуге сақтаудың ыңғайлы әдістері қажет екені сөзсіз.
Көптеген жылдар бойы бастапқы жасушаларды сақтау мақсатымен оларды үзіліссіз ең қолайлы жағдайда өсіруді қолданды. Бірақ мұнда жасушаларда генетикалық өзгерістер өрістеуі ықтимал. Сонымен қатар, бұ еңбек пен қаражат көп жұмсалатын жұмыс. Өсірілетін жасушаларды сақтаудың екі жолы бар: олардың өсуінг барынша бәсеңдету немесе оларды мұздатып сақтау-криосақтау.
            Жасушалардың өсуін бәсеңдету.
Бұл тәсілдің міндеті, жасушалардың өсу кинетикасын өзгерту, жаңа қоректік ортаға көшіру уақыт аралығын барынша созу, мысалы 3-4 айға, тіпті бір жылға дейін. Қазір белгілі факторлардың әсерімен өсуді  бәсеңдету өркендер мен регенеранттарға қолданылады.
Өсуді бәсеңдету үшін ең әрекетті жол температура мен жарықты төмендету. Температура өсімдіктің суыққа төзімділігіне қарап іріктеліп алынады. Мысалы, картоп жасушаларынң коллекциясын сақтағанда температура 10°С, ал алма үшін 1°С болады. әдетте 20°-25°С температурада өсетін  жасушаларға 4°-10°С, ал 30°С өсетін жасушаларға 15-20°С температура қолайлы.
Өсімдіктердің өсуін сонымен қатар қоректік ортаға қосылған кейбір заттар тежейді. Мысалы, маннит пен сорбит осмотиктер ретінде, сахароза жоғары концентрацияда және өсуді тежейтін арнайы заттар. Өсуді тежеу үшін гипоксияны да қолданады,  яғни оттегін азайтады. Гипоксияны туғызу үшін 90% азот пен 10% оттегі қоспасын пайдаланады. Кедй оттегі концентрациясымен бірге сарқылмау және сорғымау үшін оның көлемін ұлғайтады. Сұйық орта қолданылғанда, оған оқтын-оқытн қоректік заттар қосылып тұрады.
                 Жасушаларды криосақтау.
Криосақтау  -  жасушаларды қатты мұздатып алып өте төмен ьтемпературада сақтау, мысалы сұйық азот температурасында (-196°С). Бұл жасушалардың генетикалық сипаттамасы қай мерзімде болса да тұрақты сақталуына кепіл болады. бұл әдіспен ір түрлң материалды сақтауға болады  -  протопластардан ұрық пен тұқымға дейін. Қазіргі уақытта жасушаларды, ұлпаларды, мүшелерді қатты мұздатып сақтау медицина мен мал шаруашылығында кеңінен пайдаланылады. Ал өсімдіктерге келсек, өкінішке орай, жағдай басқаша. Басты қиындығы, ол өсімдік жасушаларына тән ерекшеліктері және мұздың оларға әсері. Өсімдік жасушалары көлемі үлкен, вакуолі зор, суы көп болғандықтан мұздату және еріту кезеңдерінде олар қатты зақымданады. Ол мұздың жасуша ішінде де, сыртында да қатуына байланысты. Әдетте, мұз алдымен жасушаны қоршаған сыртқы ерітіндіде пайда болады.  цитоплазманың өзінің қату нүктесі 1°С, бірақ жасушалар -10°-15°С дейін қатпай тұрады, себебі плазмалемма оған дейін мұздың кристалдарының жасуша ішіне кіруін бөгейді. Мұз кристалдары жасуша ішінде өсе бастаса, мембраналарды қиратады. 
Температура баяу төмендесе, жасушаның бос суы жарым-жартылай сыртқа шығып үлгереді де, сыртқы ерітіндіде мұзға айналады. Ал мұздату өте жедел өтсе, жасушаның дегидратациясы жүріп үлгенмейді де, мұз цитоплазма ішінде түзіле бастайды. Бәсең мұздатқанда жасуша ішінде мұз кристалары пайда болуы мүмкін, бірақ бұнда жасушаның едәуір сорғуымен протоплазманың соғылысуы болмай қалмайды. Протоплазманың сорғылуы, мұз түзілу салдарынан сыртқы ерітіндінің концентрациясы өсу себебінен болады. шектен тыс плазмолиз және соның нәтижесінде пайда болатын осмостық стресс жасушаны зақымдайды.
Сонымен мұздатқанда жасушаның құруының себебі, ол ішінде мұз түзіліп оның мембраналары механикалық қиратылуы. Демек, криосақтау әдісінде қолданылатын тәсілдердің міндеті, осы екі факторлардың зиян әсерін төмендету. Жасушалардың тірі қалуы көптеген факторларға байланысты. Олар: генетикалық және морфофизиологиялық ерекшеліктері; суыққа шынықтыруға қабілеті; түрлі криопротекторлардың құрамы мен мөлшері; осы заттар мен судың жасушаға сіңу деңгейі; температураны төмендету жылдамдығы; еріту жағдайлары. Жасушаларды мұздатып сақтау жұмысының этаптары: 
* жасушаларды дайындау;
* криопротекторды қосу;
* бағдарламалы мұздату;
* сұйық азотта сақтау;
* тез еріту;
* криопротекторлы кетіру;
* қайтадан өсіру және регенеранттарды алу;
          Жасушаларды мұздатуға дайындау.
Өте төмен температура жағдайында жасушаларды, меристемаларды, өркен апекстерін, ұрықты, тозаңды сақтауға болады. бірақ осындай әр түрлі объектілерді криосақтау үшін бірнеше тәсілдер мен жағдайлар қажет. 
Осы әдіс жасушалар суспензиясы үшін жете зерттеліп дайындалған. Ірі, вакуольденген жасушаларға қарағанда мұздатуға майда, меристема тәрізді жасушалар төзімді келеді. Құрылымдары күрделі меристемалар, ұрықтар, эмбриоидтарға мұздату кездегі әрбір этапьтың жағдайларын ерекше бақылау қажет.
Жасушалар суспензиясын мұздатуға дайындағанда меристема тәрізді жасушаларды неғұрлым көбейту керек. Оған жету үшін жасушаларды осмотик қосып ұзақ өсіру, жасушалардың бөлінуін барынша синхрондау және жаңа қоректік ортаға жиі көшіріп отыру керек. Сонда жасушалардың көлемі кішірейіп, олардың көбі тірі қалады. Жасушалардың тіршілікке икемділігі кейбір амин қышқылдарды қосып өсіргенде, ішінде қант мөлшері өсу нәтижесінде арта түседі. Жасушалар суспензиясын дайындағанда өте бір маңызды жәйт, оның концентрациясын көтеру, яғни оны қойылту. Мысалы, сәбіз жасушаларының суспензиядағы тығвздығын 2-3 есе арттырғанда, олардың тіршілікке қабілеттілігі едәуір өскен. Мұздатуға дайындау талаптары әр түрлі жасушаларға жеке эксперимент бойынша іріктеліп алынады.
                       Криопротекторлар
Криопротектор  -  жасушаның мұздап қату нүктесін төмендетіп, жасуша ішіндегі сумен байланысып, жасушаны механикалық және осмостық бүлінуден қорғайтын зат.криопротекторларға диметисульфоксид (ДМСО), глицерин, пролин, сахароза жатады. Сахароза жақсы табиғи протекторы. Криопротекторлардың өздері осмостық стреске себепкер болмаулары үшін олардың концентрациялары жеке іріктеліп алынады.
ДМСО жасушаға өте жақсы енеді, бұл ірі тығыз құрылымдарға, мысалы меристема үшін өте маңызды. Оларды мұздатуға дайындағанда ортаға 5 % ДМСО қосып өсіреді. Бұлкезде апекс бойында (ұзындығы 0,3-0,5 мм) тиімді қорғайтын ДМСО концентрациясы пайда болады. мысалы, дәрілік түймедағы жасушаларын алдын ала ДМСО қосқан ортада өсіріп, кейін мұздатқанда ДМСО, глицерин және сахароза қоспасын бергенде, жақсы нәтижеге жеткен. Жасушаларды мұздатып сақтау мәселелерін көптен бері зерттеп жүрген А.С.Попов көрсеткендей, бірқатар өсімдік жасушалар суспензияларын нәтижелі қор,ау үшін криопротекторлардың қоспаларын және криопротекторлар мен осмотиктер қоспаларының әр түрлі концентрациясын пайдалану қажет.
                      Мұздату мен сақтау.
Ең ыңғайлы мұздату бағдарламасын тандап алудың маңызы зор. Мұздату баяу, бірте-бірте, жылдам, өте тез, лезде өткізіледі. Баяу біртіндеп мұздатқанда  температура 0°С-тан -40°С  арасында минутына 0,5°-1°С төмендейді. Жылдам мздатқанда оюъект криопротектор қосылған ампуласымен шапшаң сұйық азотқа салынады. Ал өте тез мұздатқанда объектінің өзі сұйық азотқа лезде салынады. Тозаңды құрғақ түрінде арнаулы пластмасса ампулаларға бітеп жапсырып сұйық азотқа салады.
Мәскеудегі ИФР-де криобанктің деректері бойынша, бағдарламалы мұздату жақсы нәтиже берген. Бұл үшін арнаулы қондырғыш қажет, оның камерасына бағдарламаланған жылдамдықпен сұйық азоттың буы беріліп тұрады. Басқа түрлі мұздатқышта жасушлара балқу температурасы төмен сұйық зат құйылған камераға салынады. Ол камера электрмұздатқышпен суытылып тұрады. Ең қарапайым аспаптар, ол Дьюар ыдыстары мен пенопластан жасалғар қораптар. Лабораториялық мұздатқыштар (-20°С) мен құрғақ мұзы (-78°С) бар камералар жасушаларды сақтауға жарамайды, себебі оларда жасуша ішінде мұз пайда болуын бақылау мүкін емес.

    





        2.Зертханалық сабақтардың жоспары
Зертханалық сабақтар.
1.Өсімдік жасушаларын өсірудің қысқаша тарихы. 
Өсімдік жасушаларын өсіру әдістері.

2. Жасушаларды сұйық қоректік ортада өсіру.
1. Жасушаларды өсіру үшін қандай жағдайлар қажет?
2. Қоректік ортаның құрамына қандай заттар кіреді?
3. Өсімдікті заласыздандыратын заттар.

3.  Жасушаларды өсіруге қажетті жағдайлар.
 Жасушаларды өсіруге қажетті жағдайлармен танысу. Ыдыстырды залалсыздандыру. Факторостатты бөлмемен танысу.
Жасушаларды өсіру үшін қандай жағдайлар қажет.  

4. Жасанды қоректік ортада өсірілетін жасушаларды өсімдіктер биотехнологиясының теориялық мәселелерін зерттеу үшін пайдалану.
Жасанды қоректік ортада өсірілетін жасушаларды өсімдіктер биотехнологиясының теориялық мәселелерін зерттеу үшін пайдалануды зерттеу.

5. Жасушаларды өсіру жүйелері.
Жасушаларды өсіру жүйелерімен танысу.
Жасушалар суспензиясы. Иммобильденген жасушалар.Қосымша заттарды алу үшін жасушалық технологияларды дайындау жұмысының кезендері.
* Өсірілетін жасушалардан экономикалық маңызды қандай заттар алынады.

6. Өсімдіктерді клондық микрокөбейту.
Өсімдіктерді клондық микрокөбейту әдісімен және кезендерімен танысу.
Қолтық бүршіктерінің дамуын қоздыру. Қосалқы өркендердің экспланттан тікелей пайда болуы.Регенерант өсімдіктерден каллустың пайда болуы. Микрокөбейту процессінің кезендері. Өсімдіктердің клондық микрокөбейуіне әсер ететін факторлар. Клондық микрокөбейту әдісін қолдану және келешегі
Сұрақтар: 1. Клондық микрокөбетудің артықшылығы.2. Жасанды тұқым деген не? 3. Клондық микрокөбейту әдісін қолдану қандай кезендерде ұтымды?

7.Өсімдіктерді  сауықтыру. 
Өсімдіктерді сауықтырумен таныстыру.
Апикальдық меристеманы өсіру. Вирус жұққан өсімдіктерді айқындау. Картоптың вируссыз көшетін алу.
Сұрақтар: 1. Өсімдіктердің вирустық ауруларын анықтау әдістері. 2. Вирустық ауруы бар өсімдікті неліктен жылумен өңдейді? 3. Вирустан аластатылған көшеттерді қалай көбейтеді.

8,9.Сомалық будандастыру әдістері. 
Сомалық будандастыру әдістерін зерттеу.
Сомалық будандастыруды сүрыптап алу әдістері. Будан өсімдліктерді талдау әдістері. Сомалық будандарды практикада пайдалану.
Сомалық будандарды биохимиялық талдау әдістері 
Жыныстық будандастырумен салыстырғанда сомалық будандастырудың артықшылығы. 3. Будан жасушалар мен будан өсімдіктер қалай сұрыпталады? 

10.11. Жасушалық селекция әдістері. 
Жасушалық селекция мәселелерін зерттеу.
Жасушалық селекция әдістері. Төзімді жасушаларды сұрыптау. Төзімділік белгісінің тұрақтылығы. Индукцияланған мутагенез. Сомаклондық варианттар. Сомаклондық өзгергіштіктін себептері. Сомаклондық өзгергіштікке әсерететін факторлар.
Жасушалық селекция деген не және артықшылығы? 2. Жасушалық селекция әдістері. 3. Қажетті белгісі бар жасушаларды қалай сұрыптап алады? 4. Жасушалардың мутагенезін қалай индукциялайды?

12. Сомаклондық варианттар. 
Сомаклондық варианттар. Сомаклондық өзгергіштіктін себептері. Сомаклондық өзгергіштікке әсерететін факторлар.

13. Гендік инженерия. 
 Гендік инженерия мәселелерін зерттеу. 
Басқа организмге тасымалданатын қажетті генді бөліп алу. Гендерді  тасымалдайтын векторлар. Бактерия плазмидалары мен рекомбинанттық ДНК құрастыру.
Сұрақтар.1. Гендік инженерия деген не? 2.Гендік инженерия қалай іске асырылады? 3. Рекомбинантты ДНК деген не, қалай жасалады?

14. Гендік инженерия. 
Гендік инженерия мәселелерін зерттеу. 
Агробактерия плазмидаларын вектор ретінде қолдану. Хлоропластық және митохондриялық ДНК вектор ретінде қолдану. Жылжымалы генетикалық элементтерді вектор ретінде қолдану. Вирустарды вектор ретінде қолдану. 
Сұрақтар: 1. Вектор деген не және оған сай талаптар? 2. Қандай генетикалық құрылымдар вектор бола алады? 3. Агробактериялардың плазмидалары неліктен ыңғайлы вектор бола алады?

15. Гендік инженерия. 
Гендік инженерия мәселелерін зерттеу. 
Гендерді өсімдіктерге тасымалдау әдістері. Гендік инженерияның
мүмкіндіктері мен даму болашағы.
Сұрақтар: 1. Бөтен гендерді өсімдік жасушасына қалай енгізеді? 2. Өсімдіктер ген инженериясының жетістіктері. 3. Өсімдіктер ген инженериясының келешегі.


                      3.Емтихан сұрақтары
1.Өсімдітер биотехнологиясы. Мақсаты және міндеттері
2.in vitro ұрықтандыру
3.Қоректік орталар.
4.Биотехнологияның салалары.
5. in vitro эндоспермасын өсіру
6.Гербицидтерге төзімді өсімдіктерді өсіру.
7.Өсімдік жасушаларын жасанды ортада өсірудің қысқаша тарихы
8.Гаплдоидтық технология.
9. in vitro генофондын сақтау
10. in vitro жағдайында өсімдік жасушаларын өсіру әдістері.
11.Тозаңқаптар мен тозаңдарды жасанды ортада өсіріп гаплоидтар алу.
12.Өсімдіктер биотехнологиясының жетістіктері және дамуы.
13.Жасушаларды һөсіруге қажетті жағдайлар.
14Өсімдіктер селекциясындағы гаплоидтардың маңызы
15.Гендерді тасымалдауға қажетті векторлар
16.Каллусты алу және оны жасанды ортада өсіру
17.Жасушалық инженерия
18.Жасушаларды иммобилдеу әдістері
19.Жасушаларды сұйық қоректік орталады өсіру
20.ПРотопластарды бөліп алу
21.Ауруларға және зиянкестерге төзімді өсімдіктерді өсіру
22.Жасушалардың суспензиялық жасанды ортада өсіру
23. in vitro пртопластарын жасанжы ортада өсіру
24.Мобильді генетикалық элементтерді вектор ретінде қолдану
25.Суспензионды жасушаларды алу әдістері
26.Протопластарды жасанды жолмен өсіру барысындағы өсімдіктер регенерациясы
27.Агробактериялар плазмидаларын вектор ретінде өсімдікте қолдану
28.Дедифференциация және каллустың түзілуі
29.Сомалық будандастыру
30.Жасушалық инженерияның мүмкіндіктері және даму перспективасы
31.Жасанды ортада өсірілген жасушаларды гетерогенділігі
32.Дифференциалану, морфогенез және генерация
33.Белоктардың сапасын жақсарту
34.Апикальды меристеманы жасанды ортада өсіру
35.Срмалық будандастыруды практикада қолдану
36.Гендік инженерияның мүмкіндітері мен даму перспективасы
37. in vitro жасушаларын биотехнологияда қолдану
38.Жасушалық селекция
39. Вирустар вектор ретінде
40.Биосинтездік өндірісте жасушаларды қолдану.
41.Жасушалық селекцияның әдістерің
42.Рестриктазалар
43.Қосымша метаболиттердің жиналуына әсер етуші факторлар. Өсімдік генотипі.
44.Төзімді жасушаларды іріктеу
45.Векторларға қойылатын талаптар
46.Жасушаларды жасанды ортада өсіру жүйелері. Иммобильденген жасушалар
47.Индукцияланған мутагенез
48.Рекомбинантты ДНҚ-ның пайда болуы
49.Өсімдіктердің клондық микрокөбеюі
50.Тотипотенттілік
51.Өсімдіктерді клондық микрокөбейтудің маңызы
52.Гендік инженерия
53.Постгамдық сәйкессіздік
54.Клондық микрокөбейтудің әдістері
55.Басқа организмге көшіруге арналған гендерді алу
56.Прогамдық сәйкессіздік
57.Микрокөбеюдің этаптары
58.ГЕндерді тасымалдауға арналған векторлар
59.Өсімдіктерді вирустармен зақымдануының анықтау 
                                       
Пәндер